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Abstract: In this work, a non-isothermal electroosmotic flow of two immiscible fluids within
a uniform microcapillary is theoretically studied. It is considered that there is an annular layer
of a non-Newtonian liquid, whose behavior follows the power-law model, adjacent to the inside
wall of the capillary, which in turn surrounds an inner flow of a second conducting liquid that is
driven by electroosmosis. The inner fluid flow exerts an interfacial force, dragging the annular
fluid due to shear and Maxwell stresses at the interface between the two fluids. Because the Joule
heating effect may be present in electroosmotic flow (EOF), temperature gradients can appear along
the microcapillary, making the viscosity coefficients of both fluids and the electrical conductivity
of the inner fluid temperature dependent. The above makes the variables of the flow field in
both fluids, velocity, pressure, temperature and electric fields, coupled. An additional complexity
of the mathematical model that describes the electroosmotic flow is the nonlinear character due
to the rheological behavior of the surrounding fluid. Therefore, based on the lubrication theory
approximation, the governing equations are nondimensionalized and simplified, and an asymptotic
solution is determined using a regular perturbation technique by considering that the perturbation
parameter is associated with changes in the viscosity by temperature effects. The principal results showed
that the parameters that notably influence the flow field are the power-law index, an electrokinetic
parameter (the ratio between the radius of the microchannel and the Debye length) and the
competition between the consistency index of the non-Newtonian fluid and the viscosity of the
conducting fluid. Additionally, the heat that is dissipated trough the external surface of the
microchannel and the sensitivity of the viscosity to temperature changes play important roles, which
modify the flow field.

Keywords: power-law fluid; electroosmotic flow; immiscible fluids; non-isothermal; microcapillary;
Maxwell stress

1. Introduction

Fluid transport is an essential task in microfluidic devices, where electroosmotic pumping (EOP)
can be used [1,2] as an effective tool for displacing fluids and suspended particles in microchannels.
EOP refers to the motion of an electrolyte solution relative to a stationary charged surface when
an electric potential is applied [3]. However, electroosmosis cannot be directly used to drive
non-conducting fluids. For this purpose, Brask et al. [4] proposed an electroosmotic pump that
relies on two-liquid viscous drag to pump non-conducting liquids.

The pumping of non-conducting fluids has been widely studied by several researchers.
Gao et al. [5] presented a numerical analysis of the electroosmotic flow (EOF) in a microchannel for
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two stratified immiscible liquids with low diffusivity: a high electroosmotic (EO) mobility liquid at the
bottom section and a low EO liquid at the upper section of the channel. The main results indicated that
the interface between the two fluids can be controlled by electroosmotic effects. Gao et al. [6] analyzed
the transient aspects of two-liquid EOF, in which a low EO mobility liquid is delivered by the interfacial
viscous force of a high EO mobility liquid driven by electroosmosis. These authors included the
effects of the dynamic viscosity ratio, interface potential, kinematic viscosity ratio and the parameter
of the electrical double layer (EDL) to characterize the flow. Choi et al. [7] studied a two-fluid
EOF in a microchannel by considering full hydrodynamic and electric interactions on the interface,
and both fluids were assumed to be Newtonian fluids. These authors demonstrated that interfacial
electrostatic effects induce a flow reversal. In the same context, Movahed et al. [8] conducted
a numerical simulation of the EOF in a column of an aqueous solution surrounded by an immiscible
liquid. The effects of the EDL and surface charge were considered for the boundary conditions
at the interface of the two fluids. In addition to these studies, a time-dependent model of mixed
electroosmotic/pressure-driven flow of three immiscible fluids in a rectangular microchannel was
developed by Haiwang et al. [9], who studied a physical model where a non-conducting fluid is driven
by a pressure gradient and interfacial viscous forces of two conducting liquids, which are driven by
electroosmotic forces. The aforementioned investigations focus on studying the electroosmotic-driven
flow of Newtonian fluids; however, in many applications of EOFs, the fluids transported through
microchannels are non-Newtonian fluids. In this direction, Huang et al. [10] analyzed a physical
electroosmotic model based on two immiscible layers with one layer of a conducting non-Newtonian
fluid, whose rheological behavior is described by a power law. The results demonstrated that the fluid
consistency coefficient and flow behavior index of the fluid influence notably impact the shape of
the velocity profile and the volume flow rate. Afonso et al. [11] developed an analytical model for
a two-fluid EOF of stratified fluids with Newtonian or viscoelastic rheological behavior. The effects
of fluid rheology, shear viscosity ratio and interfacial zeta potential were analyzed, revealing that an
enhancement of the flow rate is observed as the shear-thinning effects are increased. Liu et al. [12]
analytically solved the EOP of nonconducting liquids and biofluids in a circular microchannel,
where two models were proposed: (1) the conducting layer is a Newtonian fluid, and the inner
layer is a conducting Casson fluid; and (2) both of the layers are Newtonian fluids. Analytical solutions
of the electric potential distribution, velocity profile, flow rate and electric current were obtained.

As previously demonstrated, Joule heating is inevitable when an electric field is applied across
a conducting medium, which imposes limitations on the performance of electrokinetic microfluidic
devices [13] or can significantly modify the flow and electric fields [14–16]. In this direction, although
there are several works investigating the hydrodynamic aspects of the EOF of immiscible fluids,
thermal analyses related to this topic are scarce. For instance, Garai and Chakraborty [17] performed
a theoretical analysis of the heat transfer in a combined electroosmotic and pressure-driven flow of
two immiscible Newtonian liquid layers in a microchannel, where the fully-developed flow condition
was assumed. The velocity and temperature profiles in the two fluids, together with the Nusselt
number, were obtained.

Although thermal analyses of EOF with immiscible fluids have been conducted, none of
these analyses consider the variation of the physical properties due to temperature, which may
change considerably due to the relatively high external electric fields used in EOF. Additionally,
the simultaneous effects of viscous and Maxwell stresses with non-isothermal conditions have been
considered. In this sense, few works [8,12] have studied the electroosmotic flow of immiscible fluids in
cylindrical coordinates. In the case of [8], the analysis considered two immiscible Newtonian fluids in
a microcapillary, under isothermal conditions. The solution was conducted by using the COMSOL
software. In [12], the analytical solution for a coaxial two-phase electroosmotic flow in a circular
microchannel was studied and solved in analytical fashion, but isothermal conditions were assumed.
In this last reference, non-Newtonian fluids were considered; however, for such cases, viscous stresses
at the interface between both fluids were included, and Maxwell stresses were neglected. Only in the
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case of Newtonian fluids, viscous and Maxwell stresses were considered in a simultaneous manner.
Another important aspect to consider from the present work is that we found an approximate solution,
based on a regular perturbation technique [18], of the the non-linear and coupled partial differential
equations (mass, momentum, energy, charge and electric field) that describe this EOF. In addition,
the boundary conditions at the interface between both fluids take into account viscous and Maxwell
stresses, continuity of velocity, temperature and heat flux, which couple the field variables between the
Newtonian and non-Newtonian fluids.

2. Theoretical Model

Figure 1 presents the scheme of the physical model analyzed in this work. A microcapillary,
with length L that is considerably greater than its inner radius R2, is filled with two immiscible fluids
with an annular arrangement. A 2D cylindrical coordinate system (r, z) is adopted, and the origin
is placed at the left end of the capillary. The column of the inner fluid (denoted i), whose radius is
R1, is a symmetric electrolyte with Newtonian behavior, and the surrounding non-conducting fluid
(denoted s) obeys the power-law rheological model. A thin EDL (with thickness given by the Debye
length, κ−1) is formed at the liquid-liquid interface on the conducting fluid side. The inner fluid flow is
driven by an electroosmotic force due to an external electric field of intensity E0 in the axial direction,
which is given by E0 = φ0/L, where φ0 is the electric potential imposed at the entrance of the capillary
in z = 0. The thickness of the capillary wall is denoted by tw = R3− R2, where R3 is the external radius
of the capillary. The capillary ends are supported by two reservoirs that are found at temperature T0

and pressure p0. Additionally, the outer surface of the capillary is in contact with the surroundings; for
simplicity, its temperature is also T0, and its convective heat transfer coefficient is h∞.
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Figure 1. (Color online) Schematic of the electroosmotic flow of two immiscible fluids in a microcapillary:
(a) cross-sectional view and (b) side view, depicting both fluids in distinct colors.

The following assumptions are also made: (i) the viscosity and electrical conductivity of the
electrolyte solution, as well as the consistency index of the non-Newtonian fluid are functions of
temperature, whereas the thermal conductivities of both fluids are constant because this property
is considerably less sensitive to temperature variations [19,20]; (ii) the radius R1 of the capillary is
considerably greater than the Debye length, κ−1; and (iii) the boundary between the two fluids is
well defined and stable, i.e., the liquid film thickness t = R2 − R1 is constant along the microcapillary.
In this context, the very small pressure difference that arose from surface tension and curvature
was ignored [21]. This is a restrictive assumption; however, we assume that the position of the
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interface remains unaltered because the capillary number is very small, i.e., Ca = εE0ψc/γT � 1 [22];
for instance, typical values of the physical parameters used in this study take the following values:
the dielectric permittivity is ε ∼ 7× 10−10 C·V−1·m−1, the external electric field E0 ∼ 104 V·m−1,
the thermal voltage or characteristic electric potential in the EDL, defined later, ψc ≤ 25 m·V, and the
surface tension between both fluids γT ∼ 10−3 N·m−1. With these values, the capillary number is
estimated as Ca ∼ 10−4. Of course, for higher values of the surface tension, such as γT ∼ 10−2 N·m−1,
the capillary number is decreased, i.e., Ca ∼ 10−5. (iv) The electric double layer thickness is assumed to
be uniform along the interface between both fluids; this assumption should be relaxed in a future work.
We do consider that the electric double layer thickness is not affected by temperature gradients. In this
sense, thermodiffusion, ionic diffusivities and thermodiffusion coefficients are not taken into account
in this analysis. For a further discussion about these issues, see [23–27] and the references cited therein.
Finally, (v) viscous dissipation is neglected in comparison with the Joule heating effect [28,29].

Considering the aforementioned together with the lubrication approximation for this
non-isothermal EOF [30], the governing equations can be described as shown below.

2.1. For the Conducting Fluid

The governing equations that describe the hydrodynamics, temperature and electric fields in the
conducting fluid are given by the continuity, momentum, energy and charge conservation equations:

1
r

∂ (rvi)

∂r
+

∂ui
∂z

= 0, (1)

1
r

∂

∂r

[
µ(Ti)r

(
∂ui
∂r

)]
+ ρeEz −

dpi
dz

= 0, (2)

ρiCp,i

(
ui

∂Ti
∂z

)
= ki

[
∂2Ti
∂z2 +

1
r

∂

∂r

(
r

∂Ti
∂r

)]
+ σ(Ti)E2

z (3)

and:
d
dz

[
σ(Ti)

dφi
dz

]
= 0. (4)

In Equations (1)–(4), vi and ui are the velocity components in the r and z directions, respectively;
pi and Ti are the pressure and temperature fields, respectively; and the electric field along the
capillary is defined as Ez = −dφi/dz, where φi is the external electric potential. The electrical
conductivity and viscosity of the conducting fluid are temperature dependent and are defined as
σ(Ti) = σ0 [1 + Bσ(Ti − T0)] [30,31] and µ(Ti) = µ0 exp(Bµ/Ti) [30,32], respectively. Here, σ0 and µ0

are the electrical conductivity and viscosity evaluated at a reference temperature T0, and Bσ and Bµ are
constants that measure the sensitivity of the electrical conductivity and viscosity to temperature. ki, ρi
and Cp,i are the thermal conductivity, the mass density and the specific heat, respectively.

In Equation (2), the charge density, ρe, is obtained from the Poisson–Boltzmann equation. For very
long microchannels and assuming that the zeta potential at the liquid-liquid interface is small, i.e.,
ζ � 25 mV, such that the Debye–Hückel approximation can be used, this equation can be written as:

1
r

d
dr

(
r

dψ

dr

)
= −ρe

ε
. (5)

By considering that ρe = −εκ2ψ and that the boundary conditions of Equation (5) are ψ (r = R1) = ζ

and dψ/dr = 0 at r = 0, the charge density is obtained as ρe = −εκ2ζ I0(κr)/I0(κR1) [31]. Here, ψ is the
electric potential within the Debye length; ε denotes the dielectric permittivity of the conducting fluid;
I0 is the zeroth-order modified Bessel function [33]; and κ is the inverse Debye screening thickness,
defined as κ =

(
2e2z2n∞/εkBT0

)−1/2, where e, n∞, z, kB and T0 are the magnitude of the elementary
charge on an electron, the bulk concentration of ions, the valence, the Boltzmann constant and an
absolute reference temperature T0, respectively.
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2.2. For the Non-Conducting Fluid

The governing equations in the region of the non-conducting liquid are the continuity, momentum
and the energy equations, which are given by:

1
r

∂ (rvs)

∂r
+

∂us

∂z
= 0, (6)

− 1
r

∂

∂r

[
m(Ts)r

(
−∂us

∂r

)n]
− dps

dz
= 0, (7)

ρsCp,s

(
us

∂Ts

∂z

)
= ks

[
∂2Ts

∂z
+

1
r

∂

∂r

(
r

∂Ts

∂r

)]
. (8)

Here, vs, us, ps and Ts are the velocity components in the r and z directions, the pressure field
and the temperature, respectively. m(Ts) = m0 exp [−a (Ts − T0)] represents the consistency index
for the non-conducting fluid [34], with m0 denoting the consistency index evaluated at the reference
temperature T0, and a is a parameter related with the sensitivity of the consistency index to temperature
variations. ks, ρs and Cp,s are the thermal conductivity, the mass density and the specific heat of the
non-conducting fluid, respectively, and n is the flow behavior index. Note that in the energy equations,
Equations (3) and (8), the convective terms in the radial direction have been neglected, as proven by
Sánchez et al. [16].

Boundary Conditions

The boundary conditions of the governing Equations (1)–(8) are as follows:
At the capillary centerline, r = 0, the symmetry boundary conditions for velocity and temperature

are applied:

vi = 0,
∂ui
∂r

= 0,
∂Ti
∂r

= 0; (9)

The matching conditions at the interface between both fluids (r = R1) are:

ui = us, vi = vs = 0, (10)

τrz,i − τrz,s = σsEz, (11)

Ti = Ts, ks
∂Ts

∂r
= ki

∂Ti
∂r

. (12)

In Equation (10), the first and second conditions are the continuity and the impermeability
of the velocity between both fluids, respectively. Equation (11) represents the total stress balance,
which includes shear and Maxwell stresses [5]. In Equation (11), τrz,i = µ(Ti) (∂ui/∂r) and
τrz,s = m(Ts) (−∂us/∂r)n. Additionally, σs = −εκζ I1(κR1)/I0(κR1) is the surface charge density at the
interface [31], and I0 and I1 are the zeroth- and first-order modified Bessel functions [33], respectively.
Furthermore, the continuity of temperatures and heat flux are represented by Equation (12), which
defines a conjugate heat transfer problem between the two fluids.

At the inner surface of the capillary (r = R2), the boundary conditions are:

us = vs = 0,
∂Ts

∂r
= −

heq

ks
(Ts − T0) . (13)

The first two boundary conditions in Equation (13) are the no-slip and impermeability conditions
at the inner surface of the capillary; the latter represents the convective cooling from the capillary outer
surface, where heq is the equivalent heat transfer coefficient given by:

heq = R−1
2

[
1

kw
ln
(

R3

R2

)
+

1
h∞R3

]−1
. (14)
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Here, kw is the thermal conductivity of the microchannel wall. At both ends of the capillary
(z = 0, L):

pi = ps = p0, Ti = Ts = T0, (15)

and:
φi (z = 0) = φ0, φi (z = L) = 0. (16)

Finally, both ends of the capillary are at the same pressure p0 and the same temperature T0,
as represented by Equation (15); this latter condition reflects the cooling from the capillary ends, as
used by Xuan et al. [14]. The applied electric potential at the capillary inlet is represented by φ = φ0,
and φ = 0 denotes that the capillary outlet is grounded.

2.3. Dimensionless Equations

To analyze this EOF and because there are many physical parameters involved in the
analysis, we first nondimensionalize the governing Equations (1)–(8), together with the boundary
conditions (9)–(16), by introducing the following dimensionless variables:

Z =
r− R1

t
, χ =

x
L

η =
r

R1
, ūi =

ui
uc

, ūs =
us

uc
,

v̄i =
viL

R1uc
, v̄s =

vsL
tuc

, p̄i =
pi − p0

∆pc
, p̄s =

ps − p0

∆pc
,

θi =
Ti,s − T0

∆Tc
, θs =

Ts − T0

∆Tc
, φ̄ =

φ

φ0
. (17)

Here, uc = εE0ψc/µ0 represents the Helmholtz–Smoluchowski velocity and is chosen to be the
characteristic velocity for both fluids, and it is evaluated at the reference temperature T0. ψc = kBT/ze
denotes the thermal voltage. ∆Tc = σ0E2

0LR1/ki and ∆pc = µ0ucL/R2
1 represent the characteristic

temperature increment and characteristic pressure drop in the system, respectively. Therefore, the
dimensionless versions of the governing equations, Equations (1)–(4) and Equations (6)–(8), are
as follows:

For the conducting fluid,
1
η

∂

∂η
(ηv̄i) +

∂ūi
∂χ

= 0, (18)

1
η

∂

∂η

[(
1− γµ θi

)
η

∂ūi
∂η

]
− κ̄2 I0 (κ̄η)

I0 (κ̄)

dφ̄i
dχ
− dp̄i

dχ
= 0 (19)

∂2θi
∂χ2 −

Peiūi
βi

∂θi
∂χ

+
1
β2

i

1
η

∂

∂η

(
η

∂θi
∂η

)
+ [1+ γσθi]

(
dφ̄i
dχ

)2
= 0, (20)

d
dχ

[
(1+ γσθi)

dφ̄i
dχ

]
= 0; (21)

and for the non-conducting fluid,

1
(1+ ξZ)

∂

∂Z
[(1+ ξZ) v̄s] +

∂ūs

∂χ
= 0, (22)

− ∂

∂Z

[
(1+ ξZ) (1− γaθs)

(
−∂ūs

∂Z

)n]
−Λ

dp̄s

dχ
(1+ ξZ) = 0, (23)

∂2θs

∂χ2 −
Pesūs

βs

∂θs

∂χ
+

1
β2

s

1
(1+ ξZ)

∂

∂Z

[
(1+ ξZ)

∂θs

∂Z

]
= 0. (24)

In Equations (18)–(24), κ̄ = κR1, γµ = Bµ4Tc/T2
0 , γσ = Bσ4Tc and γa = a4Tc. The other

dimensionless parameters are defined as Λ = tn+1u1−n
c /µrR2

1, βi = R1/L, βs = t/L and ξ = t/R1.
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Pei = ucR1/αi and Pes = uct/αs are the Péclet numbers for the inner and surrounding fluids,
respectively, with αi,s = ki,s/ρi,sCp,i,s.

The dimensionless boundary conditions, corresponding to Equations (18)–(24), are as follows:
At the centerline of the capillary (η = 0):

v̄i = 0,
∂ūi
∂η

= 0,
∂θi
∂η

= 0. (25)

At the interface between both fluids:

ūi
∣∣
η=1 = ūs

∣∣
Z=0, v̄i

∣∣
η=1 = v̄s

∣∣
Z=0 = 0, (26)

−
(
1− γµθi

) ∂ūi
∂η

∣∣∣∣
η=1
− α (1− γaθs)

(
−∂ūs

∂Z

)n ∣∣∣∣
Z=0

= κ̄
I1 (κ̄)

I0 (κ̄)

dφ̄i
dχ

, (27)

θi
∣∣
η=1 = θs

∣∣
Z=0, ᾱ

∂θi
∂η

∣∣∣∣
η=1

=
∂θs

∂Z

∣∣∣∣
Z=0

. (28)

Here, α = µrR1un−1
c /tn, with µr = m0/µ0. ᾱ = krξ denotes a conjugate heat transfer parameter,

where kr = ki/ks.
At the inner surface of the capillary (Z = 1):

ūs = v̄s = 0,
∂θs

∂Z
= kTθs, (29)

where kT = heqt/ks represents an equivalent Biot number.
At both ends of the capillary (χ = 0, 1):

p̄i,s = 0, θi,s = 0 (30)

and:
φ̄i (χ = 0) = 1 and φ̄i (χ = 1) = 0. (31)

Simplified Energy Equations

The energy equations for the inner and surrounding fluids, which are given by Equations (20) and (24),
respectively, can be simplified based on the following discussion. In typical EOFs, the temperature
variation over r is considerably smaller than that in the axial direction [30]; therefore, to a first
approximation, the temperature for both fluids is only a function of the coordinate z. Thus, in
dimensionless form, we have θi,s ≈ θi,s(χ). Hence, it is possible to replace the local temperature
in both fluids for the cross-sectional average temperature. Therefore, averaging each term in the
radial direction of the energy equations for the inner and surrounding fluids and using the boundary
conditions that define the conjugate heat transfer problem, namely, the second boundary conditions of
Equations (28) and (29), yield the following set of equations:

d2θi
dχ2 −

Pei〈ūi〉
βi

dθi
dχ

+
2
β2

i

∂θi
∂η

∣∣∣∣
η=1

+
1
βi

(
dφ̄i
dχ

)2
= 0 (32)

and:
d2θs

dχ2 −
Pes 〈ūs〉

βs

dθs

dχ
− 2

β2
s(1+ Rr)

[
(1+ ξ) kTθs + ᾱ

∂θi
∂η

∣∣∣∣
η=1

]
= 0, (33)
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respectively. Here, Rr = R2/R1, and (∂θi/∂η)η=1 is the unknown dimensionless temperature gradient
at the interface between both fluids, which will be determined in Appendix A. 〈ūi〉 and 〈ūs〉 represent
average velocities, which are defined as:

〈ūi (χ)〉 = 2
∫ 1

0
ūiηdη (34)

and:

〈ūs (χ)〉 =
2

1+ Rr

∫ 1

0
ūs (1+ ξZ) dZ. (35)

3. Asymptotic Solution in the Limit of γµ � 1

To solve the coupled system of the governing equations formulated in the previous section,
we use a perturbation technique [18]. The governing Equations (18)–(31) depend on several small
dimensionless parameters, such as γµ, γσ and γa. All of these parameters are defined in terms of
the characteristic temperature increment ∆Tc, which allows these parameters to be expressed in
terms of a single parameter. Under this condition, we can write that γσ = Γσγµ and γa = Γaγµ,
with Γσ = BσT

2

0 /Bµ and Γa = aT2
0 /Bµ. Therefore, the governing equations can be written in terms of

the dimensionless parameter γµ. From a physical perspective, this parameter measures the sensitivity
of viscosity µ to changes in temperature. By considering the typical values of geometrical and physical
properties used in EOF, such as Bµ = 1713 K, E0 ∼ 104 V·m−1, ki = 0.609 W·m−1·K−1, L ∼ 10−2 m [14],
R1 = 50 µm [8] and T0 = 298 K, we estimate that γµ ∼ 10−3 � 1, and therefore, we can consider this to
be the perturbation parameter γµ. Thus, we propose a regular expansion for each dependent variable
(say, X) in the form:

X = X(0) + γµX(1) +O
(

γ2
)

, (36)

where X = θi, θs, ūi, ūs, v̄i, v̄s, p̄i, p̄s, φ̄i. Substituting the expansions (36) into Equations (18)–(24), as well
as into the boundary conditions (25)–(31) and collecting terms of the same order, we obtain the
following set of equations.

3.1. Leading-Order Solution

Note that at this order, the solution corresponds to the case of constant physical properties,
where the flow is strictly unidirectional, and the component of the radial velocity of the fluid does not
exist. Thus, the leading-order equations are defined as:

1
η

∂

∂η

[
η

∂ū(0)
i

∂η

]
− κ̄2 I0 (κ̄η)

I0 (κ̄)

dφ̄
(0)
i

dχ
= 0, (37)

− ∂

∂Z

[
(1+ ξZ)

(
−∂ū(0)

s
∂Z

)n]
= 0, (38)

d2θ
(0)
i

dχ2 −
Pei

〈
ū(0)

i

〉
βi

dθ
(0)
i

dχ
+

2
β2

i

∂θ
(0)
i

∂η

∣∣∣∣∣
η=1

+
1
βi

(
dφ̄

(0)
i

dχ

)2

= 0, (39)

d2θ
(0)
s

dχ2 −
Pes

〈
ū(0)

s

〉
βs

dθ
(0)
s

dχ
− 2

β2
s(1+ Rr)

(1+ ξ) kTθ
(0)
s + ᾱ

∂θ
(0)
i

∂η

∣∣∣∣∣
η=1

 = 0, (40)

and:
d2φ̄

(0)
i

dχ2 = 0. (41)
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The boundary conditions are given by:

∂ū(0)
i

∂η

∣∣∣∣
η=0

= 0, (42)

ū(0)
i

∣∣
η=1 = ū(0)

s
∣∣
Z=0, (43)

−
∂ū(0)

i
∂η

∣∣∣∣
η=1
− α

[
−∂ū(0)

s
∂Z

]n ∣∣∣∣
Z=0

= κ̄
I1 (κ̄)

I0 (κ̄)

dφ̄
(0)
i

dχ
, (44)

ū(0)
s
∣∣
Z=1 = 0, (45)

θ
(0)
i = θ

(0)
s = 0 at χ = 0, 1 (46)

and:
φ̄
(0)
i

∣∣
χ=0 = 1 and φ̄

(0)
i

∣∣
χ=1 = 0. (47)

The solution for the electric potential of the conducting fluid is determined from Equations (41) and (47),
and it is given by:

φ̄
(0)
i = 1− χ. (48)

The velocity profiles for the inner and surrounding fluids are readily obtained from
Equations (37), (38) and (42)–(45), respectively, as:

ū(0)
i =

[
1− I0 (κ̄η)

I0 (κ̄)

]
+

δN

ξ (1− N)

[
(1+ ξ)1−N − 1

]
(49)

and:

ū(0)
s =

δN

ξ (1− N)

[
(1+ ξ)1−N − (1+ ξZ)1−N

]
, (50)

where δ = 2κ̄I1 (κ̄)/αI0 (κ̄) and N = 1/n.
Clearly, at the zeroth order, the dimensionless velocity profile of the inner conducting fluid is

composed of two terms: the first term denotes the EOF, whereas the second term reflects the influence
of the surrounding fluid, which acts as a lubricant. Note that in the limit N → 1, the Newtonian fluid
case is recovered. Under this last condition, the dimensionless velocity profile of the inner fluid is
given by:

ū(0)
i =

{
1− I0 (κ̄η)

I0 (κ̄)
+

2κ̄

µr

I1 (κ̄)

I0 (κ̄)
ln
(

R2

R1

)}
(51)

and the corresponding dimensionless velocity profile (for N → 1) of the surrounding fluid is
obtained as:

ū(0)
s =

2κ̄

µr

I1 (κ)

I0 (κ)
ln
(

1+ ξ

1+ ξZ

)
(52)

The magnitude of the dimensionless velocity, at the zeroth order, evaluated at the interface
between both fluids is:

ū(0)
i = ū(0)

s =
2κ̄

µr

I1 (κ̄)

I0 (κ̄)
ln (Rr) . (53)

The solution for the dimensionless temperature profile in the capillary is obtained from
Equations (39) and (40) and is given by (see Appendix A or the details):

θ
(0)
i ≈ θ

(0)
s =

ᾱβi
2kT (1+ ξ)

{
1− exp (m2χ) [1− exp (m1)]− exp (m1χ) [1− exp (m2)]

exp (m2)− exp (m1)

}
. (54)
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The above equation defines the temperature distribution at the leading order for both fluids.
Parameters m1 and m2 are defined in Appendix A.

An order-of-magnitude estimate of the incremental temperature rise can be determined from the
first factor on the right-hand side of Equation (54). In this sense, the temperature rise can be estimated
from θ

(0)
i ≈ θ

(0)
s = ᾱβi/2kT (1+ ξ), which in physical units can be expressed as:

Ti,s ∝ T0 +
σ0E2

0R2
1

heqR2
. (55)

The above relationship clearly indicates how the temperature in the capillary can be modulated
depending on the assumed values of the physical parameters.

3.2. The O
(
γµ

)
Solution

The O
(
γµ

)
problem is defined by the following set of equations:

∂ū(1)
i

∂χ
+

1
η

∂

∂η
(ηv̄(1)i ) = 0, (56)

1
η

∂

∂η

[
η

∂ū(1)
i

∂η
− ηθ

(0)
i

∂ū(0)
i

∂η

]
− κ̄2 I0 (κ̄η)

I0 (κ̄)

dφ̄
(1)
i

dχ
−

dp̄(1)i
dχ

= 0, (57)

− ∂

∂Z

n
∂ū(1)

s
∂Z

(
− ∂u(0)

s
∂Z

)n

∂ū(0)
s

∂Z

(1 + ξZ)− Γaθ
(0)
s

(
− ∂ū(0)

s
∂Z

)n

(1 + ξZ)

 − Λ
dp̄(1)s

dχ
(1 + ξZ) = 0 (58)

and:
d

dχ

(
dφ̄

(1)
i

dχ
+ Γσθ

(0)
i

dφ̄
(0)
i

dχ

)
= 0. (59)

At this order, the velocity profiles for both fluids only depend on the zeroth-order temperature;
accordingly, it is not necessary to consider the energy equation for terms of O

(
γµ

)
. Furthermore, we

can neglect small pressure differences due to the curvature effects associated with the surface tension.
In this case, the pressure gradients are equal in both fluids [21]. Therefore, we assume that dp̄(1)i /dχ =

dp̄(1)s /dχ = dp̄(1)/dχ.
The boundary conditions for Equations (56)–(59) are as follows:

∂ū(1)
i

∂η

∣∣∣∣
η=0

= 0, (60)

v̄(1)i = 0 at η = 0, 1, (61)

ū(1)
i

∣∣
η=1 = ū(1)

s
∣∣
Z=0, (62)

p̄(1)
∣∣
χ=0 = p̄(1)

∣∣
χ=1 = 0, (63)

θ
(0)
i

∂ū(0)
i

∂η

∣∣∣∣∣∣
η=1

−
∂ū(1)

i
∂η

∣∣∣∣∣∣∣
η=1

+ αΓaθ
(0)
s

(
− ∂ū(0)

s
∂Z

)n∣∣∣∣∣
Z=0

− αn
∂ū(1)

s
∂Z

(
− ∂ū(0)

s
∂Z

)n

∂ū(0)
s

∂Z

∣∣∣∣∣∣∣∣
Z=0

= κ̄
I1 (κ̄)

I0 (κ̄)

dφ̄
(1)
i

dχ
, (64)
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ū(1)
s
∣∣
Z=1 = 0 (65)

and:
φ̄
(1)
i

∣∣
χ=0 = φ̄

(1)
i

∣∣
χ=1 = 0. (66)

Notably, the boundary condition for the stresses at the interface is influenced by the temperature
effects, which is reflected by θ

(0)
i and θ

(0)
s , included in the first and third terms on the left-hand side of

Equation (64), respectively. Additionally, the term on the right-hand side of this equation, dφ̄
(1)
i /dχ,

depends on the temperature field, as shown in Equation (59).
By applying standard methods, the solution for the above system of equations for the electric

potential and velocity fields is the following:

φ̄
(1)
i =

ᾱβi
2kT (1 + ξ)

ΓσF0
exp (m2)− exp (m1)

{
[1− exp (m1)]

m2
[χ exp (m2)− exp (m2χ)]

+
[1− exp (m2)]

m1
[exp (m1χ)− χ exp (m1)] +

exp (m2)− exp (m1)

m2
(1− χ)

}

ū(1)
i = dp̄(1)

dχ

{
1
4
(
η2 − 1

)
+ δN−1

2αξ(n−1)

[
1

(1+ξ)N−1 − 1
]

− NΛδN−1

(6n2−8n+2)ξ2

[
(n−1)ξ2+2(n−1)ξ−2n

(1+ξ)N−1 + 2n
]}

− dφ̄
(1)
i

dχ

{
2κ̄δN−1

αξ(n−1)
I1(κ̄)
I0(κ̄)

[
1

(1+ξ)N−1 − 1
]
− I0(κ̄η)

I0(κ̄)
+ 1
}

+θ(0)
{

ū(0)
i + δN

ξ(1−N)

[
(ξ + 1)1−N

(
Γa
n − 1

)
− Γa

n + 1
]}

.

(67)

ū(1)
s = dp̄(1)

dχ

{
NΛ

(
δ

1+ξZ

)N−1

(6n2−8n+2)ξ2 [Zξ (n− 1) (Zξ + 2)− (n− 1) ξ (ξ + 2)]

+ δN−1

2αξ(n−1)

[
1

(1+ξ)N−1 − 1
(1+ξZ)N−1

]}
− dφ̄

(1)
i

dχ

{
1

(1+ξ)N−1 − 1
(1+ξZ)N−1

}
2κ̄δN−1

αξ(n−1)
I1(κ̄)
I0(κ̄)

+ NΓaδN

ξ(1−N)
θ0

[
(1 + ξ)1−N − (1 + ξZ)1−N

]
,

(68)

where F0 = ᾱβi/2kT(1 + ξ). In Equations (67) and (68), the pressure gradient dp̄(1)/dχ is unknown.
Therefore, to determine the pressure gradient, we substitute ū(1)

i into the continuity Equation (56),
and after integrating the previous result in the radial direction and by applying the impermeability
boundary conditions, Equation (61), we obtain the solution for p̄1:

p̄(1) = −C2

C1
F0

{
χ− 1

exp (m2)− exp (m1)

(
exp (m2χ)

m2
[1− exp (m1)]

−exp (m1χ)

m1
[1− exp (m2)]

)}
+ C3χ + C4

(69)

and the corresponding pressure gradient is obtained as:

dp̄(1)

dχ
= −C2

C1
θ0 + C3, (70)

where C1–C4 are known parameters, which are given in Appendix B.
Once the velocity and pressure profiles are known, the volumetric flow rate can be obtained.
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3.3. Volumetric Flow Rate

The dimensionless volumetric flow rates for both the inner (Q̄i = Qi/Qc) and the outer (Q̄s = /Qc)
fluids can now be determined; here, Qc = πucR2

1 is the characteristic volumetric flow rate. Therefore,
we have that:

Qi =
∫ 1

0
2uiηdη =

〈
u(0)

i

〉
+ 2γµ

{
1
2

dp(1)

dχ
k1 + θ(0)k2 −

dφ
(1)
i

dχ

k3

κ

}
(71)

and:

Qs = 2ξ
∫ 1

0
us (1 + ξZ) dZ = (1 + Rr)ξ

〈
u(0)

s

〉
+ 2γµξ

{
θ(0)k5 −

dp(1)

dχ
k6 −

dφ
(1)
i

dχ
k7

}
. (72)

In Equations (71) and (72), the second terms on the right-hand sides in both equations represent
the influence of thermal effects on the volumetric flow rate. In the same equations, the expressions for〈

u(0)
i

〉
and

〈
u(0)

s

〉
are defined in Appendix A. Parameters k1–k10 are presented in Appendix C.

4. Results and Discussion

For estimating the values of the dimensionless parameters used in this work, we consider values
of physical and geometric parameters that are typical in EOFs, as shown in Table 1. Consequently, the
following values for the dimensionless parameters were used in the calculations: κ̄ = 40, γµ = 0.01,
Γa = 4.91, Γσ = 0.49, kr = 1.1, µr = 10, Rr = 2, Pe = 0.05 and kT = 0.0023.

In Figure 2a–d, dimensionless profiles for temperature, pressure, electric potential gradient and
pressure gradient as functions of the dimensionless axial coordinate χ and different values of kT
are shown. Figure 2a clearly shows that for increasing values of this parameter, the heat dissipation
through the microcapillary system is larger; hence, lower values of temperature are obtained. If high
values of heq are considered, which means that a very high cooling is present on the surface of the
capillary such that kT → ∞, it is possible to obtain the isothermal case, as represented by the dashed line,
i.e., θ̄ = 0. This behavior can be explained because the first term on the right-hand side of Equation (54)
determines the magnitude of the dimensionless temperature according to θ0 ∼ ᾱβi/2kT (1 + ξ).
From a physical perspective, the magnitude of the fluid temperature is modulated according to
Ti = Ts ∼ T0 + σ0E2

0R1/heqR2. Evidently, depending on the values of the parameters involved in the
aforementioned relationships, the magnitude of the fluid temperature will change.

Due to the dependencies of the viscosities of both fluids and the thermal conductivity of the
inner fluid on temperature, an induced pressure is generated along the microcapillary, as shown in
Figure 2b. That is to guarantee the mass conservation of the flow in the O(γµ) problem defined by
Equations (56)–(59), where temperature effects are taken into account. In the case of Figure 2b, when
kT = 0.00022 (a lower heat flux at the microchannel wall), the temperature effects are maximum,
generating more representative pressure values. Conversely, for kT → ∞ (a higher heat flux at the
microchannel wall), the pressure distribution disappears, which is consistent with the comment made
in the previous paragraph. Meanwhile, the electric field and pressure gradient distributions that are
necessary to solve the correction of the velocity profiles given in Equations (67)–(68) by temperature
effects are shown in Figure 2c,d. It is clear that in the case of kT → ∞, Joule heating effects are
minimized on the flow along the microcapillary, indicating that the pressure distribution is constant
and equal to zero. For the same conditions described previously, the electric field is constant, i.e.,
dφ̄/dχ = −1, recovering the case of an EOF where the physical properties are assumed to be constant.
In contrast, it can be appreciated that the variation of physical properties modifies the magnitude of
the electric field along the microcapillary in a slight manner. Here, note that the pressure gradient
has the same dependence on χ as the temperature field, which is in accordance with Equation (70),
i.e., dP̄/dχ ∼ θ̄.
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Table 1. Physical and geometrical parameters used for estimating the dimensionless parameters used
in the present analysis.

Parameter Value Units Definition

a <10−1 K−1 sensitivity constant for the consistency index
Bµ 1713 K sensitivity constant for the viscosity
Bσ ∼10−2 K−1 sensitivity constant for the electrical conductivity
E0 ∼104 V·m−1 external electric field
heq 100 W·m−2·K−1 equivalent heat transfer coefficient
ki 0.609 W·m−1·K−1 thermal conductivity of the inner fluid
ks 0.145 W·m−1·K−1 thermal conductivity of the surrounding fluid
kw 1.5 W·m−1·K−1 thermal conductivity of the microcapillary wall
L ∼10−3–10−2 m microcapillary length

m0 ∼10−3 N·m−2·sn consistency index evaluated at the reference temperature T0
n 0.5–2 power-law index

R1 50 µm radius of the inner fluid
R2 50 µm external radius of the surrounding fluid
T0 298 K reference temperature
αi 3.96 × 10−6 m2·s−1 thermal diffusivity of the inner fluid
αs 8.72 × 10−4 m2·s−1 thermal diffusivity of the surrounding fluid
ζ <−25 mV zeta potential
µ0 ∼10−3 N·m−2·s viscosity evaluated at the reference temperature T0
ε 7.08 × 10−10 C·m−1·V−1 dielectric permittivity
σ0 ∼10−2–10−1 S·m−1 electrical conductivity evaluated at the reference temperature T0

A consequence of the Joule heating effect is shown in Figure 3. It is evident that when the physical
properties are temperature dependent, the flow is no longer developed. In such a case, when the
dimensionless pressure gradient is positive, dP/dχ > 0, the velocity profiles are convex, whereas for
negative values, dP/dχ < 0, they are concave. For dP/dχ = 0, the plug-like electroosmotic velocity
profile is recovered. In fact, the dimensionless fluid velocity for the inner and surrounding fluids is
affected by the dimensionless pressure and electric gradients, together with the temperature field,
as shown in Equations (67) and (68). If the above variables are absent, then there are no corrections
to the velocity profiles by the temperature effects. In the same context, as shown in the same figure,
the velocity profiles of the surrounding fluid are only affected in a very weak manner by temperature
effects; however, we anticipate that this variable is more notably affected due to the viscosities of both
fluids, as will be shown in the following paragraphs.

Figure 4 shows the dimensionless velocity profiles of the flow, ūi and ūs, evaluated at an arbitrary
dimensionless coordinate χ = 0.5 as a function of the dimensionless transverse coordinates η for the
inner fluid and Z for the surrounding fluid. It is evident that the influence of temperature only affects
the inner fluid. The effect of the parameter kT is shown in Figure 4a. Increasing values of this parameter
indicate that the convected heat through the external surface of the capillary is larger, which minimizes
the Joule heating. Therefore, the variable effects in the physical properties due to temperature changes
are very weak, which is confirmed by the case of kT → ∞, yielding a uniform temperature through the
microcapillary. Therefore, no variations in the physical properties exist. Note that the velocity profiles
of the surrounding fluid are not affected by temperature changes obtained by the different values
of kT . Figure 4b shows the influence of the dimensionless parameter Γa, which relates the parameters a
and Bµ and measures the sensitivity of the consistency index of the non-Newtonian fluid and of the
viscosity of the Newtonian fluid to temperature variations. In the same context, in Figure 4c, the effect
of the parameter Γσ on the velocity profiles is plotted. In this case, this parameter is the ratio of the
sensitivity of the electrical conductivity to temperature variations. As observed, for decreasing values
of Γσ, the velocity gradient through the transversal section of the inner fluid is weaker compared with
increasing values of this parameter. The above allows us to identify that the electrical conductivity of
the inner fluid has a stronger effect on the flow field compared with that caused by its viscosity.
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Figure 2. Influence of the dimensionless parameter KT on the dimensionless (a) temperature, (b) pressure,
(c) electric field and (d) pressure gradient.
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Figure 3. (a) Dimensionless velocity profiles, evaluated at different values of the coordinate χ, and
(b) the corresponding pressure gradient along the microcapillary.
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Figure 4. Dimensionless velocity profiles for the inner and surrounding fluids as a function of the
dimensionless radial coordinates η and Z. (a) Effect of the parameter kT; (b) effect of the parameter Γa;
(c) effect of the parameter Γσ.

The effect of the viscosity ratio on the velocity profile is shown in Figure 5a for values
of µr = 4, 8, 10. Because of the complexity of the obtained velocity solutions, a simplified analysis can
be performed in the limit of n→ 1. As predicted by Equation (53), for fixed κ̄, R1 and R2, the velocity at
the interface between both fluids, at the leading order, varies according to ūi,s ∼ µ−1

r ; it is evident that
for increasing values of µr, the average velocity of the two fluids diminishes. In addition, in Figure 5a,
we have plotted the case when the inner fluid fills the capillary and is isothermal, i.e., R1 ≈ R2

(dashed-dotted line). In such a case, the classical Helmholtz–Smoluchowski velocity is recovered [3];
the above can be inferred from Equation (51), yielding ū(0)

i = 1− I0 (κ̄η) /I0 (κ̄). Besides, in this case,

the velocity of the surrounding fluid is zero (see Equation (52)), ū(0)
s = 0. Moreover, examination of

Figure 5b shows that the pressure profiles strongly depend on µr. As shown in this figure, greater
values of µr yield greater variations in the pressure field along the capillary, which in turn will modify
the flow field. For relatively low values, i.e., µr < 1, the induced pressure tends to disappear, yielding
a plug-like velocity profile in the inner fluid. Figure 5d shows the effect of the thermal conductivity
ratio of the inner fluid to the surrounding fluid; as shown, when kr → 0, a plug-like velocity profiles
is obtained. This result indicates that the thermal conductivity of the surrounding fluid is greater than
the thermal conductivity of the inner fluid, which causes the heat generated by Joule heating in the
inner fluid to dissipate more quickly to the microcapillary wall, thereby causing the physical properties
of the fluid to change slightly with temperature.

The influence of the viscosity ratio µr on the volumetric flow rate of the inner and surrounding
fluids is shown in Figure 5c. As shown, when the consistency index of the non-Newtonian fluid is
greater than the viscosity of the Newtonian fluid, the volumetric flow rate decreases for both fluids.
This result occurs because the conducting Newtonian fluid has to drag a more viscous fluid.
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Figure 5. Influence of the viscosity ratio on the dimensionless velocity profiles (a) and dimensionless
pressure (b). Volumetric flow rate as a function of the viscosity ratio (c) and the effect of the thermal
conductivity ratio between the surrounding and inner fluids on the dimensionless velocity profiles (d).

Figure 6a shows the dimensionless velocity profiles as a function of the dimensionless radial
coordinate for different values of the power-law index at an arbitrary axial position χ = 0.5. It is clear
that the inner conducting fluid drags the surrounding fluid, which has a non-Newtonian behavior.
In this sense, the coupling of two immiscible fluids in the EOF yields higher values of the dimensionless
velocity for pseudoplastic surrounding fluids than dilatant surrounding fluids due to the shear thinning
effects at the interface between both fluids for values of n < 1, where the flow rate is significantly
higher (Figure 6b).

Thus, for fluids with n < 1 (pseudoplastic effect of the surrounding fluid), the Joule heating
effect diminishes, as shown in Figure 6c, causing a decrease in the temperature in the microcapillary.
In addition, the influence of the power-law index on the induced pressure field is shown in Figure 6d;
depending on the assumed values of n, the pressure gradient significantly varies. Of course,
the behavior shown in this figure will cause convex or concave velocity profiles in the inner fluid.

In Figure 7a, velocity profiles as a function of the dimensionless transverse coordinates η and Z
are plotted, and the axial position is χ = 0.5 for different values of the parameter γµ, which reflects
the influence of variations of physical properties by temperature gradients. For γµ → 0, the plug-like
velocity profile is recovered. However, the Joule heating effect is more representative in the EOF
when γµ increases. In Figure 4b, for the same values of the parameter γµ, the induced pressure
distribution along the χ−coordinate is shown. It is clear that any variation of γµ yields a change in the
flow field. As shown, at χ = 0.5, for increasing values of γµ, larger pressure gradients are obtained,
which correspond to the velocity profiles in Figure 7a, where larger gradients in the velocity profiles
are observed.



Micromachines 2017, 8, 232 17 of 24

0 0.5 1 1.5 2

u
i,
s

0

5

10

15

η Z

(a)

n=0.6
n=0.8
n=0.95
n=1.2
n=1.5

n0.5 1 1.5 2

Q

0

2

4

6

8

10
Rr =1.5
KT=0.0015

(b)

Qi

Qs

χ
0 0.2 0.4 0.6 0.8 1

θ

0

0.2

0.4

0.6

0.8

1
(c)

n=0.6
n=0.8
n=0.95
n=1.2
n=1.5

χ

0 0.2 0.4 0.6 0.8 1

P

-1.5

-1

-0.5

0

0.5

1

1.5
(d)

n=0.6
n=0.8
n=0.95
n=1.2
n=1.5

Figure 6. Behavior of the electroosmotic flow with respect to the power-law index n: (a) dimensionless velocity
profiles, (b) dimensionless flow rate, (c) dimensionless temperature and (d) dimensionless pressure.

One aspect that should be observed is that the velocity profiles for the inner fluid (see Figures 3–7)
near the interface between both fluids resemble the typical Helmholtz–Smoluchowski velocity that
is present in a purely electroosmotic flow in microchannels. As can be seen, strong gradients appear
in the region where the electric double layer exists. The above can be explained by considering the
momentum equation for the inner fluid, Equation (19). In the case of κ̄ → ∞, the viscous term (second
order derivative) would be multiplied by 1/κ̄ and thus corresponds to a “singular perturbation” [18],
causing strong gradients of velocity.
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Figure 7. Behavior of the electroosmotic flow: (a) dimensionless velocity profile, evaluated at χ = 0.5,
and (b) dimensionless pressure along the microcapillary.
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The volumetric flow rate Q̄ as a function of the dimensionless parameters kT , κ̄ and Γσ is shown
in Figure 8a–c. It can be seen that the effect of the heat dissipated through the external surface of the
microcapillary, reflected in the parameter kT , affects to a greater extent the volumetric flow rate of the
inner fluid, Q̄i, in comparison with the flow rate of the surrounding fluid, Q̄s. In the same figure, for
kT → 0, the volumetric flow rate Q̄i is increased. An explanation of the above could be as follows: the
fluid temperature varies according to θ0 ∼ k−1

T , which in turn diminishes the viscosity of the fluids,
causing larger volumetric flow rates. In Figure 8b, the volumetric flow rates of the inner and of the
surrounding fluid are plotted as functions of the electrokinetic parameter κ̄. It should be noted that
Q̄ is a monotonically increasing function in terms of the electrokinetic parameter. It should be noted
that for κ̄ > 60, the volumetric flow rate Q̄s becomes greater than Q̄i, indicating that the inner fluid
has a great ability of dragging the surrounding fluid. Finally, the effect of the electric sensitivity to
temperature variations on the volumetric flow rate is shown in Figure 8c. This sensitivity is represented
in the parameter Γσ. As can be appreciated, for increasing values of Γσ, the inner fluid flow decreases
in a light manner, however originating a strong decrement in the surrounding fluid flow. From a
physical point of view, increasing values of Γσ mean that the inner fluid behaves as a weakly electrical
conductor and, accordingly, diminishing the electroosmotic force.
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Figure 8. Volumetric flow rates for the inner and surrounding fluids: (a) effect of the parameter kT ;
(b) effect of the parameter κ̄; (c) effect of the parameter Γσ.

5. Conclusions

In this work, we delineate the effects of considering temperature-dependent physical properties
due to Joule heating in an EOF in a microcapillary with two immiscible fluids. We have considered
an inner column of a conducting Newtonian liquid surrounded by an annular non-conducting liquid
with non-Newtonian behavior, whose rheological model follows a power-law. In this regard, we have
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shown that taking the Joule heating effect into account strongly affects the hydrodynamic and electric
fields; thus, considering this effect is very important for predicting characteristics in the non-isothermal
EO of immiscible fluids. In particular, the viscosity coefficients of both fluids and the electrical
conductivity of the conducting fluid were assumed to be temperature dependent. From the principal
obtained results, we showed that the volumetric flow through the microcapillary depends on several
dimensionless parameters: the competition between the consistency index, µr, of the non-Newtonian
fluid to the viscosity of the Newtonian fluid, the power-law index n, the equivalent Biot number kT and
the thermal conductivity ratio kr of both fluids, with µr, n and κ̄ being the most significant parameters
that greatly affect the volumetric flow rate. Moreover, when a high dissipation of heat through the
external surface of the microcapillary is assumed, the isothermal case is recovered.

Future work concerns the improvement of the present analysis by considering that the interface
between both fluids is nonuniform; in addition, another possibility to be studied is the analysis of the
associated hydrodynamic stability caused by thermal effects.
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Appendix A

To determine the temperature fields for both fluids and considering that the temperature variations
in the radial direction are very small, we can assume that, to a first approximation, θi,0 ≈ θs,0 ≡ θ0;
the above allows averaging the energy equations, Equations (39) and (40), in the radial direction.
Therefore, we obtain the following equations:

d2θ0

dχ2 − S1
dθ0

dχ
+ S2

∂θi
∂η

∣∣∣∣
η=1

= −S3 (A1)

and:
d2θ0

dχ2 − A1
dθ0

dχ
− A2θ0 − A3

∂θi
∂η

∣∣∣∣
η=1

= 0, (A2)

where S1 = Pei 〈ūi,0〉 /βi, S2 = 2/β2
i , S3 = 1/βi, A1 = Pes 〈ūs,0〉 /βs, A2 = 2kT(ξ + 1)/β2

s(1 + Rr)

and A3 = 2krξ/β2
s(1 + Rr). Equations (A1) and (A2) must be solved simultaneously for θ and the

temperature gradient ∂θi/∂η|η=1. Defining the operator D = d/dχ, the above equations can be
rewritten as: (

D2 − S1D
)

θ0 + S2
∂θi
∂η

∣∣∣∣
η=1

= −S3 (A3)

and: (
D2 − A1D− A2

)
θ0 − A3

∂θi
∂η

∣∣∣∣
η=1

= 0. (A4)

Eliminating ∂θi/∂η|η=1 from Equations (A3) and (A4) yields:[
(A3 + S2) D2 − (A3S1 + A1S2) D− A2S2

]
θ0 = −A3S3, (A5)
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which is a non-homogeneous differential equation. By solving Equation (A5) and applying the
boundary conditions θ0 (χ = 0, 1) = 0, it can easily be shown that the temperature distribution in the
microcapillary becomes:

θ0 =
ᾱβi

2kT (1 + ξ)

{
1− exp (m2χ) [1− exp (m1)]− exp (m1χ) [1− exp (m2)]

exp (m2)− exp (m1)

}
, (A6)

where:

m1 =
F2 +

(
F2

2 + 4F1F3
)1/2

2F1
and m2 =

F2 −
(

F2
2 + 4F1F3

)1/2

2F1
,

and:
F1 = A3 + S2, F2 = A3S1 + A1S2, F3 = A2S2 and F4 = A3S3.

Note that λ can easily be determined by substituting θ0 into Equation (A3) or Equation (A4).
For simplicity, it is not necessary to show its definition. In addition, the average velocities 〈ūi,0〉
and 〈ūs,0〉 are determined using Equations (34)–(36), (49) and (50), obtaining:

〈ūi,0〉 =
[

1− 2
κ̄

I1 (κ̄)

I0 (κ̄)

]
+

δN

ξ (1− N)

[
(1 + ξ)1−N − 1

]
(A7)

and:

〈ūs,0〉 =
(

2
1 + Rr

)(
δN

1− N

)(1 + ξ)1−N
(

2 + ξ

2ξ

)
−

1− (ξ)−N (1 + ξ)2
(

1+ξ
ξ

)−N

ξ2 (N − 2)
− k4

 . (A8)

The above expressions for 〈ūi,0〉 and 〈ūs,0〉 represent the volumetric flow rate at zeroth order, i.e.,
when the physical properties are assumed to be constant.

Appendix B

The expressions for C1–C4 presented in Section 3.2 are the following:

C1 =
δN−1

2αξ (n− 1)

[
1− 1

(1 + ξ)N−1

]

−NΛ

2nδN−1 +
[
(n− 1) ξ2 + 2 (n− 1) ξ − 2n

] (
δ

1+ξ

)N−1

(6n2 − 8n + 2) ξ2

 ,

C2 =
δN

ξ (1− N)

{
2 (1 + ξ)1−N − Γα

n
− 2
}

+
2κ̄1δN−1

αξ (n− 1)
I1 (κ̄1)

I0 (κ̄1)
Γµ

[
1 +

1

(1 + ξ)N−1

]
+ Γα

(ξ + 1)1−N δN

ξ (n− 1)
,

C3 =
C2

C1
F0

{
1 +

1
exp (m2)− exp (m1)

{
[1− exp (m1)] [1− exp (m2)]

m2

+
[1− exp (m2)] [exp (m1)− 1]

m1

}}
,

C4 =
C2

C1

F0

exp (m2)− exp (m1)

[
1− exp (m2)

m1
− 1− exp (m1)

m2

]
.
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Appendix C

The expressions for k1–k10 shown in Section 3.3 are given by the following relationships:

k1 =
δN−1

2αξ (n− 1)

[
1

(1 + ξ)N−1 − 1

]

− ΛδN−1

(6n2 − 8n + 2) ξ2

[
2 +

[
(n− 1) ξ2 + 2 (n− 1) ξ − 2n

]
n (1 + ξ)N−1

]
,

k2 =

{
1
2

δNΓαN
ξ (1− N)

[
(1 + ξ)1−N − 1

]
−
[

1
κ

I1(κ)

I0 (κ)
− 1

2

]}
,

k3 =

{
I1(κ̄)

I0 (κ̄)

[
κ̄2δN−1

αξ (n− 1)

(
1

(1 + ξ)N−1 − 1

)
− 1

]
+

κ̄

2

}
,

k4 =
1 +

[
(3− 2N) (ξ)2−N + (2− N) (ξ)3−N − N (ξ)1−N − (ξ)−N

] (
ξ+1

ξ

)−N

(N − 2) (N − 3) ξ2 ,

k5 =

Γα

{[
(n− 1) ξ3 + (3n− 3) ξ2 − 2ξ − 2n

] (
δ

ξ+1

)N
+ 2nδN

}
(6n2 − 8n + 2) ξ2 ,

k6 = k8

[
−8

3
δNn2

(
−5

4
ξn +

1
4

ξ + Λα

)
+ (ξ + 1)

(
δ

ξ + 1

)N
k9

]
,

k7 =
I1 (κ)

I0 (κ)
κ

[
(n− 1) ξ3 + (3n− 3) ξ2 − 2ξ − 2n

] (
δ

ξ+1

)N
+ 2nδN

δαξ2 (n− 1) (3n− 1)
,

k8 =
3N

4αδξ3 (15n2 − 8n + 1) (n− 1)
,

k9 =
5
3

ξn3
(

ξ2 + 2ξ − 2
)
+ k10n2 +

1
3

Λξ2α (ξ + 2)2

−4
3

ξn (ξ + 2)
[

αΛ
(

ξ2 + 2ξ − 1
)
− 1

4
ξ

]
,

(A9)

k10 = αΛ
(

ξ4 + 4ξ3 +
8
3

ξ2 − 8
3

ξ +
8
3

)
− 2ξ3 − 4ξ2 +

2
3

ξ, (A10)

Nomenclature

Symbol definition

a sensitivity constant for the consistency index, K−1

Bµ sensitivity constant for the viscosity, K
Bσ sensitivity constant for the electrical conductivity, K−1

Cp specific heat, J·kg−1·K−1

e electron charge, C
E0 external electric field, V·m−1

Ez electric field along the microcapillary, V·m−1

h∞ external convective heat transfer coefficient, W·m−2·K
heq equivalent heat transfer coefficient, W·m−2·K
k thermal conductivity, W·m−1·K−1

kB Boltzmann constant, J·K−1

kr dimensionless ratio of thermal conductivities, kr = ki/ks
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kT equivalent Biot number, kT = heqt/ks

L microcapillary length, m
m flow consistency index, Pa·sn

n power-law index
n∞ bulk concentration of ions, m−3

p pressure, kg·m−1·s −2

p̄ dimensionless pressure
Pe Péclet number
r, z radial and axial coordinates
R1 radius of the inner fluid, m
R2 external radius of the surrounding fluid, m
R3 external radius of the microcapillary wall, m
Rr ratio of radii, Rr = R2/R1

t thickness of the surrounding liquid, t = R2 − R1, m
tw thickness of the microcapillary wall, tw = R3 − R2, m
T temperature, K
Q volumetric flow rate, m3·s−1

Q̄ dimensionless volumetric flow rate
ū dimensionless axial velocity
〈ū〉 average dimensionless velocity
uc Helmholtz-Smoluchowski velocity, m·s−1

v̄ dimensionless velocity component in radial direction
vr velocity component in radial direction, m·s−1

vz fluid axial velocity, m·s−1

z valence

Greek Letters

α thermal diffusivity, m2·s−1; parameter, α = µrun−1
c R1/tn

ᾱ conjugate heat transfer parameter, ᾱ = (ki/ks)(R2 − R1)/R1

µr dimensionless parameter, µr = m0/µ0

βi dimensionless parameter, βi = R1/L
βs dimensionless parameter, βs = t/L
γa dimensionless parameter, γa = a4Tc

γµ dimensionless parameter, γµ = Bµ4Tc/T2
0

γσ dimensionless parameter, γσ = Bσ4Tc

γT surface tension, N·m−1

δ dimensionless parameter, δ = 2κ̄ I1(κ̄)/αI0(κ̄)

Γa parameter, Γa = aT2
0 /Bµ

Γσ parameter, Γσ = BσT
2

0 /Bµ

ε dielectric permittivity, C·V−1·m−1

ζ zeta potential, V
Z dimensionless radial coordinate referred to the surrounding fluid
η dimensionless radial coordinate referred to the inner fluid
θ dimensionless temperature
κ inverse Debye length, m−1

κ−1 Debye length, m
κ̄ dimensionless parameter, κ̄ = κR1

λ dimensionless temperature gradient, λ = (∂θi/∂η)|η=1
Λ dimensionless parameter, Λ = tn+1u1−n

c /R2
1µr
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µ viscosity of the conducting fluid, kg m−1 s−1

ξ dimensionless parameter, ξ = t/R1

ρ density, kg·m−3

ρe net charge density, C·m−3

σ electrical conductivity, S·m−1

σs surface charge density at the interface, C·m−2

τrz shear stress, N·m−2

φ external electric potential, V
φ̄ dimensionless external electric potential
χ dimensionless axial coordinate
ψ electric potential within the Debye length, V

Subscripts

c characteristic
i inner fluid
s surrounding fluid
w wall

Superscripts

(0) leading order
(1) first order
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