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Abstract: Wearable technology has attracted significant public attention and has generated huge
societal and economic impact, leading to changes of both personal lifestyles and formats of healthcare.
An important type of devices in wearable technology is flexible and stretchable skin sensors used
primarily for biophysiological signal sensing and biomolecule analysis on skin. These sensors
offer mechanical compatibility to human skin and maximum compliance to skin morphology and
motion, demonstrating great potential as promising alternatives to current wearable electronic
devices based on rigid substrates and packages. The mechanisms behind the design and applications
of these sensors are numerous, involving profound knowledge about the physical and chemical
properties of the sensors and the skin. The corresponding materials are diverse, featuring thin elastic
films and unique stretchable structures based on traditional hard or ductile materials. In addition,
the fabrication techniques that range from complementary metal-oxide semiconductor (CMOS)
fabrication to innovative additive manufacturing have led to various sensor formats. This paper
reviews mechanisms, materials, fabrication techniques, and representative applications of flexible
and stretchable skin sensors, and provides perspective of future trends of the sensors in improving
biomedical sensing, human machine interfacing, and quality of life.

Keywords: flexible electronics; stretchable electronics; skin sensors; precision medicine; health
monitoring; wearable technology

1. Introduction

Rapid growth in electronic technology yields miniaturized electronic devices and recent
evolution of wearable electronic technology that can be integrated on human bodies and conduct
diverse functions, such as mobile computation [1], health monitoring [2,3], activity tracking [4–6],
and rehabilitation [7]. Wearable electronic devices can combine with portable electronic gadgets
such as cell phones, laptops, and tablets to offer access to remote resources and enable data
exchange, analysis and diagnosis. The wearable devices demonstrated both by various commercial
available devices [8] as well as devices under exploration [9] have shown great promise to enrich
personal health records and facilitate biomedical informatics, both of which are considered essential
elements in the newly proposed precision medicine [10,11]. However, current wearable devices are
predominately realized by encapsulating integrated circuits on solid substrates in rigid packages,
which are mechanically incompatible with soft and curvilinear human body, resulting in unreliable and
unrepeatable measurement results due to unreliable skin contact and changing measurement locations.

Some wearable devices are based on flexible and stretchable skin sensors, which are used primarily
for biophysiological signal sensing and biomolecule analyzing on skin. These sensors can serve as
activity tracking devices to record basic biophysiological parameters, or used for facilitating diagnosis
and treatment of certain diseases such as diabetes [12], cystic fibrosis [13], dermatitis [14,15], and
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peripheral vascular disease [16]. In addition, they can be used as human–computer interface to
assist human with speech and action disorders [17,18]. Additional use of skin sensors may involve
monitoring exogenous parameters such as air qualities, environmental temperature, ultraviolet (UV)
exposure, and humidity, allowing comprehensive assessment of health-related issues by considering
both environmental and internal effects. The skin sensors offer mechanical compatibility to human skin
and maximum compliance to skin morphology and motion. Stretchability is essential for these skin
sensors, as the sensing precision, repeatability, stability and adhesion to skin are all determined by the
capability of the sensors in following the skin motion, which causes skin deformation up to 30% [19].
The skin sensors contain unique structures constructed by either intrinsically soft materials or thin
film materials on elastomer substrates. They can be simply mounted on bodies using fixtures such as
bandages and body straps or use improved approaches that allow spontaneous skin attachment by
van der Waals force using ultrathin and soft materials [14,18,20]. In addition, pressure sensitive silicon
adhesive [21,22] can also be used to enhance the interface between the sensors and the skin, and offer
reversible adhesion for long-term skin integration. Although the underlying mechanisms and relevant
techniques of the skin sensors have been studied in many research papers that focus on various
aspects [20,23,24], it will be beneficial if a systematic summary can be offered with comprehensive
review of the state-of-the-art technology in flexible and stretchable skin sensor development.

This paper reviews some essential elements of flexible and stretchable skin sensors, including
their mechanisms, materials, fabrication techniques, and applications, all of which represent recent
progress in both theoretical and applied research of skin sensors. The fundamental mechanisms that
determine the stretchability of the sensors are first presented, followed by materials used in skin
sensors and their processing techniques. Finally, representative applications of the skin sensors are
presented to demonstrate their capability in the areas of biomedical sensing and daily activity tracking.
Flexible and stretchable skin sensors hold the promise to replace current wearable sensors based on
rigid substrates and packages, and may eventually lead to the revolutionary changes in the formats of
continuous, long-term health monitoring devices to improve social health levels.

2. Mechanisms of Flexible and Stretchable Skin Sensors

Flexible and stretchable skin sensors offer maximum compliance to the skin, and, thus, minimum
reaction force from the sensor in response to the deformation, allowing less influence to the normal
functions of the skin. The stretchability of the skin sensors can be achieved at the structural and
material levels. The former refers to unique designed structures that offer tolerance to certain levels of
deformation within the limits of the fracture strain of the constituent materials, while the latter can
be attributed to intrinsically soft materials that are mechanically elastic to allow reversible extension
and compression in response to external forces. The following section summarizes details of these
two approaches.

2.1. Stretchable Structures

Materials used in skin sensors follow a simply rule that the bending strain of the materials
decreases linearly with thickness of materials [23]. As a result, composition materials of skin sensors
such as semiconductors, polymers, and metals are used in formats of ribbons, wires, and membranes
with thickness in the scale of tens of nanometers to a few micrometers. They can be readily bended
to reach a radius of curvature of ~150 mm with ~0.1% strains [25,26], which is less than the facture
strain of these materials [26]. Two design approaches have been developed to make intrinsically
rigid materials stretchable on elastomeric substrates. The former design uses out-of-plane buckling
of ultra-thin nanoscale wires, ribbons, or membranes to release stress caused by in-plane prestrain
applied to the substrates. The latter uses stretchable interconnects as bridges to connect with rigid
islands, which typically contain functional components such as sensors [27,28], electronics [29–31],
and commercial off-the-shelf components [32]. Both of these strategies have been widely used in
layout of stretchable skin sensors.



Micromachines 2017, 8, 69 3 of 28

2.1.1. Out-of-Plane Design

The formation of out-of-plane design with buckling structure is illustrated in Figure 1a.
The ultrathin ribbons can be fabricated using conventional lithography process, followed by bonding
the nanoribbons on to a prestrained elastomeric substrate. Releasing of the prestrain leads to periodical
wavy structures on both ribbons and the substrate. The wavelength (λ) and magnitude (A) of the wavy
structures can be determined by following equation.

λ = 2πhf

(
Ef

3Es

)1/3

, A = hf

√
εpre − εapplied

εc
− 1 (1)

in which hf is the thickness of the stiff ribbons, Ef the Young’s modulus of the elastic substrate, εapplied
the applied strain, εpre the prestrain level, and εc the critical strain for the buckled ribbons. The peak
strain in the ribbon is approximately equal to

εpeak ≈ 2
√(

εpre − εapplied

)
εc (2)

As a result, the maximum stretchability of the wavy structures can be determined by equating
εpeak to facture strain of the ribbon materials.

Recent development of wavy design has led to more complicated three-dimensional (3D)
structures that buckle at higher orders, indicating potential applications of these technologies to
form miniaturized flexible and stretchable electronics with highly spatial complexity and capability
to achieve predefined shape shifting and function alternation [33]. The wavy design has been wildly
available to integrate silicon [24], carbon nanotubes [34–36], graphene [37] and ferroelectrics [38]
in formats of nanoribbons (Figure 1b) [24], nanowires (Figure 1c,e) [39], and nanomembranes
(Figure 1d) [40]. However, the stretchability of the wavy design is determined by the prestrain
levels of the substrates and the bending curvature of the materials as shown in Equations (1) and (2),
limiting the applications of this technology in situations that require larger stretchability and less
complex fabrication processes. As a result, island–bridge configurations have been developed to offer
improved stretchability with both out-of-plane and in-plane structures in which islands based on
functional sensing and circuit elements are mechanically and electrically connected with bridges made
of narrow polymeric and metallic strips. The bridges, which contain either straight or serpentine
interconnects, are freely suspended or bond on substrates between two islands. The stretchability
of such structures are achieved either by deformation of the spatially buckled bridges (Figure 2a) or
planar deformation of the interconnects (Figure 3c).
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Figure 1. Mechanism of out-of-plane stretchable structures: (a) formation of out-of-plane 
nanoribbons (Reprinted with permission from Ref. [30] Copyright 2006 American Association for 
the Advancement of Science); (b) scanning electron microscope (SEM) images of a wavy nanoribbon 
(Reprinted with permission from Ref. [24] Copyright 2010 American Association for the 
Advancement of Science); (c) a large area optical micrograph of silicon nanowires (Reprinted with 
permission from Ref. [39] Copyright 2009 American Chemical Society); (d) optical micrographs of 
2D wavy Si nanomembranes with various thickness (55, 100, 260, 320 nm) on polydimethylsiloxane 
(PDMS), formed with a thermal prestrain of 3.8% (Reprinted with permission from Ref. [40] 
Copyright 2007, American Chemical Society); and (e) an atomic force microscopic image of wavy 
SWNTs on a PDMS substrate (Reprinted with permission from Ref. [34] Copyright 2008 American 
Chemical Society). 

Novel substrate-free spatial helical structures have also been developed using diverse twisting 
modes, and have been used to act as sensors and power harvesters. Shang et al. have explored a 
carbon nanotube (CNT) yarn supercapacitor utilizing the helical loop structure. The entire structure 
can withstand strain of ~150% and repeated high frequency stretching (up to 10 Hz over 10,000 
cycles). A helical spring based on copper nanowire [41], as shown in Figure 2b, offers higher 
stretchability (~700%). Similar structures can be formed by other metallic nanowires, showing 
variety of potential applications in wearable sensors and interconnects that can deform with the 
gradual growth of body parts. 

Figure 1. Mechanism of out-of-plane stretchable structures: (a) formation of out-of-plane nanoribbons
(Reprinted with permission from Ref. [30] Copyright 2006 American Association for the Advancement
of Science); (b) scanning electron microscope (SEM) images of a wavy nanoribbon (Reprinted with
permission from Ref. [24] Copyright 2010 American Association for the Advancement of Science);
(c) a large area optical micrograph of silicon nanowires (Reprinted with permission from Ref. [39]
Copyright 2009 American Chemical Society); (d) optical micrographs of 2D wavy Si nanomembranes
with various thickness (55, 100, 260, 320 nm) on polydimethylsiloxane (PDMS), formed with a thermal
prestrain of 3.8% (Reprinted with permission from Ref. [40] Copyright 2007, American Chemical
Society); and (e) an atomic force microscopic image of wavy SWNTs on a PDMS substrate (Reprinted
with permission from Ref. [34] Copyright 2008 American Chemical Society).

Novel substrate-free spatial helical structures have also been developed using diverse twisting
modes, and have been used to act as sensors and power harvesters. Shang et al. have explored a
carbon nanotube (CNT) yarn supercapacitor utilizing the helical loop structure. The entire structure
can withstand strain of ~150% and repeated high frequency stretching (up to 10 Hz over 10,000 cycles).
A helical spring based on copper nanowire [41], as shown in Figure 2b, offers higher stretchability
(~700%). Similar structures can be formed by other metallic nanowires, showing variety of potential
applications in wearable sensors and interconnects that can deform with the gradual growth of
body parts.
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Figure 2. Examples of out-of-plane strcutres with high stretchability: (a) SEM images of arrays of 
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helical-structured copper nanowire (CuNW)-based electrodes (Reprinted with permission from Ref. 
[41] Copyright 2014 Nature Publishing Group). 
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island structures can be further omitted, resulting in continuous self-similar serpentine or fractal 
structures as both sensors and interconnects. Compared to wavy structures, these planar serpentine 
or fractal design effectively accommodate much larger applied strain through in-plane structural 
deformation without requirement of prestrain on substrates, and eliminate the concern of delicate 
spatially-buckled structures that can be easily broken under external scratch. 

However, design of serpentine interconnect is still largely empirical, only a few theoretical 
models have been developed to analyze the deformation and stretchability of serpentine geometry. 
Fan et al. formulated an analytic model of in-planar serpentine interconnects based on finite 
deformation theory [47]. As illustrated in Figure 3a, a serpentine interconnect is simplified as three 
straight wires with length L or L/2 connected with two arcs with an identical radius R and an arc 
angle α. Three dimensionless parameters, width/radius ratio w = w/R, arm length/radius ratio L = 
L/R and arc angle α, can then be used to represent the shape of the serpentine interconnect. As w  of 
the non-buckled interconnect is usually much smaller than 0.5, such interconnect can be modeled as 
a curved, Euler–Bernoulli beam. When the serpentine interconnect is subjected to a tensile 
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Figure 2. Examples of out-of-plane strcutres with high stretchability: (a) SEM images of arrays
of complementary metal-oxide semiconductor (CMOS) inverters with spatially buckled bridges
(Reprinted with permission from Ref. [29] Copyright 2008 National Academy of Sciences); and
(b) helical-structured copper nanowire (CuNW)-based electrodes (Reprinted with permission from
Ref. [41] Copyright 2014 Nature Publishing Group).

2.1.2. In-Plane Design

Improved deign without using prestrained substrates can be achieved by in-plane island–bridge
design. The polymeric and metallic interconnects are typically in forms of serpentine or fractal [42–46]
meshes that are completely bonded onto elastomeric substrates. In some cases, the island structures can
be further omitted, resulting in continuous self-similar serpentine or fractal structures as both sensors
and interconnects. Compared to wavy structures, these planar serpentine or fractal design effectively
accommodate much larger applied strain through in-plane structural deformation without requirement
of prestrain on substrates, and eliminate the concern of delicate spatially-buckled structures that can
be easily broken under external scratch.

However, design of serpentine interconnect is still largely empirical, only a few theoretical
models have been developed to analyze the deformation and stretchability of serpentine geometry.
Fan et al. formulated an analytic model of in-planar serpentine interconnects based on finite
deformation theory [47]. As illustrated in Figure 3a, a serpentine interconnect is simplified as three
straight wires with length L or L/2 connected with two arcs with an identical radius R and an arc
angle α. Three dimensionless parameters, width/radius ratio w = w/R, arm length/radius ratio
L = L/R and arc angle α, can then be used to represent the shape of the serpentine interconnect.
As w of the non-buckled interconnect is usually much smaller than 0.5, such interconnect can be
modeled as a curved, Euler–Bernoulli beam. When the serpentine interconnect is subjected to a tensile
displacement of Uapp/2 at the end, the effective applied strain εapp of the serpentine interconnect can
be represented by

εapp =
Uapp

4R sin(α/2) + 2L cos(α/2)
(3)

The peak value of maximum principal strain in the serpentine interconnect can be related to the
applied strain and the geometric parameters by

εmax−nonlinear = wF2
(

L,α, εapp
)

(4)

where F2
(

L,α, εapp
)

is a function that can be determined numerically using an approximate model
based on finite deformation theory.
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Figure 3. Mechanisms of serpentine and fractal structures: (a) a serpentine interconnect subjected to 
an axial stretching (Uapp) at the two ends (Reprinted with permission from Ref. [47] Copyright 2016 
Elsevier); (b) schematic illustration on the geometric construction of self-similar serpentine 
interconnects (Reprinted with permission from Ref. [48] Copyright 2013 Elsevier); and (c,d) 
representatives of fractal structures (Reprinted with permission from Ref. [45] Copyright 2014 
Nature Publishing Group). 

A fractal design concept that allows formation of stretchable layouts through stepwise 
iterations of basic shape units has been introduced to realize highly stretchable lithium-ion batteries 
[43] as well as several epidermal sensors [31,44,49]. As illustrated in Figure 3b, a fractal-based layout 
is created from the first order of serpentine geometry, and then constructed by connecting multiple 
copies of the unit cell forming self-similar design that offers increased area coverage and improved 
stretchability [48]. Theoretical models have been developed to analyze the deformation and 
stretchability of the fractal geometry. Fan et al. [45] have studied the deformations of various fractal 
layouts (Figure 3d), using a finite element method (FEM) followed by experimental evaluation. They 
also introduced a high precision approach to measure the elastic-plastic transition (or the elastic 
stretchability) through measuring differential resistances of the fractal interconnects, showing 
reasonable consistency with numerical analysis (Figure 3c). Several analytical models have been 
developed to determine elasticity for fractal interconnects. For example, Zhang et al. [48] have 
developed analytical models of flexibility and elastic stretchability, through establishing recursive 
formulae at different fractal orders. The analytical models show that the stretchability of system 
increases with the order of self-similar interconnect, and a surface filling ratios of 50% would yield 

Figure 3. Mechanisms of serpentine and fractal structures: (a) a serpentine interconnect
subjected to an axial stretching (Uapp) at the two ends (Reprinted with permission from Ref. [47]
Copyright 2016 Elsevier); (b) schematic illustration on the geometric construction of self-similar
serpentine interconnects (Reprinted with permission from Ref. [48] Copyright 2013 Elsevier);
and (c,d) representatives of fractal structures (Reprinted with permission from Ref. [45] Copyright 2014
Nature Publishing Group).

A fractal design concept that allows formation of stretchable layouts through stepwise iterations of
basic shape units has been introduced to realize highly stretchable lithium-ion batteries [43] as well as
several epidermal sensors [31,44,49]. As illustrated in Figure 3b, a fractal-based layout is created from
the first order of serpentine geometry, and then constructed by connecting multiple copies of the unit
cell forming self-similar design that offers increased area coverage and improved stretchability [48].
Theoretical models have been developed to analyze the deformation and stretchability of the fractal
geometry. Fan et al. [45] have studied the deformations of various fractal layouts (Figure 3d), using
a finite element method (FEM) followed by experimental evaluation. They also introduced a high
precision approach to measure the elastic-plastic transition (or the elastic stretchability) through
measuring differential resistances of the fractal interconnects, showing reasonable consistency with
numerical analysis (Figure 3c). Several analytical models have been developed to determine elasticity
for fractal interconnects. For example, Zhang et al. [48] have developed analytical models of flexibility
and elastic stretchability, through establishing recursive formulae at different fractal orders. The
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analytical models show that the stretchability of system increases with the order of self-similar
interconnect, and a surface filling ratios of 50% would yield 70% stretchability. In addition, the
tensile stiffness for fractal interconnects has been determined by analytic approach, and has been
verified by finite element analysis and experiments [50].

2.2. Intrinsic Elastic Materials

The stretchability of skin sensors can be achieved at the material levels using intrinsic elastic
materials. Major materials in this category include elastomers and liquid metals, all of which adopt
the stretchability due either to the flexible and long polymer chains or to weak intermolecular forces.
This section offers a general review of the mechanism of these materials, while a detailed list of these
materials will be given in next section.

One of the most widely used materials in stretchable skin sensors is silicone-based elastomers
represented by polydimethylsiloxane (PDMS), fluorosilicone and various commercially available
products under different tradenames such as Ecoflex, Dragon Skin, and Solaris. Silicone-based
elastomers are notable for their high electrical resistivity (e.g., 2.9 × 1014 Ω·cm for PDMS), low glass
transition temperatures (e.g., −125 ◦C for PDMS), large thermal coefficient of expansion (typically
4.8 × 10−4 K−1) and high flexibility (with Young’s module of 1 MPa). The polymer chains of the silicone
contain siloxane backbones that consist of alterative sequences of silicon and oxygen and two organic
substituents connected to each silicon atom, resulting in various properties (e.g., chemical resistance,
elasticity, and phase) and processibility (e.g., curing time, and curing temperature). The elastomers
obtain their stretchability through highly flexible siloxane backbones, which can be stretched under
external forces. Another material that widely used in stretchable skin sensors is polyurethane (PU),
which contains urethane groups connected with other groups such as ester, ether, amine and urea.
The PU elastomers adopt their elasticity from the elastic polyol parts in the polymer chains, and offer
large tear strength and abrasion resistant than silicone rubbers, making them ideal materials to
construct substrates for skin sensors when frequent surface scratch and impact are expected.

3. Materials in Skin Sensors

The major materials of stretchable skin sensors can be classified into two categories. One involves
various intrinsically stretchable materials, such as elastomers, liquid metals, and composite materials.
The other includes materials such as solid metals, semiconductors, polymers, and inorganic
compounds, which are rigid as bulk materials, but can be used as ultrathin films or membranes
designed into special stretchable structures with thickness ranging from tens of nanometers to tens of
micrometers. Therefore, the Young’s modulus of the materials for stretchable skin sensors are wildly
distributed from 0 to 1012 Pa [51].

3.1. Physically Soft and Stretchable Materials

3.1.1. Elastomers

Elastomers are available in different compositions with varied stretchability. As the fundamental
materials in stretchable skin sensors, elastomers are mainly used as substrates, binders and adhesion
layers. Among the available elastomers, PDMS is most commonly used. The mechanical properties of
PDMS can be tuned by varying the curing conditions such as chemical ratios, temperature, and time,
resulting in a Young’s modulus in a controllable range from 1 to 150 MPa, and a stretchability up to
100%. By alternating the side groups as well as the lengths of the polymer chains, it is possible to obtain
different types of elastomers with different physical and chemical properties. For example, PU and
acrylic elastomer are two alternatives for skin sensor substrates, and are softer than PDMS due to its low
Young’s modules. The maximum stretchability that can be achieved is 300% [52]. The low-temperature
curing silicone is a type of adhesive that can provide pressure sensitive reversible bonding between the
skin and the devices. Besides of mold casting, silicone such as PDMS and polyurethane acrylate (PUA)



Micromachines 2017, 8, 69 8 of 28

can be photocurable to allow pattern definition through traditional photolithography processes [53,54]
or even 3D printing techniques [55].

3.1.2. Liquid Metals

Liquid metals such as eutectic gallium-indium (eGaIn) and gallium-indium-tin (Galinstan) are
intrinsically elastic with low resistivity (~2.9 × 10−7 Ω·m), low viscosity (~2 × 10−3 Pa·s), and low
toxicity [56]. Their melting points are 15.5 ◦C [57] (75 wt % Ga and 25 wt % In) and −19 ◦C [58]
(68.5 wt % Ga, 21.5% In, and 10.0% Sn), respectively, resulting in their liquid states at room temperature.
Various functional components such as pressure sensors [59,60], strain sensors [61], antennas [62,63],
and soft wires [64] have been fabricated by injecting liquid metals into microfluidic channels. Devices
made of liquid metals can withstand deformation of microchannels at very high strain (up to 800%) [65].

3.1.3. Conductive Polymers

Conductive polymers (CPs) applied in stretchable electronics can be achieved by intrinsically
conductive polymers (ICPs) [66] or conductive polymer composites [67]. Intrinsically conductive
polymer materials such as synthetic poly(acetylene) (PA), poly(pyrrole) (PPy), poly(thiophene) (PT),
poly(aniline) (PANI), and poly-(3,4-ethylenedioxythiophene) (PEDOT) can be realized by conjugation
of polymer backbone, forming high energy orbitals with loosely bonded electrons to corresponding
atoms, allowing maximum facture strain at the level of 1000% [68]. The conductive polymer composites
are composed of polymers and conductive fillers (e.g., metal nanoparticles, metal nanowires, graphite,
carbon nanotubes, and graphene). Conductive polymers are subject to influence of strain, which may
lead to increased resistivity with strain. Park et al. have demonstrated a conductive composite mat
using electrospun poly(styrene-block-butadiene-blocks-tyrene) (SBS) rubber fibers embedded with
silver nanoparticles, leading to high conductivity even under large deformations (σ ≈ 2200 S·cm−1

at 100% strain) [69]. Shang et al. have achieved an elastic conductive nanocomposite composed of
multiwall carbon nanotubes (MWNTs) and polyurethane (PU), which has initial conductivity of more
than 5.3 S·cm−1 and stretchability of more than 100% [70]. Niu et al. have realized buckled single-wall
carbon nanotube (SWCNT) electrodes by fabricating directly grown SWCNT films with continuous
reticulate architecture on pre-strained PDMS [71]. The electrodes can stretch under a strain of 140%
without significant change of resistance.

3.1.4. 1D and 2D Materials

The applications of one-dimensional (1D) and two-dimensional (2D) materials to construct
stretchable electronics represent important trends in constructing stretchable electronics.
Representative 1D and 2D materials include multi-walled or single-walled carbon nanotubes [72,73],
silicon nanowires [74], metal nanowires [75,76], graphene [77], and transition metal dichalcogenides
(TMDCs) [78]. Among them, both carbon nanotubes and graphene possess high electron mobility
(~105 cm2·v−1·s−1 for carbon nanotube [79] and ~2 × 105 cm2·v−1·s−1 for graphene [80] at room
temperature) and excellent mechanical flexibility (~1 Tpa Young’s modulus) [81], making them
promising materials for high performance electronic devices, such as top-gated transistors [82–84].
When used as sensors, the large surface-to-volume ratios of the 1D and 2D materials can lead to
improved capabilities, such as highly sensitive biochemical sensing and large interfacial adhesion [85].
In addition, the optical transparency of graphene and carbon nanotubes allows construction of fully
transparent sensors that possess high flexibility and softness [86,87]. Some excellent reviews about the
1D and 2D materials used in flexible and stretchable electronics have been provided by the following
articles [88–90].

3.2. Unique Stretchable Structures

As mentioned in the previous section, raw materials that are rigid in their bulky formats
can also offer stretchability in ultrathin configurations and unique stretchable design. Some
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major materials used for constructing skin sensors include metals, semiconductors, polymers, and
inorganic compounds.

3.2.1. Solid Metals

Solid metals are intrinsically hard conductive materials that would become flexible when appear
as thin films. Dominant metals used in skin sensors include Au, Cu, Al, Cr, Ti and Pt, which are used for
conductive interconnects, electrodes, sensors, contact pads and other circuit components (e.g., resistor,
inductors, and capacitors). These metals are typically tens of nanometers to a few micrometers in
thickness, and are deposited on target substrates through physical deposition, electrochemical plating,
and direct printing approaches. Many of these metals are ductile with a fracture strain of less than 1%.
However, the stretchability of the metallic thin films can reach more than 100% when designed into
special formats such as self-similar serpentine [91], fractal [28], helical [92] and prestrained bulking [29].

3.2.2. Semiconductors

Various active components such as diodes, transistors, and light emitting diodes (LED) can
be made of inorganic semiconductor materials (e.g., silicon [30], GaAs [93], ZnO [94], InP [95],
GaN [96]) as well as organic semiconductor materials (e.g., poly(3-hexylthiophene) (P3HT) [97],
Poly(p-phenylene)vinylene [98], and Poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene)
(pBTTT)) [99]. The bending stiffness and bending-induced strain of these rigid semiconductor
materials can be exceptionally small due to cubic and linear scaling of these quantities with thickness
of the materials. These semiconductor materials can be patterned into nanomembranes [100],
nanoribbons [101], and nanowires [95] through complementary metal-oxide semiconductor (CMOS)
fabrication processes.

3.2.3. Polymers

Polymers offer mechanical and electrical supports to skin sensors. They can be used as structural
layers, electrical insulation layers, and dielectric layers in the skin sensors. Many polymers have been
used to construct skin sensors, including some most prominent ones such as polyimide, poly(methyl
methacrylate) (PMMA) and parylene. These polymers offer high mechanical strength that are ideal as
structural layers to support the skin sensors. In addition, these polymers are typically thermal setting
materials that can be easily obtained through spin-coating and dipping followed by curing at escalated
temperature. Parylene is an excellent dielectric material, its fabrication process involves chemical
vapor deposition (CVD), allowing pinhole-free uniform layers on curved or irregular surface.

4. Fabrication Techniques

Fabrication of skin sensors involve a series of techniques that combine conventional fabrication
methods such as microelectromechanical systems (MEMS) technology, CMOS process, and mechanical
milling with emerging techniques such as printable electronic, additive manufacturing, and laser
process. Under the support from diverse fabrication techniques, many materials can be processed to
yield structures in stretchable skin sensors.

4.1. Conventional Microfabrication Processes

Fabrications of active and passive components in flexible and stretchable electronic skin
sensors can be achieved by MEMS and CMOS technology. The fundamental challenge of using
MEMS and CMOS technology to make skin sensors involve application of ultrathin membranes as
compared with rigid or brittle materials used in traditional MEMS and CMOS fabrication processes.
Processes for fabricating flexible and stretchable skin sensors can be categorized into device-last and
device-first approaches. The former involves fabricating active components on silicon membranes on
silicon-on-insulator substrates, and then transfer-printing the membranes to destination substrates for
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further processing. While the latter refers to thinning down a thick semiconductor substrates integrated
with functional components using physical sanding or chemical etching methods. The device-last
approaches have been described by several research works. For example, Kim et al. [26] have
developed stretchable integrated circuits, which combine multilayer neutral mechanical plane layouts
and “wavy” structural configurations, including logic gates, ring oscillators, and differential amplifiers
on silicon nanomembrane with thickness of 250 nm (Figure 4a). The device-first approaches have
been demonstrated by MOS capacitors [102,103], memory cells [104,105], batteries [106], and MEMS
switches [107].
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Simplified approaches for making active and passive components involve using both organic
materials as conductors, semiconductors, and dielectric to construct electronic devices. The major
fabrication processes include chemical or physical vapor deposition, spin-coating and dip coating,
which are much convenient than conventional microfabrication processes of inorganic materials, whose
fabrications typically require thermal diffusion, ion implantation, and highly corrosive acid etchant
used in inorganic materials. However, drawbacks of using organic materials are their low conductivity
(1000 S·cm−1) and low charge mobility (approximately 10−2 to 102 cm2·v−1·s−1) [108,109], which
hinder the applications of organic materials in high performance electronics.

4.2. Printable Electronics

Continuous development of printing electronic technology enables the application of such
technology in developing flexible and stretchable electronics. Printable electronic technology allows
direct generation of patterns on soft substrates through additive manufacturing technology such
as screen-printing, slot-die coating and inkjet printing. In addition, a special printing approach
used primarily in flexible and stretchable electronics is based on transfer printing, which transfer
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components fabricated on donate substrates onto target substrates that are typically thin plastic films,
metal foils, and elastomer membranes.

4.2.1. Screen Printing

Screen printing is a low-cost, high-throughput printing technique used to construct skin sensors.
The working principle of screen printing system is illustrated in Figure 4b. A screen printing system
typically contains a flood blade that moves across a screen with open meshes with pore sizes ranging
from 10 to 200 µm [110,111] and fills the meshes with ink. A squeegee is then moved in an opposite
direction to push the inks in the meshes towards the substrates. Eventually, the adhesion force
from the substrates pulls the inks down in a close distance, resulting in pattern formation that
is determined both by the properties of the inks and the size of the meshes. Screen printing is
notable for its low fabrication cost and capability to print single or stacked layers onto variety of
soft materials such as fabrics and plastic films. The ability of screen printing technique has been
demonstrated majorly in the area of printing organic devices such as organic light-emitting diode
(OLEDs) [112], organic field-effect transistor (OFETs) [113,114], thin film batteries [115–117], and
organic solar cells [118,119]. In addition, it has been widely used to fabrication various flexible and
stretchable electronic components, including antennas [120], metal conductors [121,122], and thin-film
transistors [123–125]. Limitations of screen printing include limited selection of ink materials, short
processing time influenced by solvent evaporation, and low printing resolution (>10 µm).

4.2.2. Inkjet Printing

Inkjet printing is considered as an additive manufacturing technique that is attractive for making
electronic components on flexible substrates without using any photomask. Inks that contain either
fully dissolved chemicals [126,127] or nanoparticles [128–131] can be deposited through inkjet nozzles,
which are actuated through a number of mechanisms such as piezoelectricity and aerosol. Post sintering
processing after inkjet printing using direct heating, microwave, laser, and pulsed light can enhance the
performance of the printed patterns by converting individual nanoparticles into connected matrixes.
Inkjet printing techniques have been used to fabricate various electronic devices. Passive components
such as resistors [132–134], capacitors [135–137] and inductors [138] have been printed on polymer
substrates with various functional inks. Active components such as thin film transistors [139–141]
and LED [142–144] have also been fabricated using inkjet printing methods. Development of colloidal
solution for proper ejection of droplets on a targeted area by keeping an acceptable quality of the
printed circuits is challenging due to the influence of evaporation rate of the solvents and orientation
of the active particles. Despite the advancement of both control electronics and nozzle technology in
inkjet printing, its printing speed (at the scale of 10 mm·s−1) are still low as compared with screen
printing methods, and its capability in printing complex structures such as serpentine and meander is
still demanding further improvement. In addition, possibility of nozzle clogging and limited numbers
of nozzles that can work simultaneously making inkjet printing methods more a rapid prototyping
tool in labs rather than an acceptable mass fabrication method for industry. The spreading of the
printed ink on target substrates and chaotic behavior of droplets during the time of flight further add
to the issues of inkjet systems.

4.2.3. Transfer Printing

Transfer printing is an essential procedure to obtain flexible CMOS/MEMS devices. The target
devices can be firstly fabricated on a donate substrate and then transferred to a receiving substrate
using a viscoelastic stamp (usually a PDMS stamp) (Figure 4c). In this process, the adhesive strength is
directly proportional to separation speed of the stamp from a surface. The effective separation speed
between the stamp and the substrates is approximately 10 cm·s−1 or greater during a retrieval process,
and is a few mm·s−1 or less for the printing process. Transfer printing technique has been extensively
exploited to assemble diverse classes of materials (e.g., semiconductors, metals, carbon, and organic),
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thereby providing an effective method to fabricate various devices ranging from simple light emitting
diodes [145], transistors [146,147] and sensor elements to fully integrated circuits [148].

5. Applications of Flexible and Stretchable Skin Sensors

Mechanisms, materials and fabrication approaches mentioned above can be used to construct
diverse skin sensors that offer broad applications in health monitoring, daily activity tracking, and
rehabilitation. These skin sensors have been used to record biophysical signals such as biopotential,
skin strain, temperature, and hydration. In addition, initial efforts have been made to conduct specific
biomolecule analysis using body fluids (e.g., sweat and blood) through direct contact or transdermal
sensing approaches.

5.1. Biopotential Measurement

Biopotential measurement using skin sensors represents one of the most important applications
of skin sensors. Due to the capability to be mounted on different locations of human skin, electrodes
based on stretchable conductive meshes typically made of copper and gold have been used to conduct
electroencephalogram (EEG), electrooculogram (EOG), and electrocardiogram (ECG) measurements
on body. Yeo et al. [149] have introduced a multifunctional epidermal electronic systems measuring
electrophysiological based on skin-contacted metallic electrodes or meshes made of gold and copper,
which can measure ECG, EMG, temperature and strain (Figure 5a). Due to close skin contact,
the flexible and stretchable skin electrodes can directly contact with skin with a contact resistance at a
scale of 35 kΩ, which is compared smaller than conventional dry electrodes (~40 kΩ). Non-contact
biopotential sensing is also feasible. Jeong et al. have demonstrated capacitive electrodes that can
measure biopotential signals without direct contact with skin [18] (Figure 5b). They have also presented
another skin sensor that measures EMG signal induced by arm and wrist movement to control
unman drone.
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using skin-contacted metallic electrodes (Reprinted with permission from Ref. [91] Copyright 2013
John Wiley and Sons); and (b) an epidermal electronic system (EES) with a capacitive sensor for
electrophysiological (EP) measurement (Reprinted with permission from Ref. [18] Copyright 2014 John
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5.2. Strain Sensing

Strain sensors can be directly attached on skin to measure strain induced by skin deformations
caused by respiration, heartbeat, bending of body joints and muscle activities. Strain sensors can be
fabricated by diverse materials and methods [17,150,151] with applications ranging from personalized
health-monitoring [152,153] to human-machine interfaces [154,155] and soft robotics [156–158].
Park et al. [17] have achieved a stretchable graphene strain sensor using a layer-by-layer assembly
method, in which stretchable yarns are repeatedly dip-coated with poly(vinyl alcohol) and graphene
nanoplatelets bilayer. This strain sensor can be attached to throat and monitors the motions caused
by speaking with maximum stretchability of ~100% (Figure 6a). Surface matrixes made of carbon
nanotube and silicone rubber have been used to make strain sensors (Figure 6b). Carbon nanotubes
were first coated onto a patterned polyimide film through air spraying, and were then transferred onto
an Ecoflex film by casting uncured Ecoflex onto a polyimide film. The carbon nanotubes and Ecoflex
form surface matrix that can be separated from the polyimide after the curing of the Ecoflex, resulting
in conductive composite with high stretchability (~500%), linear temperature response (R2 = 1) and fast
time response (~332 ms) [150]. Majidi et al. [151] have developed thin-film curvature sensors composed
of microfluidic channels filled with liquid metal (eGaIn) embedded in PDMS or Ecoflex substrates.
The sensors can offer up to 1000% stretchability and measure both bending curvature and strain within
the substrates with a gauge factor of 2 and a Young’s modulus of 0.1~1 Mpa. Roh et al. [87] have
realized a transparent and patchable strain sensor that is made of a sandwich-like stacked piezoresistive
nanohybrid film of single-wall carbon nanotubes (SWCNTs) and a conductive elastomeric composite of
polyurethane (PU)-poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS). This sensor
can offer stretchability of up to 100% and optical transparency of 62%, which can detect small strains
on human skin (Figure 6c).
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Figure 6. Examples of skin sensors for strain sensing: (a) graphene strain sensor embedded in an
elastomeric patch that is bendable and stretchable, for detection of the motions of throat (Reprinted
with permission from Ref. [17] Copyright 2015 American Chemical Society); (b) application of
the CNT–Ecoflex nanocomposite based strain sensors to human motion detection (Reprinted with
permission from Ref. [150] Copyright 2015 IOP Publishing); and (c) a transparent strain sensor
consisting of three-layer stacked nanohybrid structure of PU-PEDOT:PSS/SWCNT/PU-PEDOT:PSS
on a PDMS substrate (Reprinted with permission from Ref. [87] Copyright 2015 American
Chemical Society).
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5.3. Skin Temperature Monitoring

Temperature sensors are essential components for many health monitoring systems to determine
both physiological and psychological conditions associated with cardiovascular health, cognitive state
and malignancy. Skin temperature sensors can be conformably attached to skin surface, and, thus, can
accurately measure body temperature with minimized influence from the environmental temperature.
Examples of skin temperature sensors include arrays of meander metal wires that determine body
temperature through measurement of spatial mapping, and temperature mapping devices based on
PIN diodes made of silicon nanomembranes [159] (Figure 7a). To improve capability of long-term
integration without disturbing the functions of skin, skin temperature sensors can be integrated with
breathable substrates made of porous, semipermeable PU films (Figure 7b). The entire sensor is
permeable to air and waterproof. It can realize continuous body temperature measuring for up to
24 h [28]. Organic materials can also be used to construct temperature sensors. Trung et al. [160]
have realized a resistive and gated temperature sensor array purely by elastic organic materials with
stretchability of ~70% and sensitivity of ~1.34% resistance change per degree Celsius. The sensing
layer of this device can be formed by imbedding conductive and graphene oxide nanosheets into an
elastomeric PU matrix (Figure 7c).
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monitor skin temperature using metallic and semiconductor sensors (Reprinted with permission from
Ref. [159] Copyright 2013 Nature Publication Group); (b) breathable and stretchable temperature
sensors (Reprinted with permission from Ref. [28] Copyright 2015 Nature Publication Group); and
(c) transparent and stretchable temperature sensors (Reprinted with permission from Ref. [160]
Copyright 2015 John Wiley and Sons).
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5.4. Hydration Sensing

Accurately measurement of skin hydration levels is important for analyzing various diseases
(e.g., dermatitis [161], psoriasis [162], eczema [163] and pruritus [164]) in the fields of dermatology and
cosmetology, and evaluating factors (e.g., environmental [165], age [166], and hormone [167]) related
to abnormal skin responses. In addition, hydration can also be used for assessing effectiveness of
anti-aging treatment, moisturizing treatments and other medical therapies.

Skin hydration can be determined by measurements of electrical impedance, thermal conductivity,
spectroscopic property, and mechanical characteristic in conventional approaches. The application of
epidermal electronic techniques gives hydration sensing many advantages over traditional methods.
Huang et al. have realized several types of epidermal hydration sensors based on detection of skin
electrical impedance. The sensors consist of two electrodes connecting with a data acquisition system,
which provides alternating electrical current at frequencies between 1 and 100 kHz. The skin electronic
impedance can be reflected by resulting attenuation and phase shift of the electrical current. Devices
capable of conducting differential monitoring [14] (Figure 8a), regional mapping [27] (Figure 8b), and
wireless sensing [15] (Figure 8c) have been developed based on the impedance detection. In addition,
hydration can also be assessed through measurements of skin thermal conductivity, which can be
determined by time response of skin to constant thermal energy input [159].
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biopotential on skin using metallic meshes (Reprinted with permission from Ref. [14] Copyright 2013
John Wiley and Sons); (b) hydration sensor that can conduct regional mapping based on the impedance
detection (Reprinted with permission from Ref. [27] Copyright 2014 IEEE); and (c) hydration sensor
capable of passive wireless detection (Reprinted with permission from Ref. [15] Copyright 2014 John
Wiley and Sons).

5.5. Biomolecule Analysis

Flexible and stretchable skin sensors can be utilized for biomolecule analysis. Various
biomolecules in sweat (e.g., sodium [12,168–170], potassium [12,169], ammonium [171,172],
glucose [173], and lactate [12,174]) have been regarded as indicators for human physiological health.
Huang et al. have explored materials and design strategies for integrating stretchable wireless
sensors on porous sponge-like elastomeric substrates for epidermal analysis of biomolecules in sweat
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(Figure 9a). The porous substrates allow sweat collection through capillary forces, without need for
complex microfluidic handling systems. Colorimetric measurement is achieved in the same system by
introducing indicator compounds into the substrates for sensing specific components (OH−, H+, Cu+,
and Fe2+) in sweat [13]. Bandodkar et al. [175] have developed an epidermal tattoo-like sensor using a
bluetooth enabled wearable transceiver for real-time monitoring of sodium in human perspiration with
concentration range of 0.1–100 mM. This sensor can withstand strain caused by bending, stretching and
poking (Figure 9b). Gao et al. [12] have designed a fully integrated sensor array for in situ perspiration
analysis, which can simultaneously and selectively measure sweat metabolites (e.g., glucose and
lactate) and electrolytes (e.g., sodium and potassium ions) as well as the skin temperature for sensor
calibration (Figure 9c).
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5.6. Other Sensing

Flexible and stretchable skin sensors also have other applications, including oximetry [21,176,177],
pressure sensing [178,179] and wound healing monitoring [180,181]. For example, Yokota et al. [177]
have developed optoelectronic skins integrated with OLED and organic photodetectors, which
can measure the oxygen concentration of blood based on a photoplethysmogram (PPG) approach
(Figure 10a). Choong et al. [182] have demonstrated a stretchable resistive pressure sensor within which
the conductive electrode is built on the micro-pyramid PDMS arrays grafted with a PEDOT:PSS/PUD
composite polymer. The sensor offers a pressure sensitivity of 10.3 kPa−1 when stretched by 40%
(Figure 10b). Hattori et al. [180] have established an epidermal electronics system that can monitor
cutaneous wound healing by recording time-dynamic temperature and thermal conductivity of skin.
This system consists of metal traces with fractal and filamentary serpentine (FS) configurations,
which can offer stretchability of ~30% (Figure 10c).
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concentration of blood (Reprinted with permission from Ref [177] Copyright 2016 The Authors); (b) a
stretchable resistive pressure sensor (Reprinted with permission from Ref [182] Copyright 2014 John
Wiley and Sons); and (c) an epidermal electronics system that can monitor cutaneous wound healing
(Reprinted with permission from Ref. [180] Copyright 2014 John Wiley and Sons).
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6. Conclusions and Perspectives

This paper reviews the mechanisms, materials, fabrication techniques, and the representative
applications of flexible and stretchable skin sensors. These sensors are constructed by various
intrinsic soft materials or stretchable thin film structures with applications in biophysiological signal
measurement and activity tracking, offering improved precision and effectiveness of body integration.
Flexible and stretchable skin sensors can collect massive amount of data associated with personal
biomedical information and life-style. These data can be used to assist more specific diagnosis and
effective treatment of disease, and can potentially be used to reveal the underlying connection among
biomedical information, environmental effects, and various diseases.

Despite the rapid progress in skin sensors, development of flexible and stretchable skin sensors
has encountered several critical issues such as power supplies and system complexity. Firstly, most of
the devices mentioned above focus on sensing functions of the stretchable electronic devices. However,
power supply, signal conditioning, data communication, and data storage still largely rely on bulky
instruments or integrated circuits based on rigid substrates. Some researches tackle the issues of power
supplies with stretchable batteries [48,183], piezoelectric generators [184,185], solar cells [186,187],
and wireless power harvesting [188], showing promising future in replacing current bulky power
sources with components that mechanically and geometrically match stretchable electronic devices.
While for signal conditioning and data communication, and data storage, these functions can be
realized by integrating multiple commercial-off-the-shelf components connected by flexible and
stretchable interconnects. These systems can be best represented by the work of Xu et al. [44] who
realized a complex measurement system to detect biopotential, acceleration, temperature and achieve
signal processing and wireless data communication with an operational amplifier-based circuit and a
voltage control oscillator. The sweat sensing system [12] mentioned in the previous section has also
demonstrated the possibility of integrating flexible circuits made of commercial components with
stretchable skin sensor for precise analysis of sweat contents. These comprehensive systems will lead to
capability to assess multiple biophysiological signals to improve accuracy in diagnosis and treatment.
Discrete stretchable electronic components based purely on thin film materials and stretchable
structures have been demonstrated as signal amplifiers [189], logic circuits [190,191], oscillators [192],
and nonvolatile resistive memory [193,194]. However, a fully stretchable and integrated system has
not yet been achieved due to the challenges in the fabrication of different functional components,
interconnection of transfer printed components, and low electronic performance as compared to
conventional devices based on rigid materials.

Furthermore, some fundamental knowledge of device mechanisms has not yet been well studied
mechanically and electrically, and the interaction between the biological tissues and the flexible and
stretchable skin sensors has not yet been well understood. For example, the electromagnetic properties
of the stretchable structures such as serpentine, wavy, and out-of-plane buckling are largely unexplored,
and the negative effects of the biological tissues to electromagnetic signal and optical signal have
not yet been addressed to achieve optimized sensor performance. It can be expected that special
properties offered by the sensor/skin interaction may be used to achieve more unique functions such
as spontaneous actuation and transduction through skin motions, and the skin barrier functions may
be overcome to allow analysis of biomolecules in blood and interstitial fluids using skin sensors.
With more understanding of the fundamental knowledge of flexible and stretchable skin sensors,
more sensing functions and powerful integrated systems may be developed based on the skin sensor
platform, allowing revolutionary changes in the formats of continuous, long-term health monitoring
devices to improve social health levels.
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