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Abstract: Microelectrode arrays that consistently and reliably record and stimulate neural activity
under conditions of chronic implantation have so far eluded the neural interface community due
to failures attributed to both biotic and abiotic mechanisms. Arrays with transverse dimensions
of 10 µm or below are thought to minimize the inflammatory response; however, the reduction
of implant thickness also decreases buckling thresholds for materials with low Young’s modulus.
While these issues have been overcome using stiffer, thicker materials as transport shuttles during
implantation, the acute damage from the use of shuttles may generate many other biotic complications.
Amorphous silicon carbide (a-SiC) provides excellent electrical insulation and a large Young’s
modulus, allowing the fabrication of ultrasmall arrays with increased resistance to buckling.
Prototype a-SiC intracortical implants were fabricated containing 8 - 16 single shanks which had
critical thicknesses of either 4 µm or 6 µm. The 6 µm thick a-SiC shanks could penetrate rat cortex
without an insertion aid. Single unit recordings from SIROF-coated arrays implanted without
any structural support are presented. This work demonstrates that a-SiC can provide an excellent
mechanical platform for devices that penetrate cortical tissue while maintaining a critical thickness
less than 10 µm.

Keywords: amorphous silicon carbide; neural stimulation and recording; insertion force;
microelectrodes; neural interfaces

1. Introduction

Penetrating microelectrode arrays (MEAs) that stimulate or record neural activity usually consist
of a base substrate material which may be an insulator or conductor. Typical conducting substrates
include silicon [1], tungsten, iridium wire [2,3], and carbon fiber [4–7], which provide the backbone and
structural stiffness necessary to penetrate neural tissue. For the Utah array, silicon is doped to provide
conductivity [8], and is usually insulated so that current conduction is restricted to the doped silicon.
A common polymeric coating used to isolate the conducting substrate from the surrounding electrolyte
is Parylene C. It is also common practice to use thin-film dielectric materials, such as low pressure
chemical vapor deposited (LPCVD) SiO2, to encapsulate polycrystalline silicon traces [9]. In most cases
another dielectric material, such as Si3N4, is deposited over the SiO2 to control the intrinsic compressive
stress in the SiO2 [10,11] or to create a multilayer passivation stack of PECVD SiO2/Si3N4/SiO2 over
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the conducting trace [12]. The silicon - based microelectrodes, however, have been shown to deteriorate
when chronically implanted [13–15]. Failure modes associated with silicon - based MEA degradation
were recently described following array implantation in non-human primates [14].

Recent studies have shown that flexible neural interfaces may provide an alternative to traditional
silicon-based implants and have the potential to greatly improve the chronic longevity of the
implanted microelectrodes [2,16]. Polymers such as polyimide [17,18], Parylene-C [19,20], SU-8 [21],
polydimethylsiloxane (PDMS) [22], and shape memory polymers [23,24] have been investigated
as substrates for neural stimulation and recording microelectrodes. Their low Young’s modulus
reduces the mechanical mismatch between neural tissue and the implanted device. Thin-film metal
conducting traces such as gold or platinum are used between layers of the polymer substrate connecting
electrode sites and bond pads. The insulating layers effectively sandwich the conducting traces.
Electrode sites are then created by removing or etching the top layer through a precise and controlled
microfabrication process.

Implantation of some penetrating polymer-based MEAs have been aided by a delivery
vehicle [5,25–28] or temporary support structure [5,29–31] to minimize buckling during insertion
by increasing the critical buckling load [32]. To penetrate neural tissue without the assistance of
support structures, a minimum cross-sectional dimension of the shank (the part that penetrates the
neural tissue) is typically greater than 20 µm [18,21,33]. Unfortunately, this cross-sectional dimension
may still be higher than that required to ameliorate the foreign body reaction, noting that the prevailing
thought has been that the minimum geometric dimension requirement, at least in one dimension,
should be under 10 µm [34]. We recently described the development of multielectrode arrays based
on PECVD amorphous silicon carbide (a-SiC) [35]. Amorphous SiC was chosen because it exhibits
robust chemical inertness [36], high electronic and ionic resistivity [37], biocompatibility [37–40], and is
amenable to thin-film fabrication processes [35]. Crystalline SiC has also been used as a material in the
fabrication of MEAs and, because it is a wide bandgap semiconductor that can be doped for electronic
conductivity, it may be used for conductive traces or as a low-impedance electrode, as well as an
insulator [41–45]. The 16 channel MEAs were developed with two a-SiC layers sandwiching a thin-film
Au conducting trace. Each shank was 10 µm wide and 2 mm long and had a shank cross-sectional area
below 45 µm2. The greatly reduced shank cross-sectional dimensions may promote compliance with
neural tissue when implanted [46]. The electrode sites were opened at the distal tips by removing the
top a-SiC layer and were coated with sputtered iridium oxide films (SIROF) or titanium nitride (TiN)
to reduce electrode impedance [35].

Here, we evaluate different approaches of reducing the critical buckling load of a-SiC MEAs
having individual shank cross-sectional area below 45 µm2, and demonstrate insertion of multiple
a-SiC MEA shanks into rat cortex. Acute extracellular neural recording from the a-SiC MEAs following
array insertion is also presented.

2. Materials and Methods

2.1. Thin Film Deposition and Array Fabrication

Plasma enhanced chemical vapor deposited a-SiC films using the Plasmatherm Unaxis 790 series
deposition system are used as substrates for MEA development. The a-SiC films are deposited at
1000 mTorr, 350 ◦C, and 0.27 W/cm2 using a SiH4:CH4 gas ratio of 1:3. A 2 µm or 4 µm thick a-SiC
film forms the bottom layer of the MEA. The bottom a-SiC layer is followed by the deposition of
approximately 350 nm thick patterned gold layer that forms the interconnecting traces. A thin (<50 nm)
film of titanium is deposited as an adhesion layer between the a-SiC and gold on both surfaces of the
metal to form a trilayer metal structure of Ti/Au/Ti. A second 2 µm a-SiC layer was deposited over
the metal traces and bottom a-SiC layer to produce either a 4 µm or 6 µm thick a-SiC superstructure.
The details of the fabrication have been reported previously [35]. Briefly, a 1 µm polyimide (HD
Microsystems PI 2610) release layer is spin-coated on to a 100 mm silicon wafer and cured at 350 ◦C
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under N2 for 1 h. The bottom a-SiC layer is deposited on the polyimide followed by a bilayer
photolithography process, using LOR5A (Microchem Inc., Westborough, MA, USA) and Shipley S1813
(Microposit, Marlborough, MA, USA) photoresists, to define the metallization pattern. The metal was
sputtered or evaporated, and the sample soaked in EBR-PG (Microchem Inc. Westborough, MA, USA)
to complete the lift-off process. The second a-SiC layer was then deposited over the metallization
and the bottom a-SiC the complete the thin-film stack. The 350 ◦C deposition temperature of the
second a-SiC results in an increase in tensile stress of the metallization by about 400 MPa, for either the
evaporated or sputtered trilayers. For the overall device, the effect of the increase in metal tensile stress
is a reduction in the overall device stress from about 100 MPa compressive to near-neutral (<20 MPa
compressive), recognizing that the overall stress in the device is dependent on the thickness and
processing of the individual layers. Another photolithography process, using a positive photoresist,
was used to define the electrode sites, bond pads and shape of the individual devices on the wafer.
The devices were then formed by reactive ion etching of the exposed a-SiC in SF6 plasma using
an inductively coupled plasma (ICP) etcher. After the etching process, the remaining resist was
stripped and the wafer with the a-SiC MEAs are soaked in deionized water until the arrays release.
An example of a 16-channel MEA fabricated by the process described is shown in Figure 1. The device
is intended for intracortical studies with only the 2-mm long distal shanks penetrating the cortex.
Photolithographic patterning provides a means of creating a variety of array geometries including
straight and curved shanks (Figure 2).
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Figure 1. Example of the 16-channel a-SiC microelectrode array (MEA) showing bond pads at the
proximal end, 2 mm long electrode shanks, and electrode sites located at the distal tips.

2.2. Buckling and Insertion Mechanics

Force measurements were made using a 20 g S-Beam load cell (Futek Advanced Sensor
Technology, Inc., Irvine, CA, USA) mounted to a pneumatically controlled micro-positioner (Model
2650 Micropositioner, Kopf Instruments, Tujunga, CA, USA) which has predefined speed settings
ranging from 1 µ/s to 4 mm/s. The micromanipulator is hydraulically driven and thus the motion
is continuous. The steps in the forcetime curves are due to the sampling frequency of the recording
equipment used to measure the load cell output. The sample probe was mounted on a screw which
was directly threaded into the bottom of the load cell so that compression forces could be measured as
the MEA was inserted into the brain tissue. Before implantation, the probe was lowered until it was
directly above the surface of the brain. The load cell was then tared, and the probe inserted 2 mm into
the brain at a constant rate of 50 µm/s. For the measurements of buckling forces on glass substrates,
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the load cell was tared with a slight compressive stress on the tip and then retracted from the surface.
This procedure results in an initial tensile deflection in the force-time curve immediately prior to the
probe tip striking the glass surface.

2.3. Surgery and a-SiC Implantation

All surgical procedures were performed under the approval of the University of Texas at Dallas
Institutional Animal Care and Use Committee (IACUC). Long Evans rats were deeply anaesthetized
with 5% isoflurane vapor and administered an intraperitoneal KXA cohort consisting of ketamine
(65 mg/kg), xylazine (13.33 mg/kg), and acepromazine (1.5 mg/kg) cocktail. The anesthesia was
maintained at 0.5 to 1.5% throughout the remainder of the procedure. A 1 to 2 mm square craniotomy
was centered 2.5 mm rostral and 2.5 mm lateral to bregma, and bone debris was carefully removed
using sterile phosphate buffered solution (PBS). The dura was reflected using a dura pick and the
surface of the brain was kept moist with sterile PBS. The Omnetics 18 pin male connector attached to the
a-SiC cortical implant was placed within a NeuroNexus IST implantation tool (NeuroNexus, Ann Arbor,
MI, USA) and loaded onto a Kopf Model 2650 hydraulic micropositioner (David Kopf Instruments,
Tujunga, CA, USA). The implant was inserted to a depth of 1.5 to 2 mm from the cortical surface
at an insertion rate of 50 µm/s at a location at the center of the craniotomy, deviating only enough
to avoid large surface vasculature. The dura was sealed using Kwik Cast silicone elastomer (World
Precision Instruments, Saratosa, FL, USA), followed by a layer of GLUture Octyl/Butyl cyanoacrylate
glue (World Precision Instruments, Sarasota, FL, USA). A protective head cap was constructed using
two-part dental cement (Stoelting Co., Wood Dale IL, USA) which served to secure and support
the implant as well as protect the surgical site. The scalp wound was sutured, and the animal was
administered an intramuscular injection of Cefazolin (5 mg/Kg), a subcutaneous injection of sustained
release Buprenorphine (0.15 mg/Kg), and 2 mL of 0.9% saline. The rat was individually housed
following implantation. Clavamox was administered orally and buprenorphine was administered
every 72 h for one week.

2.4. In Vivo Recording and Analysis

Following construction and curing of the surgical head cap, recordings for a period of 10 min
were collected using an OmniPlex Neural Acquisition System (Plexon Inc., Dallas, TX, USA) connected
to the a-SiC array via Omnetics connector and a 16-channel digital headstage. Wideband signals
(0.1–7000 Hz) were recorded simultaneously from all 16 electrodes at 40 kHz sampling frequency
and later filtered offline using a 4-pole Butterworth high pass filter (250 Hz). A −4σ threshold based
on RMS noise calculations was applied to filtered continuous data to identify potential waveforms
(or spikes). Single units were identified manually based on 2D principal component clustering
using Plexon’s Offline Sorter software (Plexon, Dallas, TX, USA). Sorted units which were not
comprised of at least 100 individual spikes or which exhibited greater than 0.5% spike refractory
period violations were excluded from analysis. Signal-to-noise ratios (SNR) were calculated by
dividing the mean peak-to-peak amplitude of each unit by the adjusted RMS noise of the associated
channel, which excluded values greater or less than ±4σ of the filtered continuous signal.

3. Results and Discussions

The 16-channel a-SiC MEAs were generally designed to mate with the 16-channel Omnetics
connectors (A79040-001, Omnetics, Minneapolis, MN, USA). Gold bonding pads located at the proximal
end of the MEA superstructure, 750 × 500 µm dimensions and pitch of 635 µm ensured that the 16 a-SiC
channels mated well with the connector. A solder reflow process using an indium-tin eutectic solder
paste consisting of 52% In to 48% Sn (IND.1E, Indium Corporation, Clinton, NY, USA) was used to
bond the pads on the connector to the gold bond pads on the MEA.

To characterize the functionality of the a-SiC platform, MEAs consisting of 16 penetrating shanks
with one electrode per shank were fabricated (Figure 1). Each shank was 4 or 6 µm thick, 2–4 mm
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long, and 7–10 µm wide with 25 µm intershank separation. The shanks were designed with a straight
outline and with ‘arrow head’ tip geometry. The shanks are sometimes intrinsically curved with the
expectation that such geometry will direct the deployment of the shanks to a larger volume of brain
tissue when implanted.

Figure 2 shows shank arrangements of the as-fabricated 16 channel a-SiC penetrating MEAs with
(a) straight shanks of identical length and (b) intrinsically curve shanks. Tip profiles are shown in (c).
Metal traces are 2 µm wide and run centrally along the length of the shank. The electrode sites are
located at the distal tip and are constrained in size and shape by the width of the shanks, such that the
50 µm2 electrode sites were 2 µm wide and 25 µm long.
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Figure 2. Scanning electron micrographs of as-fabricated 16 channel a-SiC intracortical ultramicroelectrode
arrays with straight shanks of identical length (a) or intrinsically curve shanks (b). Tip profile and electrode
site opening are shown in (c).

3.1. Insertion of Ultrathin Shanks into Cortex

3.1.1. PEG-Stabilized Shanks

While shanks with very small cross-sectional area offer the promise of reduced FBR, insertion of
individual shanks into the neural tissue is challenging. Coating the shanks with polyethylene glycol
(PEG) that temporarily stiffens the shanks while leaving a small portion of the tips exposed [5] is an
approach previously shown to successfully aid insertion. The PEG coating increases the buckling
threshold of the shanks and allows the arrays to be implanted. Using this method, we have inserted
4 µm thick versions of the a-SiC arrays into rat brain.

An example of an array coated with PEG (MW 2000, Alfa Aesar, Tewksbury, MA, USA) prior
to implantation is shown in Figure 3. Prior to PEG coating, the assembled a-SC array is placed on a
mineral oiled aluminum surface. A single flake of PEG is placed on the proximal end of the separated
shanks. The PEG is then melted onto the shanks with a soldering gun. As shown in Figure 3, the PEG
coating was only used to strengthen the shanks towards the base of the MEA leaving the tips free
to individually penetrate the brain. An insertion rate of 50 µm/s was used to insert the shanks so
that, as the array is slowly advanced into the brain, the PEG coating dissolves on the surface of the
brain without itself penetrating the tissue, preserving the sub 10-µm dimensions of the shanks that are
inserted into the brain. Based on visual observation with a surgical microscope, the shanks appear to
penetrate the parenchyma of the brain without dimpling the cortex.
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Figure 3. Insertion of a PEG-stabilized a-SiC MEA into rat motor cortex. The PEG temporarily provides
mechanical support to the 4 µm thick a-SiC shanks prior to insertion. An insertion rate of 50 µm/s
ensures that the PEG completely dissolves as the array is advanced into the brain.

3.1.2. Bundled Shanks

Another successful approach introduced by Guitchounts et al. when working with carbon
fiber ultramicroelectrodes was to draw the fibers into a bundle allowing the individual fibers to
provide mechanical support to each other during array insertion [4]. This approach also increases the
overall cross-sectional area of the bundled fibers and increases the buckling threshold for insertion.
Since the fibers on the bundled array are held together by weak Van der Waals forces, they separate
upon insertion and spread out into the brain following the path of least resistance defined by the
mechanical heterogeneity of the brain [4]. The 4 µm thick a-SiC arrays were successfully inserted using
this approach, however unlike carbon fibers, we observed that the shanks of the a-SiC MEA twisted
together or intertwined when drawn out of water. The tangled shanks prevented the individual shanks
from separating and splaying when implanted. Further work is needed to find an appropriate surface
treatment that would aid shank separation. Figure 4a shows a bundled a-SiC array formed when the
shanks are drawn out of water. Figure 4b shows the tip geometry of the bundle and Figure 4c shows a
bundled 8-channel a-SiC array prior to rat cortical implantation.
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3.1.3. Reduction of Effective Shank Length

Another factor that influences the critical buckling load is the effective length of the shanks.
The effective length of a beam or a shank corresponds to the distance between the points of inflection
in the buckled mode. The buckling threshold increases with decreasing effective length of the shank.
Patel et al. [5], while working with carbon fibers, developed silicon support structures that enabled
the insertion of 0.5 mm long carbon fibers to deeper structures within rat brain. For the carbon
fibers, this was the minimum length that could be inserted into the brain without buckling [5].
The advantage of the a-SiC technology over the carbon fiber approach is that structures that will reduce
the effective length of the shanks can be designed as part of the MEA geometry. The a-SiC thin film
technology allows in situ designs in the a-SiC without the need for additional support structures and
micro-assembly. As a result, shorter ultrathin a-SiC array shanks can be developed for insertion into
deeper structures within the brain.

We designed and developed webbed a-SiC arrays as shown in Figure 5b with an effective shank
length below 1 mm for an overall insertion depth of 2 mm (including the hinged part). The individual
shanks are fused in pairs by a-SiC film interconnects as the shanks approach the base of the MEA 5d
while maintaining the ultrathin geometries at the distal end 5a. Electrode sites are located at the distal
end 5c. Amorphous SiC MEAs with ultrathin shank geometries (4 µm thick × 10 µm wide) have been
successfully implanted when the shanks are webbed. This a-SiC lateral interconnect strategy increases
the width of the shank towards the base and may induce lateral stresses in tissue and potentially
induce host immune response. We are yet to evaluate the chronic response to these arrays. Since the
electrode sites are located on shanks that maintain the critical dimension of 10 µm or less, it is expected
that the host immune response, at least around the electrode sites, will be minimized.
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3.1.4. Insertion of Individual Shanks

A trade-off between flexibility and stiffness is required when developing compliant microelectrode
arrays for cortical application [32]. Insertion of ultrathin flexible microelectrodes into neural tissue
usually fails during implantation. The flexural rigidity (a product of the Young’s modulus of the
material and moments of inertia of the cross-section) of the shank is related to the critical buckling
load by Equation (1) where Pcr is the critical buckling load, E is the Young’s modulus, I is the moment
of inertia of cross-section, l is the length, and K is the column effective length factor (one fixed end, one
pinned end = 0.7). A Young’s modulus of 300 GPa was used for numerical calculations and simulation
purposes. The Young’s modulus of a-SiC films depends on deposition conditions and values between
150 and 321 GPa have been reported in the literature [47–49].

Pcr =
π2EI

(Kl)2 (1)

The critical buckling load is the maximum axial load a shank can experience that will not cause
lateral deflections. For a microelectrode shank to successfully penetrate the pia mater of a rat brain it is
generally expected that its critical buckling load to be larger than tissue insertion force estimated to be
approximately 0.5 to 2 mN [50–54]. Since the moment of inertia of the cross-section, which influences
critical buckling load, depends greatly on the thickness of the shank, COMSOL Multiphysics v. 5.2
(COMSOL AB, Stockholm, Sweden) finite element modeling was used to predict the critical buckling
load of a 2 mm long shank when the a-SiC thickness is increased from 4 µm to 6 µm.

Force values during a buckling test with a single shank dummy a-SiC probe with a 6 µm thick
and 7 µm wide cross-section are shown in Figure 6a. The probe was lowered against a glass surface
at a speed of 50 µm/s. No sliding of the probe tip on the glass surface was observed. The lowering
was paused when buckling was observed visually, as shown by the plateau at 0.69 mN in Figure 6a.
Since the visually observed buckling occurs well-beyond the first deflection of the probe, the 0.69 mN
overestimates the buckling force that would be calculated from Equation (1), which is ~0.2 mN
for the probe in Figure 6. The recorded buckling force of 0.69 mN should also be adjusted for the
nonzero compressive force on the tip when the load cell is tared, which is approximately 0.15 mN.
The combined total force of 0.84 mN is notably larger than the COMSOL modeling prediction of
0.17 mN, which is likely due to the uncertainty in the visual assessment of buckling onset and changing
boundary conditions as the probe inserts into the brain. The visually observed deflection profile
(Figure 6b) was generally in agreement with predictions from the modeling (Figure 6c). Penetration
forces are highly dependent on the tip geometry of the implanted device, with larger devices generally
exhibiting greater implantation forces. Sridharan et al. [55] measured penetration forces greater than
1 mN using nanocomposite-based devices and observed significant dimpling upon implantation.
Welkenhuysen et al. [56] demonstrated penetration forces greater than 0.6 mN using silicon devices,
again with significant dimpling.

A preliminary investigation of the forces involved in inserting a single a-SiC shank into rat
cortex was conducted. The force-time curve during implantation of a single shank with a 6 × 7 µm2

cross-section at 50 µm/s is shown in Figure 7. From the curve, the point of penetration of the probe
corresponds to an insertion force of 0.35 mN. Dimpling of the cortex was not evident. The maximum
length of a 6 × 7 µm probe that can be inserted into brain without buckling is 1.4 mm based on
Equation (1), using an insertion force of 0.35 mN, an a-SiC modulus of 300 GPa, and K = 0.7,
corresponding to boundary conditions at which the probe is pinned at the probe-brain interface
and fixed at the proximal end. The calculated length likely underestimates that actual length that
can be inserted without buckling. As the sharp tips of the probe penetrate the brain, the boundary
condition at the probe-brain interface changes to a less challenging fixed condition and the effective
length of the shank also decreases slightly. Forces due to brain micromotion (inset) after the probe
was implanted to the full 2 mm depth show that the indwelling shank experience an extremely low
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tissue force which relaxed at a rate of ~2.2 µN/s. We have successfully implanted a single shank and
multiple colinear shanks with thickness of 6 µm into a 0.6% agarose gel phantom and into rat brain at
an insertion rate of 50 µm/s. To prevent the a-SiC arrays from forming bundles, a minimum intershank
distance of 100 µm was found necessary for the 7–10 µm wide shanks investigated. The data in Figure 7
represent the results of a single measurement only and additional studies are required to more fully
quantify the forces involved in insertion of these devices into cortex, particularly with respect to the
effects of tip geometry, shank cross-sectional dimensions, and shank length.
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Figure 7. A representative example of the insertion force recorded during the insertion of a
6 µm × 7 µm a-SiC shank into rat cortex. An insertion force of 0.35 mN was recorded at the point of
insertion. Inset shows forces experienced by the indwelling shank at 2 mm insertion depth.

3.2. Neural Recording

To determine whether 6 µm a-SiC and SIROF MEAs could be used for in vivo single-unit
extracellular recordings, we performed 10-min electrophysiological recordings immediately following
implantation. Figure 8a shows three representative filtered continuous recordings from a single
a-SiC array. Extracellular spikes were well-resolved and sorted based on characteristic waveform
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shape and 2D PC-space clustering into single units (Figure 8b). We observed distinguishable single
units on between 25 and 75% of electrode sites, with the total number of units ranging from 4 to 16.
These units had mean peak-to-peak amplitudes ranging from 118.5 to 287.7 µV, with a mean amplitude
of 179.4 ± 18.4 µV and SNR of 24.1 ± 2.2. Table 1 contains RMS noise, mean amplitude, and SNR
values for all three implanted arrays as well as cumulative means. These data suggest that 6 µm
a-SiC MEAs are stiff enough to penetrate the cortex without compromising their mechanical/electrical
stability and their ability to record single-unit activity.
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Figure 8. Acute extracellular action potentials recorded using 6 µm a-SiC MEAs. (a) Filtered continuous
data traces from three representative electrodes on Array 1. Vertical and horizontal scale bar represents
125 µV and 1.75 s, respectively. (b) Left—Representative 2D principal component space indicating
clear separation from the noise (central gray cluster). Right—Associated single units, indicating
characteristic extracellular waveform shape. Vertical and horizontal scale bar represents 175 µV and
0.6 ms, respectively.

Table 1. Active electrode yield (AEY) percentage, total number of units, mean peak-to-peak amplitude,
RMS noise, and SNR per array, and cumulative values across all arrays.

Array # AEY (%) # of Units Mean Vpp
(µV)

RMS Noise
(µV) SNR

Array 1 75 16 179.0 ± 19.8 10.2 ± 1.8 25.6 ± 2.9
Array 2 25 4 287.7 ± 64.4 8.8 ± 0.2 30.8 ± 6.8
Array 3 31.3 7 118.5 ± 12.2 7.8 ± 0.4 16.7 ± 1.7

Cumulative 43.75% 27 179.4 ± 18.4 8.9 ± 0.6 24.1 ± 2.2

4. Conclusions

The a-SiC platform allows a wide design space to create next generation ultrathin neural interfaces.
To reduce overall impedance associated with small electrodes of small geometric surface area, electrode
sites could also be coated with common low impedance coating materials, such as TiN or SIROF which
decrease the impedance by 2 orders of magnitude over a range of frequencies [35]. For MEAs developed
with an overall a-SiC thickness of 4 µm, we have described various techniques which increase the
critical buckling force of the individual shanks and enable penetration of the shanks without buckling.
These methods include the addition of a temporary stiffening structure, bundling the individual
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shanks, or through in situ designs which reduced the effective length of the shanks while allowing for
targeted depth penetration. With just the addition of a minimal amount of a-SiC material to a thickness
of 6 µm, individual single shanks or colinear 2 mm long a-SiC fibers were successfully implanted into
rat cortex without buckling. We have also demonstrated the ability to record neural signals using
6 µm thick a-SiC MEAs acutely in rat motor cortex. Our results also indicated that SIROF-coated sites
showed high amplitude and high SNR of the recorded neural signals.
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