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Abstract: The collimation of free-space light propagating in-plane with respect to the substrate
is an important performance factor in optical microelectromechanical systems (MEMS). This is
usually carried out by integrating micro lenses into the system, which increases the cost of
fabrication/assembly in addition to limiting the wavelength working range of the system imposed by
the dispersion characteristic of the lenses. In this work we demonstrate optical fiber light collimation
using a silicon micromachined three-dimensional curved mirror. Sensitivity to micromachining and
fiber alignment tolerance is shown to be low enough by restricting the ratio between the mirror
focal length and the optical beam Rayleigh range below 5. The three-dimensional curvature of
the mirror is designed to be astigmatic and controlled by a process combining deep, reactive ion
etching and isotropic etching of silicon. The effect of the micromachining surface roughness on
the collimated beam profile is investigated using a Fourier optics approach for different values
of root-mean-squared (RMS) roughness and correlation length. The isotropic etching step of the
structure is characterized and optimized for the optical-grade surface requirement. The experimental
optical results show a beam-waist ratio of about 4.25 and a corresponding 12-dB improvement in
diffraction loss, in good agreement with theory. This type of micromirror can be monolithically
integrated into lensless microoptoelectromechanical systems (MOEMS), improving their performance
in many different applications.

Keywords: curved micromirrors; three-dimensional fabrication; Gaussian beams; surface roughness

1. Introduction

Optical microelectromechanical systems (MEMS) technology has attracted great attention over
the past couple of decades because of its reduced size, light weight and low cost [1]. There are two
main architectures in the optical MEMS, namely in-plane architecture [2], where the light propagates
from one component to another parallel to the substrate, and out-of-plane architecture [3], where the
light hits the optical component either perpendicular to or with inclination on the substrate. For many
applications, such as in optical telecommunication [1], optical coherence tomography [4] and on-chip
sensing [5], the light source is connected to the optical MEMS device through a single-mode optical
fiber, where the optical beam output from the fiber behaves as a Gaussian beam [2]. In this case, the
propagation can be associated with beam size expansion before detection, leading to optical losses.
This is even more serious in optical MEMS due to the size limit of the optical components [6,7]. Several
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solutions were introduced as shown in Figure 1 to overcome this challenge, such as the use of a lensed
fiber [4] or an external lens integrated into the system in the form of a graded-index (GRIN) lens or a
ball lens [6–11]. The lensed fiber solution is costly due to the piece-by-piece process of lens formation
on the fibers, in addition to the reliability issue to possible fiber tip breakage. The external lens solution
suffers from the cost and complexity of the assembly. In addition, refractive lenses have chromatic
aberration and require anti-reflective coating to eliminate the reflection. The aberration and the coating
both lead to limited working wavelength range.
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Figure 1. Optical beam propagation for the different architectures of (a) a cleaved fiber; (b) an integrated
lens fiber; (c) an external lens; and (d) the proposed solution in this work.

Reflecting curved micromirrors are achromatic and can provide much a wider spectral response,
but they need special attention during fabrication to obtain the curved surface. The common non-planar
micro surfaces fabrication techniques are gray-tone mask [12], excimer laser [13], Reactive Ion Etching
(RIE) lag effect [14] and photo resist (PR) reflow [15,16]. On one hand, non-silicon curved micromirrors
were reported using a polymer dispensing and sucking technique [17], residual internal material stress
resulting from deposition of gold on polysilicon for the purpose of light focusing [18], trapping of
gas bubbles during melting a stack of small borosilicate glass tubes under a nitrogen atmosphere and
further grinding and polishing for atomic studies [19] and deep silicon etching and PR reflow targeting
optical interconnects [20]. On the other hand, silicon curved micromirrors fabricated on the wafer
top surface were reported using isotropic chemical etching for the sake of optical detection of single
atom [21], selective polishing method on the top of MEMS tunable vertical-cavity surface-emitting
laser [22] and ion beam irradiation and electrochemical etching for atomic studies as well as optical
interconnects [23]. The principal axis of the aforementioned micromirrors is oriented out-of-plane
with the respect to the wafer substrate. This rendered the micromirror incompatible with silicon
micro-optical bench systems where the light is propagating in-plane with respect to the substrate.
Three-dimensional (3-D) micro optical bench systems requiring further assembly or mounting steps
after fabrication were introduced in the literature. The most common is to use rotational assembly
to create micro-optical subsystems that process free-space beams travelling above the surface of the
chip [24]. Non-monolithically integrated mechanical mounting systems for connecting and aligning
optical components on a micro optical bench (OB) were also reported [25,26]. This is, however,
not compatible with the monolithic integration efforts for the microoptoelectromechanical systems
(MOEMS) [27–30].

In this work, we demonstrate optical beam collimation and propagation loss reduction using
a monolithic micromachined curved mirror with an in-plane principal axis, which is compatible
with silicon micro-optical bench technology [31]. The paper is organized in the following manner.
In Section 2, a theoretical study is carried out for the possibility of Gaussian beam collimation using
curved surfaces exhibiting microscale focal lengths, i.e., not so large compared with the incident
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Gaussian beam Rayleigh range. The design of astigmatic micromirror curvatures is related to incidence
angle of the incident Gaussian beam in order to generate a stigmatic collimated beam. The effect of
the surface roughness of the micromirror is analyzed in Section 3. Then, the fabrication steps of the
micromirror and the resulting structure are presented in Section 4. Finally, optical measurements are
presented and discussed in Section 5 using the introduced curved micromirror for single-mode fiber
output collimation and propagation loss reduction where the fiber axis lies in-plane with the substrate.

2. Theoretical Analysis of Optical Beam Collimation

Consider the incidence of a Gaussian beam on a curved micromirror as shown in Figure 2.
The parameters of the reflected beam are related to the incident beam by:

Gc =
wout

win
=

1√
(1− din/ f )2 + z2

o/ f 2
(1)

dout

f
=

z2
o/ f 2 − din/ f (1− din/ f )

(1− din/ f )2 + z2
o/ f 2

(2)

where win and wout are the min waist radii for the incident and reflected beams, respectively, din and
dout are the distances between the beam waist location and the mirror surface at the point of incidence
for the incident and reflected beams, respectively, f is the focal length of the mirror and zo is the
Rayleigh range of the incident beam. The beam-waist ratio wout/win is denoted by Gc and represents
the collimation gain. The dependences of the beam-waist ratio and the ratio dout/f on the ratio din/f
for different ratios of f /zo are shown in Figure 3. The beam-waist ratio has a maximum value occurring
when the input distance and the focal length are equal. The maximum beam-waist ratio is given by:

Gc =
f

zo
(3)

The variation of the beam-waist ratio around din/f = 1 is symmetric. The variation of the ratio
dout/f possess odd symmetry around the point (din/f = 1, dout/f = 1). The output beam waist location
doesn’t change with the input beam Rayleigh range when the input beam waist is located at the focus
of the mirror. Negative values of dout/f are obtained when din/f < 1, which means the output beam
waist is located virtually behind the mirror and the beam is diverging after reflection. The opposite
case occurs when din/f >1 and the beam is reflected in a converging state. The output beam waist may
have its waist located just at the mirror surface for a single value of din/f when zo/f = 2 and for two
value of din/f when zo/f = 0.5; one time for a very small value of din/f and the second time for a din/f
that is slightly smaller than unity.
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The microfabrication process tolerance may result in a variation of the curved micromirror radius
of curvature, which affects the obtainable beam’s beam-waist ratio. The impact depends on the gain
sensitivity to the curved surface focal length. The corresponding change is determined by:

∆Gc = ∆ f
f

din/ f (1−din/ f )+(zo/ f )2

[(1−din/ f )2+(zo/ f )2]
3/2

= ∆ f
f

(
zo
f

)−1
, din/ f ≈ 1

(4)

For a given percentage change in the focal length, the gain sensitivity becomes very high when
the ratio zo/f is very small. As depicted in Figure 4a, the beam-waist ratio is less sensitive to the
focal length variation when zo/f is larger than 0.2. The output beam waist location is, however, very
sensitive to the variations as shown in Figure 4b. In the case of zo/f > 0.2, the fabrication tolerance
impact on the output beam waist location can be compensated by active axial alignment.
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The inclined incidence of the beam on the mirror in a tangential plane, while being normal to the
sagittal plane, has the effect of splitting the focal length as well as the input ratio din/f of the mirror
each into two different values:

fip = 0.5Rip cos(θinc) (5)

fop = 0.5Rop/ cos(θinc) (6)(
din
f

)
ip
=

2din
Rip cos(θinc)

(7)
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(
din
f

)
op

=
2din cos(θinc)

Rop
(8)

where the subscripts “ip” and “op” are used for the in-plane and out-of-plane directions, respectively,
and R is the radius of curvature of the mirror in the indicated plane. The inclined incidence has
the effect of effectively increasing the out-of-plane focal length of the curved surface while at the
same time decreasing its in-plane focal length, and therefore, a stigmatic inclined curved surface
should have non-equal radii of curvature in the two orthogonal planes. As will be shown in the
fabrication section, the out-of-plane plane radius of curvature can be limited to 100 µm. Fortunately,
increasing angle of incidence compensates for this limit. For instance, focal length matching occurs
at incidence angles θinc = 0◦, 45◦ and 60◦ for Rop/Rip = 1, 0.5 and 0.25 respectively. Away from
the stigmatic beam generation angle, the reflected beam exhibits an elliptical cross section as well
different beam waist location in the two orthogonal planes. This can be of particular interest in beam
shaping/matching applications.

3. Effect of Surface Roughness

The effect of the surface roughness expected from the micromachining of the 3-D curved surface
on the collimated optical beam profile is investigated in this section. For this purpose, the overall phase
transformation of the 3-D mirror is divided into the phase curvature responsible for the collimation of
the beam, which is already considered in Section 2, and a random phase due to the surface roughness.
The phase curvature corresponding to the curvature of the mirror surface is given by:

φ =
2π

λ

x2 + y2

2 f
(9)

where f is the equivalent focal length of the mirror. The random phase is given by:

φn =
2π

λ
zn (10)

where zn = f(x,y) is the random height variation of the surface due to the surface roughness. In our
analysis, f(x,y) is assumed a random rough surface that has a Gaussian height distribution function
and Gaussian autocovariance functions (in both x- and y-direction). The surface is assumed to have an
RMS height σrms and assumed to be isotropic in the sense that the correlation length Lc in the x- and
y-direction are assumed equal.

The simulation procedure is carried out using the Fourier optics approach as follows [32]. The field
at the mirror surface, denoted by Ein(x,y,din), is multiplied by the phase transformation function and
the new output field is denoted by Eo(x,y,din) :

Eo(x, y, din) = Ei(x, y, din) exp(−jφn − jφ) (11)

A fast Fourier transform (FFT) is applied to get this output field in the spatial frequency domain:

Go( fx, fy, din) = FFT{Eo(x, y, din)} (12)

The field is propagated a distance dout by phase multiplication in the spatial frequency domain:

Go( fx, fy, dout) = Go( fx, fy, din) exp(−jkzdout) (13)

where kz is the axial components of the wave vector. Finally, the output field profile after propagating
the distance dout is obtained by inverse Fourier transform:

Eo(x, y, dout) = IFFT
{

Go( fx, fy, dout)
}

(14)
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A simulation study was carried out to analyze the effect of the surface roughness of the etched
mirror on the collimated beam. The effect is evaluated by calculating the coupling efficiency (overlap
integral) between the resulting and the ideal beam. The radius of curvature of the mirror in the in-plane
direction is assumed 300 µm, while the out-of-plane radius of curvature is 150 µm, similar to the value
obtained practically as will be shown in the next section. The incident beam has a minimum waist
radius of 5 µm, a wavelength of 1550 nm and located at the focal plane of the mirror in a 45-degree
incidence orientation. The RMS roughness σrms is assumed in the range of 0 to λ/10. Three values of
the correlation were assumed: 5λ, 10λ and 20λ.

The resulting coupling efficiency is depicted in Figure 5a. Since the roughness generation is a
stochastic process, the simulation was repeated 20 times for each point and the average was taken.
The coupling efficiency decreases with the increase of the RMS value of the roughness, as expected.
It reaches about 75% for the case of Lc = 10λ and σrms = λ/10. If we would like to maintain at least
95% of the coupling efficiency, then σrms should be less than 0.04λ, 0.06λ and 0.1λ for Lc = 5λ, 10λ

and Lc = 20λ, respectively. Example resulting beam profiles for the case of σrms = 0.1λ are shown
in Figure 5b. The x-axis is normalized to the waist of the resulting beam profile in case of The loss
in efficiency is resulting from the asymmetry in the beam profile in addition to the widening of the
profiles out of the ±4w limit due to the surface roughness.
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4. Silicon Micromirror Fabrication

The optical axis of the target 3-D curved micromirror lies in-plane with respect to the wafer
substrate to collimate the optical beam generated from single-mode optical fibers located horizontally
on the wafer substrate or any other light source integrated in the system. It enables the use of the
fiber-mirror configuration to replace the lensed fiber as previously shown in Figure 1d. The fabrication
of the micromirror was carried out into six main steps [33]. First the definition of the in-plane profile of
the micromirror with a 300-µm radius of curvature was performed using standard photolithography
(see top view in Figure 6a). The lithographic process ends with a patterned SiO2 mask layer for the
following etching. Second, anisotropic deep reactive ion etching of the silicon was carried out, ending
with a deeply etched cylindrical surface as shown in Figure 6b [34]. By this anisotropic etching step,
the central line of the out-of-plane curvature (principal axis) is defined. The axis depth with respect to
the wafer top surface was chosen to be large enough that optical fiber can be inserted and aligned with
micromirror. Then, side wall protection was carried out using a Teflon-like layer to prevent sidewall
etching from top and ensure the following isotropic etching starts at the mirror principal axis as shown
in Figure 6c. The protection step was followed by a long isotropic etching step using SF6 plasma to
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achieve the desired out-of-plane profile of the micromirror as shown in Figure 6d, in a similar way
to that used to fabricate micro fluidic channels reported in [35]. The out-of-plane radius of curvature
of the micromirror surface is about 150 µm. Achieving larger radii of curvatures requires deeper
etching, which may result in a fragile wafer. The protective layer was removed in the fifth step as
shown in Figure 6e using a high-temperature oxygen plasma ashing process. As will be shown below,
the resulting surface roughness was about 22 nm RMS. Therefore, the surface was post-processed for
optical quality requirement by smoothing and Aluminum metallization as shown in Figure 6f. Top
and tilted views of the fabricated micromirror after step 5 are shown in Figure 7a,b, recorded using a
scanning electron microscope (SEM).

Micromachines 2017, 8, 134  7 of 13 

 

and Aluminum metallization as shown in Figure 6f. Top and tilted views of the fabricated micromirror 
after step 5 are shown in Figure 7a,b, recorded using a scanning electron microscope (SEM).  

 
Figure 6. The fabrication steps of the collimating 3-D curved micromirror. (a) Photolithography,  
(b) deep reactive ion etching, (c) sidewall passivation, (d) isotropic etching, (e) passivation removal, 
and (f) metallization. 

 
Figure 7. Scanning electron microscope (SEM) images of the fabricated micromirror. (a) Top view 
where the in-plane curvature is emphasized; (b) tilted view where the out-of-plane curvature is 
emphasized. 

More than one effect was encountered regarding the isotropic etching of silicon using SF6. First, 
a significant dependence of the etch rate on the trench width was observed, as shown in Figure 8. 
The etch rate is normalized with respect to the etch rate of the largest trench width. The data markers 
represent the measured normalized data while the solid line is a logarithmic fitting. This kind of 
logarithmic behavior is well-known for a diffusion-limited etching process [14]. The etch rate for a 10 
μm trench width is about one fifth the rate for a 500 μm trench width. The second observation is the 

Figure 6. The fabrication steps of the collimating 3-D curved micromirror. (a) Photolithography,
(b) deep reactive ion etching, (c) sidewall passivation, (d) isotropic etching, (e) passivation removal,
and (f) metallization.

Micromachines 2017, 8, 134  7 of 13 

 

and Aluminum metallization as shown in Figure 6f. Top and tilted views of the fabricated micromirror 
after step 5 are shown in Figure 7a,b, recorded using a scanning electron microscope (SEM).  

 
Figure 6. The fabrication steps of the collimating 3-D curved micromirror. (a) Photolithography,  
(b) deep reactive ion etching, (c) sidewall passivation, (d) isotropic etching, (e) passivation removal, 
and (f) metallization. 

 
Figure 7. Scanning electron microscope (SEM) images of the fabricated micromirror. (a) Top view 
where the in-plane curvature is emphasized; (b) tilted view where the out-of-plane curvature is 
emphasized. 

More than one effect was encountered regarding the isotropic etching of silicon using SF6. First, 
a significant dependence of the etch rate on the trench width was observed, as shown in Figure 8. 
The etch rate is normalized with respect to the etch rate of the largest trench width. The data markers 
represent the measured normalized data while the solid line is a logarithmic fitting. This kind of 
logarithmic behavior is well-known for a diffusion-limited etching process [14]. The etch rate for a 10 
μm trench width is about one fifth the rate for a 500 μm trench width. The second observation is the 

Figure 7. Scanning electron microscope (SEM) images of the fabricated micromirror. (a) Top view where
the in-plane curvature is emphasized; (b) tilted view where the out-of-plane curvature is emphasized.



Micromachines 2017, 8, 134 8 of 13

More than one effect was encountered regarding the isotropic etching of silicon using SF6. First,
a significant dependence of the etch rate on the trench width was observed, as shown in Figure 8.
The etch rate is normalized with respect to the etch rate of the largest trench width. The data markers
represent the measured normalized data while the solid line is a logarithmic fitting. This kind of
logarithmic behavior is well-known for a diffusion-limited etching process [14]. The etch rate for a
10 µm trench width is about one fifth the rate for a 500 µm trench width. The second observation is the
correlation between the mask opening width and the isotropic etching roughness as shown in Figure 9.
The smaller the mask opening is, the higher the roughness. Considerable roughness can be observed
in the smallest opening by inspecting the SEM images with the naked eye, while the roughness in the
largest opening is much less, but still observable. The atomic force microscope (AFM) was used in
order to get a quantitative measurement for the roughness of the largest opening. The top and 3-D
tilted views of the surface topology, obtained using the AFM on an area of 10 µm by 10 µm, are shown
in Figure 10a,b respectively. The measured roughness has a peak of 319 nm, an average of 16 nm and
an RMS 22 nm. The lag effect as well as the surface roughness of the isotropic etching roughness can
be interpreted knowing that a diffusion process governs the transport of the etching radicals from
the plasma, where it is created, to the substrate, where chemical etching occurs. Due to this diffusion
process, a lower amount of etchants is received in thinner trenches. This directly relates to the lag
effect. At the same time, when the amount of etchants is not enough, a rough surface results from the
etching process because the surface is not overwhelmed by the etchants.
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Figure 10. The isotropic etching roughness measured in a 500 µm trench using the atomic force
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5. Measurement Results and Discussion

In this section, the manufactured 3-D curved micromirror is utilized for collimating the output
beam of single-mode fibers and propagation loss reduction thereof. Consider the arrangement shown
in Figure 11.
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Figure 11. Measurement setup of the reflected beam from the fabricated mirror.

A single-mode optical fiber is inserted on the silicon substrate such that its optical axis is parallel
to the silicon substrate and tilted with respect to the mirror principal axis. For the sake of optical
spot characterization, the reflected beam is captured in the far field on a scanning-slit beam profiler.
The observed beam ellipticity, defined by the ratio of the spot size in the in-plane direction to the
out-of-plane direction, is adjusted to be close to unity (about 1.05) by letting the incidence angle of
the beam on the mirror be about 45◦. The axial distance between the optical fiber and the mirror was
adjusted such that the fiber tip is located at the micromirror focal plane by minimizing the observed
output beam diameter at the far field. The collimated output beam spot diameter was measured at
different locations away from the micromirror and compared to the measurements of the optical fiber
output beam without using the micromirror.

In the case of using a standard single-mode fiber with a core radius of 4.5 µm fed from 1550 nm
laser source, a reduction in the divergence angle of the beam by a factor of 2 was achieved by the
micromirror. The output beam has a minimum waist radius of about 10 µm, which is a typical value
for many optical MEMS applications. A typical captured beam profile at one location d is shown in
Figure 12a. The profile was fitted to a Gaussian profile with average root mean square errors smaller
than 1% and 1.5% in the x- and y- directions respectively as shown in Figure 12b,c. This is an indication
of the good performance offered by the fabricated micromirror, using the presented method, in terms
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of its phase front transformation function. This experiment was repeated with a special single-mode
fiber with a core radius of 2 µm working at a 675 nm wavelength. The special fiber is positioned at the
same location used for the standard one because of the constant focal length of the mirror independent
of the wavelength value. A reduction in the divergence angle of the beam by a factor of 4.25 was
achieved. The resulting output beam has a minimum waist radius of about 10 µm as well. This visible
beam will be used hereinafter for evaluating the propagation loss reduction offered by the micromirror.
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The collimation of the beam by the micromirror was also evaluated by measuring the detected
power in free space with a limited-aperture detector as shown in Figure 13.
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Theoretically, the transmitted power in terms of the system aperture radius a and the beam spot
radius at the detector is given by [36]:

P = 1− exp
(
−2

a2

w2

)
(15)

The power collected by a detector with 3.5 mm aperture radius is shown in Figure 14a. The power
was measured at different distance d in the far field away from the beam waist. The measurements
were carried out one time for the collimated beam by the micromirror, denoted by Pc, and another
time for beam originally emitted by the single-mode fiber, denoted by Po. The experimental data are
depicted using markers while the theoretical data are depicted using lines. The power is normalized
with respect to the initially maximum power. The measured power clearly starts to fall when the beam
diameter starts to exceed the detector aperture as given by Equation (9). The micromirror significantly
reduces the propagation losses with respect to the original fiber output. The detected power from the
micromirror has a slower roll-off and drops to half its maximum value 25 cm far from the micromirror
compared to less than 8 cm without using the micromirror. The ratio between the two detected powers
is depicted in Figure 14b, where the improvement reaches about 11–12 dB. Indeed, in the far field, the
ratio between the detected powers is given by:
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Gp =
Pc

Po
=

1− exp
(
−2 a2

θ2
div−cd2

)
1− exp

(
−2 a2

θ2
div−od2

) (16)

where the beam spot radius in the far field was replaced by wd/zo = d/θdiv. The maximum improvement
is achieved when the spot radius becomes much larger than the detector aperture. In this case, Taylor
expansion of the exponential terms can be applied to second order and Equation (16) becomes:

Gp−max =
θ2

div−c

θ2
div−o

= G2
c (17)

The maximum power gain due to the usage of the collimating mirror is given by the beam-waist
ratio squared. For the fabricated micromirror and using the single-mode fiber at 675 nm, the power
gain is Gp = (4.25)2 = 18 that is about 12.5 dB, in good agreement with the measured data. This value
is independent of the specific sizes of the beam spot and the detector aperture, as long as significant
truncation loss is encountered.
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The maximum power gain due to the usage of the collimating mirror is given by the beam-waist 
ratio squared. For the fabricated micromirror and using the single-mode fiber at 675 nm, the power 
gain is Gp = (4.25)2 = 18 that is about 12.5 dB, in good agreement with the measured data. This value is 
independent of the specific sizes of the beam spot and the detector aperture, as long as significant 
truncation loss is encountered. 

6. Conclusions 

Optical beam collimation was analyzed and successfully carried out using a micro-reflector 
with a three-dimensional curved surface. The surface was etched in silicon by a technique combining 
deep reactive ion etching and isotropic etching technologies. The produced surface is astigmatic 
with an out-of-plane radius of curvature that is about half the in-plane radius of curvature. Having 
the incident beam in-plane and inclined by 45° with respect to the principal axis, the reflected beam 
is kept stigmatic with about a 4.25-fold reduction in the beam expansion angle in free space and 
about 12-dB reduction in propagation losses. The fibre–mirror configuration may serve as a potential 
replacement for the lensed fibers widely used in the MOEMS system. This replacement has the 
advantage of producing monolithically integrated systems with a wider-band spectral response. 
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6. Conclusions

Optical beam collimation was analyzed and successfully carried out using a micro-reflector with
a three-dimensional curved surface. The surface was etched in silicon by a technique combining
deep reactive ion etching and isotropic etching technologies. The produced surface is astigmatic with
an out-of-plane radius of curvature that is about half the in-plane radius of curvature. Having the
incident beam in-plane and inclined by 45◦ with respect to the principal axis, the reflected beam is kept
stigmatic with about a 4.25-fold reduction in the beam expansion angle in free space and about 12-dB
reduction in propagation losses. The fibre–mirror configuration may serve as a potential replacement
for the lensed fibers widely used in the MOEMS system. This replacement has the advantage of
producing monolithically integrated systems with a wider-band spectral response.
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Abbreviations

The following abbreviations are used in this manuscript:

RMS Root mean square
MOEMS Micro-opto-electro-mechanical systems
RIE Reactive ion etching
PR Photo resist
3-D Three-dimensional
OB Optical bench
SEM Scanning electron microscope
AFM Atomic force microscope
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