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Abstract: This article presents the design, manufacture and testing of a capacitive pressure sensor with
a high, tunable performance to low compressive loads (<10 kPa) and a resolution of less than 0.5 kPa.
Such a performance is required for the monitoring of treatment efficacy delivered by compression
garments to treat or prevent medical conditions such as deep vein thrombosis, leg ulcers, varicose
veins or hypertrophic scars. Current commercial sensors used in such medical applications have been
found to be either impractical, costly or of insufficient resolution. A microstructured elastomer film of
a polydimethylsiloxane (PDMS) blend with a tunable Young’s modulus was used as the force-sensing
dielectric medium. The resulting 18 mm × 18 mm parallel-plate capacitive pressure sensor was
characterised in the range of 0.8 to 6.5 kPa. The microstructuring of the surface morphology of the
elastomer film combined with the tuning of the Young’s modulus of the PDMS blend is demonstrated
to enhance the sensor performance achieving a 0.25 kPa pressure resolution and a 10 pF capacitive
change under 6.5 kPa compressive load. The resulting sensor holds good potential for the targeted
medical application.

Keywords: pressure sensor; capacitive sensing; polydimethylsiloxane (PDMS); tunable sensitivity

1. Introduction

Compression garments, such as graduated compression hosiery, pressure garments and bandages,
have long been known to be an effective tool to treat or even prevent medical conditions like deep vein
thrombosis (DVT), leg ulcers, varicose veins or hypertrophic burn scars [1–4]. Of critical importance
is the application of a moderate pressure ranging between 6 mmHg (≈ 0.8 kPa) and 50 mmHg
(≈ 6.6 kPa), with different pressures and pressure gradients within this range being used to treat
different conditions. To avoid subsequent medical complications and increase efficiency and efficacy
of the treatment, the pressure gradient that such garments exert should ideally be monitored with a
resolution of less than 0.5 kPa at the right locations on the arm, leg or body [1,5–7]. Unfortunately, the
dynamic range, sensitivity or overall performance of current commercial sensors able to measure such
low-pressure loads is limited [8–11]. Systems such as the highly sensitive capacitive sensors of Pliance X
System (costing ~$21,000) [12] are either inappropriate due to their cost, impractical to use in real-life
settings, or are insufficiently sensitive or affected by the way the sensors are operated, thereby limiting
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the reproducibility of the results [8,11]. There is therefore an unmet clinical need for a small-sized,
sensitive, practical, reliable, low-cost pressure sensor technology system capable of monitoring the low
pressures required for compression garments to deliver clinically effective compression.

In recent years, a wealth of non-commercial flexible pressure sensors with the potential
of integration to wearable applications have been reported, which rely on various transduction
mechanisms including, but not limited to, piezoelectric [13], triboelectric [14], piezoresistive [15] and
capacitive [16–21]. Capacitive pressure sensing is considered as one of the most sensitive techniques
in detecting low pressures [22]. It is usually the preferred solution in low-cost applications due
to the reduced complexity in both design and fabrication requirements [23] owing to the fact that
the performance is solely a function of the mechanical properties and spatial dimensions of the
sensor structure.

This article presents the design, manufacture and testing of a parallel plate capacitive pressure
sensor. A microstructured polydimethylsiloxane (PDMS) blend film of Sylgard 184/527 with a tunable
Young’s modulus of as low as 5 kPa is used as the force-sensing dielectric medium in the sensor.
The combination of introducing such a PDMS blend with tunable mechanical properties and controlling
the microstructured surface morphology of the thin film dielectric layer was found to enable an
enhanced and fully tunable sensor performance. Preliminary results demonstrate good potential for
such sensors to effectively monitor the treatment efficacy of compression garments.

2. Materials and Methods

A schematic of the proposed capacitive sensor is depicted in Figure 1. The sensor has an overall
size of 18 mm × 18 mm and follows a typical parallel-plate capacitor configuration. The device consists
of a structured elastomeric dielectric layer encapsulated between two titanium/copper (Ti/Cu)-coated
120 µm thick glass layers that serve as capacitor plates. An array of square pillars of 35 or 100 µm size
(labelled b in Figure 1) for a spacing of 30 and 50 µm (labelled a), respectively and a height of 19 µm
forms the structure sitting on top of the 15 µm thick dielectric layer. Parallel plate capacitors are the
most common configuration in the field of capacitive pressure sensors, and enable small, compact
and cost-effective sensors with low power consumption, good direct current (DC) response and high
sensitivity [24].

The mechanical deformation under compression of the intermediate dielectric medium defines
the pressure sensitivity of such a pressure sensor such that:

∆C = C − C0 = ε·A ∆d
d·(d − ∆d)

(1)

C0 is the initial capacitance value of the sensor, ∆C is the change of capacitance under compression,
A is the surface area of the overlapping plates, ε is the permittivity of the dielectric medium between
the two plates, d is the initial overall thickness of the medium and ∆d is the amount of compression.
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Figure 1. Schematic of the proposed capacitive pressure sensor where the top (i) and bottom (iii)
layers are the Ti/Cu-coated glass layers used as parallel capacitor plates and to encapsulate the
microstructured elastomeric blend layer (ii). The geometry of the latter layer is defined by the spacing a
(30 and 50 µm) and dimension b (35 and 100 µm, respectively) of the square micro-pillar array features.
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For a linear elastic deformation of the dielectric medium of a Young’s modulus E:

P =
∆d
d

E (2)

and for a small deformation ∆d << d:

∆C ≈ C0·
∆d
d

= C0·
P
E

(3)

Hence the pressure resolution ∆C of a capacitive pressure sensor and the resulting detectable
signal output depend upon the mechanical properties of the intermediate dielectric layer through the
Young’s modulus, the exerted stress and the dimensions of the sensor. The linear dependence of ∆C to
the structure size and the requirement for small-sized capacitive devices impose a significant challenge
in acquiring distinguishable capacitive signal variations to low pressure loads.

To enable large compressive deformations under low compressive loads and a high signal to noise
ratio (SNR), thin film elastomers with very low Young’s modulus, such as polybutyrate (Ecoflex®,
Smooth-On, Macungie, PA, USA) [16] and polyurethane [17], have been previously utilised as dielectric
media (method 1). The interest in elastomer-based sensor structures stems from the potential in
developing simple, cost-effective and flexible devices. However capacitive sensors based solely
upon a uniform unstructured dielectric medium suffer from slow response times, due to the highly
viscoelastic creep of thin-film soft elastomers [18]. Hence they require significant time to relax to their
initial uncompressed state, thereby limiting their practical value.

A more judicious approach in attaining an improved pressure resolution rests in microstructuring
the elastomeric dielectric medium [18–21] (method 2). This method generates effective loads that
are experienced by the medium as significantly larger than the ones actually applied. In [19] this was
accomplished by forming a PDMS diaphragm configuration between two Cu deposited capacitor layers
on PDMS substrates; while in [20], in continuation to the work presented in [18], a PDMS micron-sized
pyramidal array geometry was patterned and sandwiched between two aluminium-coated silicon
wafers and, in another laminated configuration, between two indium tin oxide-coated PET substrates.
The latter configuration is advantageous as the ability to control the spacing and size of the
features enables a much higher and tunable sensitivity to small compressive loads (<10 kPa).
The resulting device exhibits also a very fast response time of less than 1 s as the air voids allow
elastomeric microfeatures to elastically deform. Moreover, the capacitor plates remain planar during
compressive loading.

In this article, a combination of these two approaches (methods 1 and 2) has been explored for the
manufacture of sensors with enhanced tunability in the low-pressure regime (<10 kPa). A PDMS blend
with a tunable Young’s modulus of as low as 5 kPa was tested as the deformable dielectric medium.
The elastomer was also structured as indicated in Figure 1. Although the microstructuring of the
dielectric medium with arrays of pyramidal features with large spacing (>180 µm) and very small apex
surfaces (<7 µm × 7 µm) has been demonstrated to provide a high sensitivity [20], it could however
have a detrimental impact to device stability. The small resulting available surface area of such features
would hinder the direct bonding of the medium to the substrate and may compromise the structural
integrity of the sensor during extensive operation. The denser square micro-pillar array chosen here
provides a significantly larger feature surface area to allow direct bonding of the structured layer with
increased resilience to shear stresses.

An effective compressive load, Peff, can be defined as a function of the geometrical characteristics
of the micro-pillar array and the tunable mechanical properties of the PDMS blend such that:

Peff ∝ k1k2P (4)

k1 =
A

N·b2 and k2 =
E

Eblend
(5)
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where k1 denotes the local compression enhancement at the surface area b2 of the micro-pillar, with N
the number of the features, and k2 the magnitude rise in compressibility of the dielectric blend medium.
The effective compression load is consequently higher than the pressure exerted on an unblended
dielectric medium. As a result, a higher deformation for a given load is expected with this new type of
device enabling thereby a very high sensitivity of the sensor.

The manufacture of the sensor follows a cost-effective process involving soft lithography for
the micro-structured layer, similar to the works presented in [21,25–27], and a simple layer-by-layer
bonding process of the individual sensor elements as depicted in Figure 2.

A 19 µm thick positive photoresist (AZ 9260, MicroChemicals GmbH, Ulm, Germany) was firstly
spin-coated and developed on a glass carrier wafer, and patterned to serve as a sacrificial mould for
the manufacture of the micro-pillars array. A 15 µm PDMS-based elastomer was then spin-coated into
the mould and cured at 100 ◦C for 1 h to generate the microstructured layer of the sensor shown in
panel A of Figure 2. A 18 mm ×18 mm in size and 120 µm thick borosilicate glass layer (D263®T cover
glass, Schott AG, Mainz, Germany), with its top side coated with 50 nm/100 nm of Ti/Cu via e-beam
evaporation, was then bonded to the surface of the elastomer to serve as one of the capacitor plates of
the sensor. To enable a successful strong bond, both surfaces were treated using a hand-held corona
discharge equipment (BD-20AC, Electro-Technic Products Inc., Chicago, IL, USA) for 1 min and heated
at 100 ◦C for 1 h after contact. The corona discharge creates an oxygen plasma-rich environment, which
temporarily shifts the surface of PDMS from hydrophobic to hydrophilic and enables bonding to other
surfaces [28].
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structure was then similarly bonded to a second Ti/Cu-coated glass layer to form the bottom 
capacitor plate of the sensor using the same surface treatment as shown in panel C of Figure 2.  

A strong bond was demonstrated between the three layers using the “Scotch-tape strip test” 
performed on the top capacitor layer of the sensor. The micro-pillar features provided adequate 
surface area to enable direct bonding to the substrate and provided strong resilience to any 
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forces were manually applied between the top and bottom capacitor plates in an effort to separate 
them. Detachment of the layers eventually occurred when the sensor structure was compromised 
through breaking the glass top and bottom glass capacitor plates under heavy loading.  

Figure 2. Sensor fabrication process: (A) Formation of a microstructured polydimethylsiloxane (PDMS)
blend layer on a glass carrier wafer via a sacrificial photoresist mould and bonding of top capacitor
plate Ti/Cu-coated glass layer; (B) detachment of carrier wafer in an acetone bath by dissolving the
photoresist mould; (C,D) bonding of the bottom capacitor plate and copper-coated polyimide (Cu-PI)
output interconnections.

Demoulding of the structure, shown in panel B of Figure 2, was facilitated by an acetone bath,
which dissolved the photoresist mould leaving the micro-structured layer intact and bonded onto the
Ti/Cu-coated glass layer serving as the top capacitor plate of the sensor. The structure was immersed in
the acetone bath for less than a minute, to avoid deterioration of the elastomer, followed by successive
cleaning in Isopropyl Alcohol (IPA) and deionized (DI) water baths. The structure was then similarly
bonded to a second Ti/Cu-coated glass layer to form the bottom capacitor plate of the sensor using the
same surface treatment as shown in panel C of Figure 2.

A strong bond was demonstrated between the three layers using the “Scotch-tape strip test”
performed on the top capacitor layer of the sensor. The micro-pillar features provided adequate
surface area to enable direct bonding to the substrate and provided strong resilience to any detachment
of the micro-structured layer. The strength of the bonding was also observed when shear forces
were manually applied between the top and bottom capacitor plates in an effort to separate them.
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Detachment of the layers eventually occurred when the sensor structure was compromised through
breaking the glass top and bottom glass capacitor plates under heavy loading.

A thin layer of silver epoxy was doctor-bladed on both conductive surfaces of the sensor and
copper-coated thin polyimide (PI) films were bonded, as shown in panel D of Figure 2, to serve
as the output interconnections of the sensor to an impedance analyser (Agilent/Hewlett Packard
4192A, Santa Clara, CA, USA). Although the Cu-coated PI films could potentially be utilised as the
parallel plates of the capacitor, rigid thin Ti/Cu-coated glass layers were selected here to eliminate any
unwanted influence of non-uniform buckling and bending of the sensor structure during the pressure
characterisation. The glass layers also ensure that the extracted performance of the sensor is attributed
solely to the impact of normal forces applied uniformly to the sensor surface.

Pressure measurements were manually conducted in the range of 0.8 to 6.5 kPa via a set of
precision weights, ranging from 5 to 100 g as shown in Figure 3. This range corresponds to the pressure
regime expected from the compression garments.
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Figure 3. Sensor characterisation using precision weights.

Photographs of the dielectric layer are provided in Figure 4 alongside profilometric measurements
carried out by a Zygo Viewmeter 5200 profilometer (Zygo Corporation, Middlefield, CT, USA). Good
agreement was obtained between the dimensions of the desired micro-pillar array and the actual
measurements (36 µm compared to 35 µm, 102 µm compared to 100 µm).
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feature size and 30 µm spacing structure; bottom: 100 µm feature size and 50 µm spacing structure).
Right: Examination of both structures under optical profilometry via a Zygo Viewmeter 5200 prior to
sensor assembly.

In order to explore the influence of the dielectric medium upon the sensor performance,
PDMS blends of Sylgard 527 with Sylgard 184 were utilised. The adjustment of the ratio of these
two constituents creates a tunable Young’s modulus with values ranging from 5 to 1.7 MPa, as reported
in [29], characterised by a well-defined linear and a non- linear regime when the quantity of Sylgard
184 to Sylgard 527 either exceeds or falls below the 20% threshold respectively. Reducing the
Young’s modulus of the Sylgard 184 elastomer taken alone and across that range usually involves
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the manipulation of the curing agent/elastomer base ratio from the recommended 1:10 value [30] to
a value as low as 1:70. The latter is obtained however through partial crosslinking of the polymer
resulting in unwanted diffusion of free non-crosslinked elastomer, as well as variability on the attained
modulus as high as 600% [29,31–34]. However, blends based upon Sylgard 184 (E = 1.7 MPa) and
Sylgard 527 (E = 5 kPa) maintain the stoichiometry of both constituents since both are prepared in
their optimal stoichiometric ratio, 1:10 and 1:1 respectively, prior to being mixed together. The mixture
therefore produces completely crosslinked elastomers at any given blend ratio.

In this work, three types of sensors were developed: PDMS blends of Sylgard 184 and Sylgard 527
at 1:10 and 1:5 with Young’ modulus of 50 and 130 kPa respectively; and pure PDMS Sylgard 184
with Young’s modulus 1.7 MPa [29]. Furthermore, two micro-pillar geometries, of 35 and 100 µm
feature sizes and a spacing of 30 and 50 µm respectively, were also tested in combination with the
above. Development of the PDMS blends was carried out in a cleanroom environment similarly to the
fabrication process of the sensor described earlier, by first preparing in individual glass vials Sylgard
184 and Sylgard 527 to their optimal stoichiometric ratios, via the use of a high precision digital scale
(<±0.001g), and then combing them to form the desired blend ratios. Thorough shear mixing of the
constituents for each formulation was facilitated through the use of a magnetic stirrer at 500 rpm
for 15 min, followed by a degassing step in a desiccator to remove trapped air pockets and produce
uniform mixtures.

3. Results and Discussion

The response of the capacitive sensor was initially evaluated utilizing unstructured polymeric
films as the deformable layer of the sensor (Figure 5, Region A, “S184-flat”). The change in the capacitive
response recorded is small in the case of pure PDMS Sylgard 184 polymeric films (E = 1.7 MPa) with
a 1.6 pF capacitive increase for compressive loads as high as 6.5 kPa. A similar behaviour was also
observed in the case of PDMS blends of type 1:10 (E = 50 kPa) and type 1:5 (E = 130 kPa) with
a maximum capacitance change of approximately 2.4 pF for both blend types over the same load
(Figure 5, Region A, “10:1-flat” and “5:1-flat”). In both cases, the response of the sensor demonstrated
a near-linear dependence to pressure within this dynamic range, in agreement with analysis presented
earlier. A pressure resolution of 1.75 kPa was recorded, taking into account that the noise level of the
experimental apparatus, and hence the lowest stable capacitance variations measured were approximately
200 fF (±100 fF).
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with feature sizes of either 35 µm (“S184-35”) or 100 µm (“S184-100”), and similarly structured PDMS
blend types of 5:1 (“5:1–35”, “5:1–100”) and 10:1 (“10:1–35”, “10:1–100”).
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A significantly enhanced capacitive response of the sensor was measured when a microstructured
polymeric film was utilized as the deformable layer as reported also in [18,20,21]. In the case of a sensor
with pure Sylgard 184 microstructured film (Figure 5, Region B “S184-35”, “S184-100”), an improved
performance was recorded with a maximum capacitance value of 4 pF, for a pressure resolution of
approximately 1 kPa. No substantial change in capacitance was recorded between sensors with the
two pillar geometries of 35 and 100 µm dimensional sizes, possibly due to the limited capacitive
resolution of the measuring system and the parasitic capacitances introduced by the output wiring.

The introduction of polymeric films of lower Young’s modulus had an even more dramatic
impact on the sensor performance and sensitivity. Capacitive sensors with a microstructured film
of 184/527 PDMS blend exhibited a substantially improved response, as the maximum recorded
capacitance change reached 10 pF with a significantly enhanced pressure resolution down to 0.25 kPa
in the case of 1:10 PDMS blend type (Figure 5, Regions C and D). A noticeable improvement in the
sensor sensitivity was also observed between the type 1:5 PDMS blend (Region C) and the type
1:10 PDMS blend (Region D), as expected due to the reduced Young’s modulus of the latter, expressed
as an increased response of approximately 2 pF compared to values obtained with the 1:5 PDMS blend.
A slight increase in the sensor dynamic range for both blend types was also recorded amongst sensors
with the two pillar geometries of 100 and 35 µm, respectively, as expected due to the reduced effective
surface of the latter (Figure 5, Regions C and D, “10:1–35” vs. “10:1–100” and “5:1–35” vs. “5:1–100”).
The capacitive behaviour of the sensor in this case was found to be non-linear, with a sharp response
for low pressure loads below 3 kPa, followed by a capacitive increase at a slower rate, in agreement
with the results reported in [18,20].

A good response-time to pressure cycling of less than 1 s was also observed. It was also confirmed
that the microstructured PDMS blend film retracts to its original state following compressive deformation.
All measurements in this case were conducted under the presence of a small load (20 grams precision
weight) placed on the sensor surface, corresponding to a pressure of approximately 0.6 kPa, in order to
provide a more secure site for the fast and successive addition and removal of loads. The noticeable
drop in capacitance change, shown in Figure 6, is primarily attributed to the experimental apparatus.
The manual positioning and stacking of precision weights involved involuntary movement and
introduction of excessive loads that may have compromised the integrity of the sensor structure
and disrupted the output wiring leading to additional parasitic capacitive noise reflected on the
sensor response.
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4. Conclusions

A small parallel-plate capacitive pressure sensor was developed using a simple, scalable and
cost-effective fabrication process, which incorporated a microstructured 184/527 PDMS blend thin film
with a tunable Young’s modulus as the force-sensing dielectric medium. A dense micro-pillar array
was chosen which enables strong bonding to substrates such as Ti/Cu-coated thin glass layers utilised
here, serving as the capacitor plates, leading thereby to a successful and simple sensor assembly.
The introduction of the PDMS blend enabled a pressure resolution of as low as 0.25 kPa within
the low-pressure range <10 kPa which, in combination with the capability to precisely control the
dimensions of the features through conventional photolithography, allows a manufacturable and
fully tunable sensor performance. The extracted maximum pressure resolution reported in this work
was restricted by the limitations imposed by the relatively low capacitive resolution achieved by the
experimental apparatus. We expect that, if a shielding technique, dedicated electronics and/or signal
processing are implemented, such as in [35–37], much lower capacitive variations in the sub-fF regime,
that correspond to pressure variations of <0.025 kPa, could be effectively recorded.

The rigid nature of the capacitor plates constitutes a drawback of the current sensor. Such a
configuration does not lend itself easily to applications in wearable electronics and sensing as the device
is inflexible and non-conformable. This shortcoming however can be easily overcome by eliminating
the thin glass layer and utilizing flexible electrodes to serve as the capacitor plates. This could be
potentially achieved by either bonding the PDMS blend microstructured layer directly to Cu-coated PI
films, to allow a degree of conformability, or preferably by bonding it directly to metal-coated PDMS
substrates, to allow biaxial stretching and enhanced conformability. The common issues with metal
integrity (cracking) during deposition or deformation (bending/stretching) of PDMS thin films [38]
would however be required to be effectively addressed, as indicated in [39,40].

Overall, the sensor tunable performance, small-size practical configuration and cost-effective
fabrication process were deemed appropriate for use in compression garments or other applications
requiring low of levels of pressure detection (<10 kPa) at a resolution of less than 0.5 kPa. Drawing
from the above, current work is now focused in isolating the parasitic capacitive noise, developing
and characterising a fully flexible sensor and integrating sensor arrays in compression garments to
dynamically monitor treatment efficacy.
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