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Abstract: We present an image-matching-based automated algorithm capable of accurately
determining the self-rotational speed of cancer cells in an optically-induced electrokinetics-based
microfluidic chip. To automatically track a specific cell in a video featuring more than one cell,
a background subtraction technique was used. To determine the rotational speeds of cells, a reference
frame was automatically selected and curve fitting was performed to improve the stability and
accuracy. Results show that the algorithm was able to accurately calculate the self-rotational speeds
of cells up to ~150 rpm. In addition, the algorithm could be used to determine the motion trajectories
of the cells. Potential applications for the developed algorithm include the differentiation of cell
morphology and characterization of cell electrical properties.
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1. Introduction

The study of cellular behaviors is of significant importance for exploring and elucidating the
intrinsic properties of cells, such as their electrophysiological [1], biomechanical [2], and dielectric
properties [3]. In general, these intrinsic properties correlate with human disease, so understanding
cellular properties can improve our understanding of the effects of cancer treatments [4]. A series of
studies on this topic have already been reported. For example, the stiffness of cancer cells with the
highest migration and invasion potential is only one-sixth that of cells with the lowest migration
and invasion potential based on rapid characterization of cellular biomechanical properties [5].
This observation clearly demonstrates the contribution of the mechanical properties of cells to
invasion and suggests that pathways affecting mechanical phenotypes can be targeted as a new
approach for molecular cancer therapy. Furthermore, by measuring the dielectric parameters of
adult stem cell differentiation, it has been shown that dielectric differences can be determined and
exploited to perform real-time and label-free monitoring of stem cell differentiation with impedance
sensing [6]. Accordingly, substantial efforts have been dedicated to studies of cell behaviors and
their corresponding information acquisition. For instance, a microfluidics-based approach can easily
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determine the mechanical and electrical parameters of cells by investigating mechanical deformation
and translation behaviors, respectively [7,8]. That is, microfluidics enables the determination of cellular
states and the identification of different types of cells. However, it is not easy to automate this method
because it depends on custom-designed microstructures. A promising alternative is the alternating
current (AC) electrokinetics-based technique, which mainly involves dielectrophoresis (DEP) [9,10]
and electro-rotation (EROT) [11,12], and can be used to determine the dielectric parameters of cells
by describing cellular translational/rotational motions under an externally applied AC bias potential
in a non-invasive and label-free manner. The effect of EROT on cells can be broadly classified into
two categories based on the different electric field conditions: (1) the cells rotating within a rotational
AC electric field due to a phase difference in the AC bias potential between the neighboring electrodes;
and (2) certain types of cells with specific inherent dielectric properties will also self-rotate in a linearly
polarized (i.e., non-rotational) AC electric field. Zimmermann U. et al. reviewed the electro-rotation of
multiple cells and single cells in rotational electric field [13], which was a typical form of cell rotation.
As an application of this type of rotation in rotating electric field, it was employed to manipulate
and characterize human malignant cells by combing with DEP and travelling DEP techniques [14].
The EROT in rotating field was also used to manipulate cells, and results showed the frequency
variation of the spin and orbital torques of cells in a rotating field [15]; dielectric behavior of cell
aggregate was further examined. In addition, it was adopted to characterize dielectric parameters
of cells during the cellular permeabilization by combing negative DEP to trap cells of interest [16].
On the other hand, the second type of EROT was also studied. For example, Quincke G. reported
the Quincke rotation, meaning the cell can rotate in no rotating field; in this case, the rotational
direction of cells cannot be predicted and there exists a definite threshold field [17]. Spin resonance [18],
as another type of cell rotation in non-rotational field, was reported by Phol H.A. et al. due to
coupling of the induced-dipole and externally applied field. Nevertheless, this phenomenon cannot be
confirmed by the present authors. Furthermore, Chuang C.H. et al., introduced the self-rotation of
human promyelocytic leukemia cells by seeding nanoparticles into cells, thus acquiring the dielectric
parameters of cell [19]. The predominant requirements for this method include a non-uniform electric
field and automated control based on computer vision to accurately extract the translational/rotational
speeds of the cells. The rotational speeds are usually measured by timing the rotation of an individual
cell manually, visualized under video microscopy, using a stopwatch [20,21]. It's tedious and a more
efficient method is required. A machine vision algorithm and hardware implementation was developed
to automatically measure the rotational speed of mammalian cells [20]. However, it aims at the
measurement of a cell’s in-plane rotation and can only deal with the image sequence involving
a single cell.

Our group has determined the self-rotation motion of certain cells in this type of electric field [22]
generated by the metal-based electrodes and established an algorithm for the characterization of
the self-rotational motion of cells, including the in-plane and out-of-plane rotation [23]. The biggest
difference between our group and other ones is that individual cells can also rotate in no rotating
field with known and controllable rotation direction; there definitely exists no threshold electric field;
and there is no need to rotate cells with the help of seeding extra nanoparticles. To overcome the
inflexible manner of producing the non-uniform electric field by metal-based electrodes, our group
has also used an optically-induced electrokinetics (OEK) chip to explore translational motion and
self-rotational motion [24–26]. Mostly importantly, we have verified experimentally and theoretically
that the individual cells can generate the self-rotational motion in this kind of optically-induced
non-uniform and non-rotational field [26,27]. In our previous study, we have discussed the optical
power required for OEK [28] and elucidated the temperature increased due to the incident light [29],
and results demonstrated that the optical power was five orders lower than the optical tweezer [28] and
the increased temperature arising from the optical power could be neglected [29]. Hence, this method is
a much lower power and non-invasive, which was widely employed into manipulation and separation
of cells [24–26] and label-free and non-destructive isolation of circulating tumor cells in a larger
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population [30]. However, the algorithm developed in [23] first computes the translational motion
vector of the cell by minimizing the sum of the absolute difference between a rotatable template
patch in the reference frame and the target patch in the current frame, and, after compensation
for the translational motion, the frame indexes corresponding to the local maximum values of the
correlation coefficients between the template patch and the patches at the same location in the sequence
frames are used to estimate the self-rotational speed of the cell. That algorithm only roughly extracts
the cells’ self-rotational speed and requires human intervention. To further improve the accuracy
of determining a cell’s rotation and automate the entire computational process, we have recently
developed a novel matching-based detection algorithm to overcome the limitations of the prior
method. Compared with the previous algorithm [23], the extraction process of the self-rotational
speed is simplified and optimized. In addition, three key techniques are employed in the new
algorithm, enabling the following tasks to be performed: (1) a background subtraction technique
enabled an automatic tracking of the cell of interest in a video involving many cells undergoing
different motions; therefore, it is no longer necessary to select the cell of interest in each frame of the
video manually, which greatly increased the efficiency of analysis; (2) automatically select an image
distinct from its adjacent images as the reference image for matching, eliminating the need to observe
the videos repeatedly and select the reference image manually, and thus reducing the dependence
of the results on human intervention and achieving greater stability; (3) a curve-fitting technique
enabled a more accurate determination of the time needed for one revolution of the cell of interest,
thus increasing the accuracy of the obtained self-rotational speed.

In this paper, we will show the self-rotational behavior of a cell of interest can be accurately and
automatically characterized from a video of many cells undergoing different motions by using the
new algorithm. In addition, the motion trajectory of a cell of interest can be also determined by the
new algorithm, which enables a comprehensive analysis of cellular behaviors. Hence, this algorithm
is highly beneficial to the development of new label-free biomarkers for characterization of cellular
state, discrimination of different kinds of cancer cells in heterogeneous populations, and many other
biomedical and bioengineering related applications.

2. Theory

As a whole, nearly all of the applied voltage dropped across the hydrogenated amorphous silicon
(a-Si:H) layer when the OEK chip was not illuminated by visible light, due to its inherent lower
conductivity. Instead, when an optical pattern from a commercial digital projector was projected
onto the surface of the a-Si:H, the electron-hole pairs were excited and enhanced by the migration of
electrons from the valence band to the conduction band of the a-Si:H layer, thus locally increasing
the conductivity of the a-Si:H via the photoconductive effect. Then, the electric field across the liquid
chamber dramatically increased above the locally illuminated a-Si:H area because most of the applied
voltage was substantially shifted to the liquid chamber. Accordingly, a nonuniform electric field could
be created in the liquid chamber and then any suspended particles at locations in the vicinity of this
optically-induced nonuniform electric field would experience a force though an interaction between the
electrically polarized dipole moments of both of the particles and the liquid solution, known as the DEP
function, which is defined as the “optically induced dielectrophoresis (ODEP) force” in this OEK chip.
Unlike conventional DEP chips, no metal electrodes were required to create the non-uniform electric
field. The ODEP force could be either positive or negative under specific conditions, meaning that
the particles could be either attracted to or repelled from the illuminated areas due to the positive or
negative DEP force, respectively. The time-averaged DEP force acting on a spherical nanoparticle is
defined as [31] 〈→

F DEP

〉
= 2πR3εmRe[K(ω)]∇

∣∣∣∣→E rms

∣∣∣∣2 (1)

where R is the cell radius; εm denotes the permittivity of the liquid medium; Erms is the root-mean-square
(rms) value of the electric field; ω is the angular frequency with an expression of ω = 2πf, where f is the
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applied voltage frequency across the liquid medium; and Re[K(ω)] is the real part of the Clausius–Mossotti
(CM) factor representing the direction of the DEP force. For the cell, the expression of Re[K(ω)] is typically
expressed as [31]

Re[K(ω)] = Re

[
− ω2(τ1τ2 − τcτ′2) + jω(τ′2 − τ1 − τ2)− 1

ω2(τcτ′2 + 2τ1τ2)− jω(τ′2 + 2τ1 + τ2)− 2

]
(2)

where τc = εc/σc, τ1 = εm/σm, τ2 = CmemR/σc, τ2’= CmemR/σm; the subscripts c, mem and m represent
the cell cytoplasm, cell membrane, and liquid medium, respectively; Cmem is the capacitance of the cell
membrane; ε and σ are the permittivity and conductivity, respectively. If a cell is attracted to a region of
higher electric field, it is said to be “pulled” by a positive DEP force, whereas if the particle is pushed
toward a region of lower electric field, it is said to be “pushed” by a negative DEP force.

However, in our previous study [24,26], we have reported that the ODEP can only produce
the translational motion of cells and cannot result in the self-rotation of some specific types of
cells. In fact, the rotation theory and mechanism in a rotational AC electric field have been clearly
defined and understood by researchers; nevertheless, cells rotating in a linearly polarized AC electric
field (i.e., non-rotational property) are rarely observed, and this phenomenon has been frequently
questioned and argued since it was firstly reported [18,32]. Turcu published a theoretical analysis to
explain the reason why certain types of cells will self-rotate in a non-rotational AC electric field along
an axis perpendicular to the electric field lines; a possible confirmation that these phenomena may exist
under specific conditions [33]. To the best of our knowledge, the theory on this topic from Turcu can
well explain the self-rotation motion of some specific cells in non-rotational electric field. In addition,
our group described the rotational behavior of pigmented cells with different intrinsic melanin content
in a linearly polarized AC electric field; we also experimentally confirmed the rotation phenomenon
by seeding foreign particles into cells [22]. Prior to seeding, these cells did not originally self-rotate
in the presence of an externally applied non-rotational AC electric field. In general, the self-rotation
equation is defined as [33]

T =
9
4

Vε1E2
0

εr − σr

(εr + 2)(σr + 2)

(
X + X0

(X + X0)
2 + 1

+
X− X0

(X− X0)
2 + 1

)
(3)

where V is the volume of cell. The other symbols are as follows

εr =
εp
εm

σr =
σp
σm

ω0τ = X0

ωτ = X
τ =

εp+2εm
σp+2σm

(4)

where ω0 is the angular frequency of cellular motion. From the above Equations, we can easily see
that the intrinsic information of cells can be obtained when self-rotation motion versus the frequency
is extracted experimentally.

3. Materials and Methods

3.1. Experimental Setup and Working Principle

Figure 1 schematically illustrates the experimental setup for the OEK-based microfluidics
platform. We have given a detailed introduction on this system in our previous work [26]. The cellular
motion was observed and recorded by a charge-coupled-device (CCD) camera (DH-SV1411FC,
Beijing Daheng Image Vision Co., Ltd., Beijing, China) fixed on a microscope (Zoom 160, OPTEM,
Qioptiq, St Asaph, UK). The OEK chip, as depicted in the inset of Figure 1, was composed of four layers:
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a top glass substrate with a transparent thin-film of conductive indium tin oxide (ITO); a hydrogenated
amorphous silicon (a-Si:H) thin film deposited onto the bottom ITO glass substrate; and a fabricated
adhesive tape with the custom-designed microchannel connecting the top ITO glass layer and the
a-Si:H layer.
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Figure 1. Schematic illustration of the experimental setup for the optically-induced electrokinetics
(OEK) platform. The inset is the exploded-view illustration of the OEK chip.

When not illuminated, the a-Si:H layer behaves as an insulator due to its inherent lower
conductivity. When a designed digital light pattern is projected onto any desired area of the a-Si:H
layer, the conductivity of the illuminated area is sharply increased. Hence, the externally applied AC
potential is shifted to the liquid chamber. The electric field across the liquid chamber dramatically
increases above the locally illuminated a-Si:H area. Thus, a non-uniform electric field can be produced
in the liquid chamber. We previously demonstrated that this type of optically induced non-uniform
electric field is also non-rotational [26].

3.2. Cell Preparation

A Raji cell line was purchased from the cell bank of the Chinese Academy of Sciences, Shanghai, China.
The Raji cells were cultured in Roswell Park Memorial Institute (RPMI-1640, Thermo Fisher Scientific,
Bridgewater, NJ, USA) culture medium supplemented with 10% (v/v) fetal calf serum, 1% penicillin
(v/v) (100 U/mL), and 1% streptomycin (v/v) (100 µg/mL) at 37 ◦C in an incubator with a humidified
atmosphere of 5% CO2. The diameter of the Raji cells was ~12 µm.

Before each experiment, 1 mL of Raji cell suspension was centrifuged at 1000 rpm for 5 min at 4 ◦C
with the supernatant discarded. The collected Raji cells were resuspended into 1 mL of RPMI-1640
culture medium and centrifuged again using the same parameters to remove the residual culture
medium. Then, the remaining Raji cells were resuspended into 1 mL of isotonic solution for further
experiments. Herein, the isotonic solution used in our experiments consisted of 8.5% (w/v) sucrose,
0.3% (w/v) glucose, and 0.5% (w/v) bovine serum albumin (BSA) in deionized water, which was the
optimum solution capable of effectively treating with the cell adhesion on the substrates described in
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our previously published paper [26]. The aim of adding BSA was to decrease the affinity force between
the cells and the a-Si:H substrate of the OEK chip. In this study, we only focused onto the single
cell rotation, and hence during a series of experiments performed in this manuscript, this adhesion
phenomenon would not affect the experimental results. The conductivity of the isotonic solution
was measured to be 1.5 × 10−2 S/m using a conductivity meter (Cond 3110, VWR International,
Radnor, PA, USA). After the cellular suspensions were prepared, cells counts were performed
using a commercial hemocytometer (Shanghai Qiujing Co., Ltd., Shanghai, China) to keep the cell
concentration of 1 × 105 cells/mL constant during the experiments.

3.3. Self-Rotational Speed Extraction

In general, there were significant differences in images acquired at different rotational angles when
a cell was self-rotating. Therefore, a local rectangular region covering the cell of interest in a reference
image was used as the matching template when attempting to find the same rectangular regions in
the image sequence of the video by calculating and comparing the correlation coefficients. The time
interval between two continuous images containing the same rectangular region was considered the
time required for the cell of interest to make a complete revolution; thus, the self-rotational speed
was available.

Three key concepts are employed in this algorithm to make the speed extraction automatic,
accurate, and reliable. (1) To achieve automated tracking of a cell, the cell is manually selected in
the first frame of the video. It is then automatically tracked in the subsequent frames using the
background subtraction technique. (2) A reference frame that is quite distinct from its adjacent
frames is automatically selected according to the correlation coefficients between adjacent frames.
(3) A parabolic curve is fitted for each peak of the maximum correlation coefficient sequence, which is
calculated based on the maximum correlation coefficients between each frame of the video and the
reference frame.

The detailed procedure is explained below. Note that all original (RGB) images captured by the
CCD camera were first converted to grayscale before the following processing steps.

3.3.1. Selection of a Cell of Interest in the First Frame

The video frames usually contained multiple cells. To analyze the behavior of the cell of interest,
the cell was manually selected with a rectangle in the first frame. The center, width, and height of
the rectangle were denoted by (uR, vR), 2W + 1 and 2H + 1, respectively (see Figure 2). The cell of
interest was covered by the rectangle, but the size of the rectangle was minimized to reduce the impact
of non-cell regions on the following correlation calculations.
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Figure 2. Selection of the cell of interest in the first frame. The cell of interest was manually selected
with a rectangle, whose size should be as small as possible under the premise of covering the cell
of interest.
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3.3.2. Tracking the Cell of Interest

The moving regions of all non-stationary cells were located in each frame of the video by
background subtraction, and the moving region of the cell of interest was determined. A rectangular
region covering the cell of interest, called the search window, was defined and specified in each frame
to enable tracking of the cell of interest. Figure 3 shows the flow of cell tracking.
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The background image was obtained using the formula

fB =
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N

N

∑
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fi (5)

where f B represents the background image, fi denotes the ith frame of the video and N is the number
of frames used for calculating the background image. To guarantee the reliability of the background
image, N must be greater than the number of frames captured in a self-rotational cycle.

The difference image ∆fi was obtained by subtracting the background image from each frame of
the video

∆ fi = | fi − fB| (6)

Otsu’s method [34], a classical threshold selection method that chooses a threshold to maximize
the between-class variance, was then used to determine a threshold level, and the grayscale difference
image was converted into binary form:

∆ fi(u, v) =

{
1 if ∆ fi(u, v) > level
0 if ∆ fi(u, v) ≤ level

(7)

A flat, disk-shaped structural element with radius R (the structural elements consisted of pixels
whose centers were no greater than R from the origin) was used to perform morphological opening on
the binary image ∆fi to remove smaller noises, and morphological closing was then used to connect
adjacent components. The connected components in ∆fi were labeled afterward. The center and
radius of each connected component, denoted by (ui

q, vi
q) and ri

q (illustrated by Figure 4), respectively,
were calculated as follows:
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where the subscript i indicates the image number, the superscript q denotes the connected component
number, (uq

imn, vq
imn) represents the coordinate of a pixel in the component, Mi

q denotes the number
of pixels in the component, and Ro (·) and max (·) represent the rounding and maximum searching
functions, respectively.
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ith frame corresponding to the minimum sum of the ordinal number of Cii−1 in FS and the ordinal 
number of Ci+1i in BS is selected as the reference frame (see supplementary material Figure S1 for the 

Figure 4. Illustration of the center and radius of each labeled connected component.

In the first frame of the video, the center of the connected component closest to (uR, vR) (the center
of the manually selected rectangular region mentioned above) was taken as the center of the moving
region of the cell of interest in the first frame, denoted by (u1, v1), and the radius of this connected
component was denoted by r1. The rectangular region with its center at (u1, v1) had both width
and height of 2r1 + 1 and was regarded as the moving region of the cell of interest in the first frame.
To simplify the expression, the rectangular region with center (u1, v1) has a width and height of w
and h pixels, respectively, and is referred to Rect [(u1, v1), w, h] in the following sections. By searching
the center of the connected component in the ith frame, which was closest to (ui−1, vi−1), the moving
region of the cell of interest in the ith frame, i.e., Rect [(ui, vi), 2ri + 1, 2ri + 1], was identified.
Thus, the moving region of the cell of interest in each frame of the video was identified. Rect [(ui, vi),
2ri + 2W + 1, 2ri + 2H + 1] was taken as the search window of the cell of interest. Figure 5 illustrates
the tracking process.
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3.3.3. Determination of the Reference Frame

The correlation coefficient between two image regions with the same size shows the similarity of
the two regions. In this paper, the normalized correlation coefficient was used, defined by Equation (9).
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The greater the correlation coefficient is, the more similar the two regions are. To make the measurement
of the self-rotational speed more accurate, a frame in which the cell of interest looks significantly
different from its adjacent images should be selected as the reference frame. That means a reference
frame should have small correlation coefficient with its former frame as well as its latter frame about the
local image region covering the cell of interest. To find such a reference frame, the rectangular region
previously manually selected in the first frame (i.e., Rect [(uR, vR), 2W + 1, 2H + 1], see Section 3.3.1)
was taken as the region of interest in the first frame. For each of the other frames of the video, the region
of interest is defined as the region with maximum correlation coefficient with the region of interest
in the former frame. Replacing the subscript j with i − 1 for Equation (11), the center (uRi, vRi) of the
region of interest in the ith frame and the maximum correlation coefficient Cii-1 between the ith and
(i − 1)th frame can be calculated according to Equation (11) ( illustrated by Figure 6), where i ∈ [2, N].
Thus, the maximum correlation coefficient sequence [C21, C32, . . . , CNN−1] can be obtained.
Sort the maximum correlation coefficient sequences [C21, C32, C43, . . . , CN−1N−2] and [C32, C43, C54, . . . ,
CNN−1] in ascending order, respectively. The sorted sequences are denoted by FS and BS. The ith frame
corresponding to the minimum sum of the ordinal number of Cii−1 in FS and the ordinal number of Ci+1i
in BS is selected as the reference frame (see supplementary material Figure S1 for the pseudo code).
The reference frame was denoted by fT, and the corresponding Rect [(uRT, vRT), 2W + 1, 2H + 1] was
the region of interest in the reference frame.
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Rij(up, vp) =

W
∑

n=−W

H
∑

m=−H
[ f j(uRj+m,vRj+n)− f j(uRj ,vRj)][ fi(up+m,vp+n)− fi(up ,vp)]{

W
∑

n=−W

H
∑

m=−H
[ f j(uRj+m,vRj+n)− f j(uRj ,vRj)]

2 W
∑

n=−W

H
∑

m=−H
[ fi(up+m,vp+n)− fi(up ,vp)]

2
}1/2 (9)

where f j (uRj, vRj) represents the mean gray of Rect [(uRj, vRj), 2W + 1, 2H + 1] in jth frame, and fi (up, vp)
represents the mean gray of Rect [(up, vp), 2W + 1, 2H + 1] in ith frame, which can be calculated
according to Equation (10).
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f (u, v) =
1

(2W + 1)(2H + 1)

W

∑
n=−W

H

∑
m=−H

f (u + m, v + n) (10)

 (uRi, vRi) = argmax
(up ,vp)∈Si

[Rij(up, vp)]

Cij = Rij(uRi, vRi)
(11)

where Si represents the moving region of the cell of interest in the ith frame (see Section 3.3.2) and Rij
(up, vp) denotes the correlation coefficient between two regions in the ith and the jth frame, which is
defined by Equation (9).

3.3.4. Calculation of the Self-Rotational Speed

The maximum correlation coefficient CiT between each frame of the video and the reference frame
were calculated according to Equation (11) by replacing the subscript j with T. The corresponding
center (uRi, vRi) of each region of interest was also acquired using Equation (11). The local maxima of
the sequence {CiT} greater than a specified threshold lbound were regarded as the peak points of this
sequence. The threshold lbound was slightly manually adjusted to avoid choosing the wrong peak
points. Then, each peak point and the two points on either side were used to calculate a parabolic
curve. The time interval between the maximum points of the adjacent parabolic curves was considered
the time required by the cell of interest to complete one revolution. Thus, the average self-rotational
speed for each revolution was determined by

n =
60 ffps

Xi − Xi−1
(12)

where f fps represents the frame rate of the video (in the experiments shown in the following section,
f fps = 15 fps), Xi and Xi−1 denote the frame numbers of the adjacent maximum points, and n is
the average self-rotational speed (in units of rpm). The motion trajectory of the cell of interest was
estimated using (uRi, vRi), which are corresponding to the peak points of the maximum correlation
coefficient sequence.

4. Results and Discussions

4.1. Self-Rotational Speed of a Raji Cell under Given AC Bias Parameters

In this experiment, a Raji cell with a diameter of ~12 µm was observed. The applied AC frequency
and bias potential were 75 kHz and 10 Vpp, respectively. A total of 158 images acquired when the
Raji cell was stably self-rotating were analyzed, and the first 40 frames were used to calculate the
background and reference frame. The obtained background image is shown in Figure 7. Figure 8
shows the determined search window of the cell of interest in the 100th frame, which was randomly
selected to illustrate the general situation. The region of interest tracked in the reference frame is
shown in Figure 9. The maximum correlation coefficients between each frame of the video and the
reference frame are shown in Figure 10. As shown in Figure 11, the proposed algorithm was highly
consistent with the manual estimation method, which supports the accuracy of the proposed algorithm.
The standard deviation of the number of images between two adjacent peak points of the maximum
correlation coefficient sequence was 0.5 in the nine cycles, and the standard deviation between two
maximum points of the adjacent parabolic curves was 0.2, which demonstrates the effectiveness
of the curve-fitting method. The average self-rotational speed in each cycle is shown in Figure 12.
The speed ranged from 53.3 rpm to 55.5 rpm, and the average self-rotational speed in the nine cycles
was 54.76 rpm. The motion trajectory of the cell of interest is shown in Figure 13.
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in grayscale. (B) The binary difference image obtained using the threshold determined by Otsu’s 
method. (C) The resulting image when morphological opening and closing operations were applied. 
The radius R of the disk-shaped structural element used here is three pixels. The rectangular region 
surrounded by green edges is the tracked moving region of the cell of interest. (D) The determined 
search window (the rectangular region surrounded by the red edges, i.e., the dashed lines) of the cell 
of interest. The green edges (the solid lines) show the tracked moving region in the grayscale image. 

 
Figure 9. Regions of the cell of interest in the reference frame and adjacent frames. (A) The region in 
the reference frame. (B) The region tracked in the previous frame. (C) The region tracked in the 
subsequent frame. 

Figure 8. The determined search window of the cell of interest in the 100th frame. (A) The 100th
frame in grayscale. (B) The binary difference image obtained using the threshold determined by Otsu’s
method. (C) The resulting image when morphological opening and closing operations were applied.
The radius R of the disk-shaped structural element used here is three pixels. The rectangular region
surrounded by green edges is the tracked moving region of the cell of interest. (D) The determined
search window (the rectangular region surrounded by the red edges, i.e., the dashed lines) of the cell of
interest. The green edges (the solid lines) show the tracked moving region in the grayscale image.
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Figure 11. The number of images in each cycle. The data “Without parabolic curve fitting” represent the
number of images between two adjacent peak points of the maximum correlation coefficient sequence.
The data “With parabolic curve fitting” are the number of images between two maximum points of
the adjacent parabolic curves. The data “Manual estimation method” were obtained by observing and
comparing the video images frame by frame.
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rotated at the applied frequencies ranging from 20 kHz to 180 kHz, and the maximum self-rotational 
speed was 149.0 ± 4.3 rpm at a frequency of 65 kHz. Figure 15 shows the self-rotational speed of 
another Raji cell as a function of applied AC bias potentials from 0 Vpp to 10 Vpp at a constant 
frequency of 60 kHz. In the experiments, the self-rotational speed of the Raji cells ranged from 11.1 
rpm to 149.0 rpm, without considering the stationary state, and the proposed algorithm was 
successfully applied under all the conditions. 

 

Figure 14. Self-rotational speeds of a Raji cell with different applied AC frequencies. The applied AC 
bias potential is 10 Vpp. The measurement points in this figure were obtained for only one Raji cell. At 
each measurement point, the cell continually rotated for several cycles, and the numbers of rotation 
cycles are {4, 4, 5, 8, 4, 5, 6, 5, 5, 3, 9, 9, 5, 5, 3, 5, 2, 3, 2} respectively. In the figure, each data point 
represents a mean value ± maximum deviation. The Raji cell is the same cell observed in the above 
experiment. 
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4.2. Self-Rotational Speed of Raji Cells under Various AC Bias Parameters

To characterize the self-rotational speeds of Raji cells under different AC bias parameters,
the applied AC frequency and bias potential were changed. Figure 14 shows the self-rotational
speeds of a Raji cell under different AC frequencies at a constant AC bias potential of 10 Vpp. The Raji
cell self-rotated at the applied frequencies ranging from 20 kHz to 180 kHz, and the maximum
self-rotational speed was 149.0 ± 4.3 rpm at a frequency of 65 kHz. Figure 15 shows the self-rotational
speed of another Raji cell as a function of applied AC bias potentials from 0 Vpp to 10 Vpp at a constant
frequency of 60 kHz. In the experiments, the self-rotational speed of the Raji cells ranged from
11.1 rpm to 149.0 rpm, without considering the stationary state, and the proposed algorithm was
successfully applied under all the conditions.
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Figure 14. Self-rotational speeds of a Raji cell with different applied AC frequencies. The applied
AC bias potential is 10 Vpp. The measurement points in this figure were obtained for only one Raji
cell. At each measurement point, the cell continually rotated for several cycles, and the numbers of
rotation cycles are {4, 4, 5, 8, 4, 5, 6, 5, 5, 3, 9, 9, 5, 5, 3, 5, 2, 3, 2} respectively. In the figure, each data
point represents a mean value ± maximum deviation. The Raji cell is the same cell observed in the
above experiment.
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4.3. Discussions 
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or optical based [44–46] cell rotation techniques. The calculation of the self-rotational speed is 
theoretically irrelevant to the speed of translational motion, but a high translational speed may make 
the tracing of the cell of interest difficult. In this case, a high frame rate is helpful. The main limitation 
of this algorithm is that it can only handle cells whose images are different at different self-rotational 
angles, but this is the general situation for flat and spherical cells. 

5. Conclusions 

In this study, a fast, accurate, and automated matching-based algorithm was developed to 
extract the self-rotational and translational motions of cancer cells in an OEK chip. Once a cell of 
interest was identified, the cell was manually assigned in the first frame, and a background 
subtraction technique was used to achieve automated tracking of the cell. This process circumvents 
the problem of analyzing many moving cells in the same recorded video image frames. An image in 
which the tracked cell looks significantly different from its adjacent images was automatically 
selected as the reference frame. The correlation coefficients between each frame of the video and the 
reference frame were calculated and compared to identify the same images of the tracked cell. A 
curve-fitting technique was used to more accurately calculate the time required for the tracked cell 
to complete one revolution, leading to sub-frame level accuracy. The proposed algorithm was used 
to analyze the self-rotational speeds of Raji cells under various AC bias parameters, and the results 
demonstrate the effectiveness of the algorithm. In summary, the algorithm discussed in this paper 
can be used to efficiently, reliably, and accurately extract the self-rotational speed of cells in a 
microfluidic environment. Potential applications for this algorithm include separating different kinds 
of cancer cells in heterogeneous populations, discriminating normal cells from cancer cells, and 
characterization of the morphological and electrical properties of cells. 

Figure 15. Self-rotational speeds of a Raji cell with different applied AC bias potentials. The applied AC
frequency is 60 kHz. The measurement points in this figure were obtained for only one Raji cell. At each
measurement point, the cell continually rotated for several cycles, and the numbers of rotation cycles
for the applied AC bias potentials {4, 6 8 10} Vpp are {1, 1, 3, 5} respectively. In the figure, each data
point represents a mean value ±maximum deviation. The diameter of the Raji cell is ~12 µm.

4.3. Discussions

The proposed algorithm was successfully used to analyze the self-rotational and translational
motions of cells with non-uniform structure. In all experiments conducted, the cell of interest was
correctly tracked. No human intervention was required for the self-rotational speed extraction
algorithm, except for the assignment of the cell of interest in the first frame. The algorithm exhibited
good robustness and accuracy even if the cell of interest exhibited non-uniform self-rotation. The use
of the algorithm for other types of cells and for a wider range of speeds will be investigated in future
studies. It is envisioned that the imaging modalities proposed here can be used in conjunction with
other microfluidic rotational techniques, such as the structure based [35–39], the acoustic based [40–43],
or optical based [44–46] cell rotation techniques. The calculation of the self-rotational speed is
theoretically irrelevant to the speed of translational motion, but a high translational speed may
make the tracing of the cell of interest difficult. In this case, a high frame rate is helpful. The main
limitation of this algorithm is that it can only handle cells whose images are different at different
self-rotational angles, but this is the general situation for flat and spherical cells.

5. Conclusions

In this study, a fast, accurate, and automated matching-based algorithm was developed to extract
the self-rotational and translational motions of cancer cells in an OEK chip. Once a cell of interest was
identified, the cell was manually assigned in the first frame, and a background subtraction technique
was used to achieve automated tracking of the cell. This process circumvents the problem of analyzing
many moving cells in the same recorded video image frames. An image in which the tracked cell
looks significantly different from its adjacent images was automatically selected as the reference
frame. The correlation coefficients between each frame of the video and the reference frame were
calculated and compared to identify the same images of the tracked cell. A curve-fitting technique was
used to more accurately calculate the time required for the tracked cell to complete one revolution,
leading to sub-frame level accuracy. The proposed algorithm was used to analyze the self-rotational
speeds of Raji cells under various AC bias parameters, and the results demonstrate the effectiveness
of the algorithm. In summary, the algorithm discussed in this paper can be used to efficiently,
reliably, and accurately extract the self-rotational speed of cells in a microfluidic environment. Potential
applications for this algorithm include separating different kinds of cancer cells in heterogeneous
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populations, discriminating normal cells from cancer cells, and characterization of the morphological
and electrical properties of cells.

Supplementary Materials: The following is available online at www.mdpi.com/2072-666X/8/9/282/s1, Figure S1:
Pseudo code for choosing the reference frame.
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