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Ultrafast laser microfabrication is a very powerful method for producing integrated devices in
transparent materials [1]. This technology has found applications in many diverse fields, ranging from
optofluidics [2] to astrophotonics [3] and metamaterials [4]. In particular, the versatility of this
technology relies on the broad portfolio of processes that it includes, encompassing subtractive (where
material is removed through ablation or after selective chemical etching), additive (where material
is added by two-photon polymerization), and transformative approaches (where the preexisting
material is modified for waveguide writing or material welding). In this special issue, we focus on
the use of ultrafast laser microfabrication for lab-on-a-chip applications, showcasing many examples
where this technology has unique capabilities with respect to any other microfabrication technology,
e.g., the possibility to process materials in three-dimensions.

The special issue is composed of nine papers, including original research and reviews. The different
contributions can be organized into the following four categories:

(1) Ultrafast laser ablation. In this category, we include papers where laser ablation is used to
microstructure transparent materials. Bettella et al. [5] produced the microfluidic network of
a lab-on-a-chip on the surface of a lithium niobate crystal, demonstrating a droplet generator.
The possibility of manufacturing microfluidic devices in lithium niobate paves the way to the
realization of lab-on-a-chip devices that could exploit acoustic, electro-optic, photorefractive,
and pyroelectric effects. Degawa et al. [6] used laser ablation to create miniature internal threads
in a glass substrate. This component, which can only be fabricated by this technology, will prove
extremely useful in the assembly of different transparent layers in the construction of a complex
lab-on-a-chip device with optical access.

(2) Femtosecond laser irradiation and chemical etching. Here we include papers that demonstrate
the potential of the combined use of femtosecond laser irradiation and chemical etching. In fact,
on suitable materials (e.g., standard or porous fused silica, Foturan-Schott glasses) the irradiated
pattern is selectively removed by a subsequent chemical etching step in aqueous solutions of
hydrofluoric acid or potassium hydroxide. The advantage of this approach with respect to ablation
is an extended 3D structuring capability and much better surface quality, as widely demonstrated
by Cheng [7] in his review of high-aspect-ratio microfluidic structures. Gottmann et al. [8] showed
further lab-on-a-chip devices fabricated by this approach with a particular focus on the use of
potassium hydroxide wet etching, which enables unprecedented selectivity in material removal.

(3) Two-photon polymerization. In this category, we include papers that discuss the use of
two-photon polymerization to directly write micro/nano structures with specific potential for
lab-on-a-chip applications. Zandrini et al. [9] showed the use of magnetically-driven microrotors
fabricated by two-photon polymerization and selective electroless plating. Such devices could
be employed in lab-on-a-chip devices to actuate the flow without any external pump or as
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a micromixer overcoming the flow laminarity in microfluidic channels. La Fratta et al. [10]
reviewed several methods used to characterize the two-photon polymerization process, and the
mechanical and chemical properties of the micro/nano structures produced.

(4) Combining subtractive and additive processes. In this category we include papers where the
above processes are combined in order to provide more functionality on the same lab-on-a-chip.
Sima et al. [11] reviewed many examples of 3D micro/nano devices produced by two-photon
polymerization inside microchannels fabricated by laser irradiation, followed by selective etching.
Horváth et al. [12] followed the same track by specifically discussing how to compensate
for aberrations when fabricating micro/nano structures by two-photon polymerization inside
a sealed microchannel. Finally, Martínez Vázquez et al. [13] discussed a novel approach to
develop and manufacture plastic lab-on-a-chip devices. Specifically, laser ablation on stainless
steel is exploited to produce the mould for cost-effective mass-production of plastic devices by
injection moulding. Femtosecond laser welding is also used to assemble the lab-on-a-chip.
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thank all the reviewers for dedicating their time to help improve the quality of the submitted papers.
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