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Abstract: This paper presents an investigation of the dynamics of microbeams under multiple
harmonic electrostatic excitation frequencies. First, the response of a cantilever microbeam to two
alternating current (AC) source excitation is examined. We show by simulations the response of
the microbeam at primary resonance (near the fundamental natural frequency) and at secondary
resonances (near half, superharmonic, and twice, subharmonic, the fundamental natural frequency).
A multimode Galerkin method combined with the Euler-Bernoulli beam equation, accounting for
the nonlinear electrostatic force, has been used to develop a reduced order model. The response
of the cantilever microbeam to three AC source excitation is also investigated and shown as a
promising technique to enhance the bandwidth of resonators. Finally, an experimental study of a
clamped-clamped microbeam is conducted, demonstrating the multi-frequency excitation resonances
using two, three, and four AC sources.
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1. Introduction

The last decade has witnessed a growing research interest in down-conversion and the filtering
of frequencies from radio frequency to intermediate frequency signals using microelectromechanical
systems (MEMS) mixer-filters. Recent advancements in the field of micromachining technologies that
yield high-Q, high frequency resonators and their applications as filters have shown the ability to realize
the entire radio frequency RF-front end of a wireless transceiver in a single silicon chip. This has led to
considerable interest in tuning and generating MEMS resonators of multiple resonance frequencies.

Several works have studied high Q and high resonance frequency resonators as filters and
mixers [1–7]. Micro disk resonators have been shown to achieve Q > 2300 (at 193 MHz) [1], as well
as Q > 2650 (at 1.156 GHz) [2]. Polysilicon ring resonators have been shown to reach frequencies
up to 1.52 GHz with a Q > 2800 [3,4]. Mechanically coupled clamped-clamped microbeams have
been introduced to enable MEMS mixer-filters, which convert a 200 MHz signal to 37 MHz [5].
Down-conversion and the filtering of frequencies up to 3.2 GHz has been demonstrated using a
resonant mixer filter with potential for a single-chip receiver. Mixing through MEMS resonators have
been demonstrated in [6,7].

MEMS mixer-filters exploit the nonlinearity of the electrostatic force with the drive voltage in
the elelctromechanical resonators. Mixing and filtering functions are achieved simultaneously as
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the RF signals pass though the resonators. Parametric amplification has been used to improve the
down conversion performance of a multimodal mixer-filter. Maximum amplification was reached
for different modes due to the different values of the spring constant for each mode [8]. Resonators
with capacitive mixer transducers were used to perform mixing and filtering of electrical input signals.
Down conversion for RF signals from 40–200 MHz and 27 MHz were demonstrated in [5]. The method
of multiple scales was used to calculate the response of a three degrees of freedom system under
multi-frequency excitation [9]. An integrated complementary metal–oxide–semiconductor (CMOS)
mixer was designed based on clamped-clamped beams and two different approaches were used to
implement both up and down conversion mixers [10]. A coupled mode to analyze the acousto-optic
diffraction with multiple waves at different carrier frequencies was developed in [11].

A methodology was introduced in [12] to provide analytical expressions for the mode shapes and
natural frequencies of a coupled microbeam resonator filter. The response of a single-degree-of-freedom
model under different types of nonlinearities was considered with the method of multiple scales for
subharmonic resonance [13]. Softening and hardening behaviors were shown.

The dynamics behavior of a capacitive resonator under multi-frequency excitation was studied
in [14]. Good agreement between the results of a single degree of freedom model and the experimental
results was achieved. The ability to control the shift of the combinational frequency for any frequency
range was also shown in [14]. The dynamics of clamped-clamped microbeams under two harmonic
excitations were investigated analytically and experimentally in [15,16]. Higher amplitude and
bandwidth were achieved near the main and higher order modes of vibrations. The dynamics of
a torsional micromirror actuator was explored theoretically and experimentally under two-source
excitations [17]. The results showed enhancement for the amplitude and bandwidth of the resonator
near the primary resonance.

Research on the dynamics of microbeams has been investigated extensively in the literature
over the past decade, for example in [18–20]. Higher pull-in voltage is achieved due to the intrinsic
size dependence of the materials, while the natural frequency of the micro-plate is a function of its
thickness [19,20]. Dynamics behaviors were investigated for different microbeams with coupling
between in-plane, out-of-plane, longitudinal, rotational, transverse, and parametric vibrations [21–23].
The dynamics of an initially curved microbeam were investigated under electrostatic actuation [24].
These works have been conducted under single harmonic excitations.

It is noted that the dynamic behavior of cantilever microbeams under multi-source excitation has
not been investigated before. Additionally, the use of multi-source excitation combined with secondary
resonances has not been studied. Using more than two source of excitation has not been shown before.

In this paper, we explore the dynamics of a cantilever beam under multi-frequency excitation
near primary and secondary resonances (subharmonic and superharmonic). We investigate the
multi frequency excitation benefit in the down-conversion of a RF signal at a very high frequency of
960 MHz to a low frequency around 50 MHz. We also show experimental results for the response of
clamped-clamped microbeams for multi-frequency excitations for cases of three and four AC sources.

2. Response to Two Harmonic Sources

2.1. Problem Formulation

We consider a polysilicon microbeam, shown in Figure 1, which is clamped at one end and free at
its other end. The beam is actuated by an electrode on the substrate at a gap width d from the lower
electrode. The beam is modeled as an Euler-Bernoulli beam with length L, width b, and thickness h.
The force function in the problem is modified by adding another harmonic AC load with a different
excitation frequency. For a cantilever beam actuated with VDC and two VAC loads, the governing
equation of motion is given by [25]
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ρbh
..

Ŵ(x̂, t̂) + EIŴx̂x̂x̂x̂(x̂, t̂) + ĉ
.

Ŵ(x̂, t̂) =
εb[VDC + VAC1cos(Ω̂1 t̂) + VAC2cos(Ω̂2 t̂)]2

2[d − Ŵ(x̂, t̂)]2
(1)

where ρ is the material density, I is the moment of inertia of the cross section, E is the Young’s modulus,
ĉ is a viscous damping coefficient, VDC is the polarization voltage, VAC1 and VAC2 are the amplitudes of

excitation of the first and second AC sources, respectively,
^
Ω1 and

^
Ω2 are their respective frequencies,

respectively, and ε is the dielectric constant of the gap medium. In the equation, Ŵ(x̂, t̂) is the beam
displacement at location x̂ and time t̂, while the subscript letter indicates the spatial derivative and the
dot indicates the time derivative. The associated boundary conditions are given by

Ŵ(0, t̂) = 0 (2)

Ŵx̂(0, t̂) = 0 (3)

Ŵx̂x̂(l, t̂) = 0 (4)

Ŵx̂x̂x̂(l, t̂) = 0 (5)
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௫ܹ(0, (ݐ = 0 (9) 

௫ܹ௫(1, (ݐ = 0 (10) 

௫ܹ௫௫(1, (ݐ = 0 (11) 

where: 
4

2 3

4

3 3

ˆ12  6εα lcl
E d

c
Tbh hE

==  (12) 
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Figure 1. Schematic for the microbeam under direct current (DC) and two alternating current
(AC) loads.

For convenience, we introduce the following non-dimensional variables:

W =
Ŵ
d

, x =
x̂
l

, t =
t
T

, Ω = Ω̂T, T =

√
ρbhl4

EI
(6)

Substituting Equation (6) into Equations (1)–(6) we end up with the following non-dimensional
governing equation and boundary conditions:

..
W(x, t) + Wxxxxx(x, t) + c

.
W(x, t) =

α2[VDC + VAC1cos(Ω1t) + VAC2cos(Ω2t)]2

(1 − W(x, t))2 (7)

W(0, t) = 0 (8)

Wx(0, t) = 0 (9)

Wxx(1, t) = 0 (10)

Wxxx(1, t) = 0 (11)

where:

c =
12ĉl4

ETbh3 α2 =
6εl4

Eh3d3 (12)
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Next, we expand the numerator of the electrostatic force as below

F = (VDC + VAC1cos(Ω1t) + VAC2cos(Ω2t))2

= V2
DC + V2

AC1cos2(Ω1t) + V2
AC2cos2(Ω2t) + 2VDCVAC1cos(Ω1t) + 2VDCVAC2 cos(Ω2t)

+VAC1VAC2[cos((Ω1 + Ω2)t) + cos((Ω1 − Ω2)t)]

(13)

The last term in Equation (13) contains the combinational terms: Ω1 + Ω2 and Ω1 − Ω2, which
can lead to resonances similar to that of the main resonance when Ω1 + Ω2 = Ωn or Ω1 − Ω2 = Ωn,
where Ωn is the resonance (natural) frequency. Such phenomena can be very useful in the fields of
mixing and filtering, as explained in the introduction section.

Next, the Galerkin method [25] is applied to extract a Reduced Order Model (ROM). Thus,
the beam deflection is expressed as

W(x, t) =
n

∑
1

ui(t)φi(x) (14)

where ui(t) is the modal coordinate and φi(x) is the mode shape of the beam. The excitation source in
the dynamic analysis is taken to be a combination of AC and DC loads. By substituting Equation (14)
into Equation (7) and applying the procedure for the Galerkin method [25], we end up with the
following Reduced Order Model equation

∫ 1
0 φj

(
1 −

n
∑
1

ulφl

)2( n
∑
1

uiω
2
non,iφi +

n
∑
1

..
uiφi

)
dx + cnon

∫ 1
0 φj

(
1 −

n
∑
1

ulφl

)2( n
∑
1

.
uiφi

)
dx

= α2[VDC + VAC1cos(Ω1t) + VAC2cos(Ω2t)]2
∫ 1

0 φjdx
(15)

A system of ordinary differential equations in the modal coordinate ui(t) can be extracted after
executing the spatial integrals in Equation (15). To obtain good convergence in the dynamic response,
we use at least three modes when simulating the dynamic response, which is done by integrating the
ordinary differential equations with Long Time Integration (LTI). To explore the static and dynamics of
the capacitive resonator, several case studies will be taken into consideration.

The static response problem can be achieved by setting all time derivatives and AC loads in
Equations (7)–(11) to be equal to zero. This leads to the following:

Wsxxxx (x) =
α2VDC

2

(1 − Ws(x))2 (16)

Ws(0) = 0 (17)

Wsx(0) = 0 (18)

Wsxx(1) = 0 (19)

Wsxxx(1) = 0 (20)

where, Ws(x) represents the static response. Equations (16)–(20) are solved numerically, using the
Galerkin procedure combined with a Newton Raphson method to obtain the static response.

2.2. Case I: Primary Resonance

The beam under study in this case will be assumed to have the geometric and physical parameters
shown in Table 1. The beam is excited with two excitation sources: one is the RF signal, while the other
is the Local Oscillator frequency (LO). Static and dynamics analysis in addition to the variation of the
natural frequency of the beam will be investigated.
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Table 1. Geometric and physical parameters Case I.

Parameter Value

Young’s Modulus (E) 160 Gpa
Density (ρ) 2332 Kg/m3

Beam length (L) 2 µm
Beam width (b) 200 nm

Beam thickness (h) 158 nm
Gab (d) 75 nm

The variations of both the static deflection of the microbeam tip and the natural frequency with
the DC voltage load are shown in Figure 2a,b, respectively. In Figure 2a, stable and unstable branches
are shown for the static response for different DC loads until pull-in at a maximum static deflection of
35 nm is reached at a DC load of 22.5 V. Figure 2b shows the variation of the first natural frequency by
varying the DC load. As seen from the figure, the natural frequency of the beam is near 52.85 MHz.
This value is reduced as the applied DC load increases until reaching zero at pull-in around 22.5 V.

To investigate the dynamic response of the cantilever resonator, the reduced-order model of
Equation (16) is integrated numerically in time using three mode shapes for different DC and AC loads.
First, the frequency response curve of the resonator is shown under a single frequency excitation,
VAC2 = 0, Figure 3.
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Figure 2. (a) Variation of the static deflection of the microbeam tip with the DC voltage; (b) Variation
of the natural frequency of the microbeam with the DC voltage.
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Figure 3. Frequency response curve near beam resonance, VDC = 5 V, VAC1 = 2 V, VAC2 = 0, c = 0.1.
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In the following dynamic analysis, the swept frequency is taken to be Ω1, while Ω2 is kept as
the fixed one. Next, the cantilever beam is subjected to a DC load and two source AC loads. Figure 4
demonstrates down conversion where the combination resonances of the beam appear at much higher
values compared to the primary resonance of Figure 3. Note that the fixed frequency is chosen such
that when it is subtracted from the excitation frequency (near 960 MHz) it results in the main resonance
frequency (near 52 MHz, as in Figure 3). The beam in this case oscillates at its resonance producing
a frequency response at 52 MHz, thereby achieving the down conversion from the incoming input
frequency of 960 MHz.Micromachines 2017, 8, 32  6 of 14 
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Figure 4. Multi frequency excitation (a) Lower amplitude: VDC = 2.5 V, VAC1 = 0.5 V, Ω2 = 906 MHz,
VAC2 = 6 V, c = 0.05; (b) Higher amplitude: VDC = 3.5 V, VAC1 = 1 V, VAC2 = 6 V, Ω2 = 906 MHz,
c = 0.05.

2.3. Case II: Secondary Resonances

In this section, we investigate the multi-frequency excitations near secondary resonance
(superharmonic and subharmonic) for a cantilever beam actuated with electrostatic force [26].
The following geometric and physical parameters shown in Table 2 are used for the case study.

Table 2. Geometric and physical parameters for Case II.

Parameter Value

E 82.7 Gpa
ρ 1400 Kg/m3

cnon 0.00289
L 500 µm
b 50 µm
h 3 µm
d 3 µm

Based on the parameters provided in Table 2, the natural frequency of the beam is found to
be around Ωn = 15 kHz, while the static pull-in voltage is found to be 5.42 V. Figure 5 shows
the frequency response curve near superharmonic resonance of order two (near half the natural
frequency) for two loading cases, a single AC excitation as shown in Figure 5a and a two AC
excitation source as shown in Figure 5b. The normalized displacement is plotted versus frequency.
Figure 5a shows the superharmonic resonance at Ωn/2 triggered by electrostatic nonlinearity due
to a single AC source [19,20]. The maximum normalized amplitude achieved was found to be
0.52 for VDC = 1 V and VAC1 = 0.35 V. On the other hand, in Figure 5b the system was
excited with two AC loads, VAC1 = 0.35 V and VAC2 = 0.1 V, and with a fixed frequency of
Ω2 = Ωn/2 = 7.5 kHz. In addition to triggering of the superharmonic resonance by the quadratic
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electrostatic nonlinearity, the superharmonic resonance is triggered by another subtractive combination
frequency at Ωn − Ω2 = 7.5 kHz. This means that the superharmonic resonance is now triggered by
two sources; one from the electrostatic nonlinearity while the other is from frequency mixing. This lead
to a higher normalized amplitude near 0.6 as shown in Figure 5b due to the new AC load compared
to 0.52 in Figure 5a. The mixed response also shows two peaks corresponding to the two different
sources of resonances. A further increase in the VAC2 voltage from 0.15 V in Figure 6a to in Figure 6b
leads to a further increase in the normalized amplitude from 0.68 to 0.84.Micromachines 2017, 8, 32  7 of 14 
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Figure 5. Frequency response curves near superharmonic resonances for VDC = 1 V, VAC1 = 0.35 V
(a) Single source excitation at VAC2 = 0; (b) two-source excitation at VAC2 = 0.1 V, Ω2 = 7.5 kHz.
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Figure 6. Frequency response curves near superharmonic resonances and two source excitation at
VDC = 1 V, VAC1 = 0.35 V (a) VAC2 = 0.15 V, Ω2 = 7.5 kHz; (b) VAC2 = 0.25 V, Ω2 = 7.5 KHz.

Next, we investigate the effect of multi-frequency excitation around sub-harmonic resonance.
Figure 7a shows that the normalized tip displacement is plotted versus frequency under a single
AC load. The subharmonic resonance is triggered here at 2Ωn ≈ 30 kHz due to the electrostatic
nonlinearity with a maximum normalized amplitude of 0.5. In Figure 7b, the system was excited with
two AC loads, VAC1 = 0.15 V and VAC2 = 0.01 V, and with a fixed frequency of Ω2 = Ωn = 15 kHz.
In addition to the resonance of Figure 7a, a combination resonance frequency of Ωn + Ω2 = 30 kHz is
triggered, which leads to a higher normalized amplitude of 0.6. Further increase in the value of VAC2

leads to higher amplitudes of 0.61 and 0.62 as shown in Figure 8a,b, respectively.
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Figure 7. Subharmonic frequency response curve for VDC = 1 V, VAC1 = 0.15 V and (a) Single source
excitation, VAC2 = 0; (b) two source excitation at VAC2 = 0.01 V, Ω2 = 15 kHz.Micromachines 2017, 8, 32  8 of 14 
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Figure 8. Subharmonic frequency response curve for VDC = 1 V, VAC1 = 0.15 V, (a) VAC2 = 0.013 V;
(b) VAC2 = 0.017 V, Ω2 = 15 kHz.

Therefore, one can note from the above results the interesting effect of multi-frequency excitation
in getting higher amplitude oscillation and activating the super and sub-harmonic resonances, which
in turn increases the sensitivity of these resonators when used as sensors.

3. Case III: Response to Three Harmonic Sources

Next, we investigate the response of a cantilever beam resonator under three-source excitation.
The geometrical properties of the resonator are shown in Table 3.

Table 3. Geometric and physical parameters for Case III.

Parameter Value

Young’s Modulus (E) 160 Gpa
Density (ρ) 2332 Kg/m3

Beam length (L) 1.85 µm
Beam width (b) 200 nm

Beam thickness (h) 180 nm
Gab (d) 75 nm

Figure 9 shows the frequency response curve for the beam when excited by a single source
excitation near the beam natural frequency, which is equal to 70.37 MHz.
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Figure 9. Frequency response curve near beam primary resonance at VDC = 5 V, VAC1 = 2 V, VAC2 = 0,
and c = 0.1.

Figure 10 shows the frequency response for a load of 5 V VDC, 0.7 V VAC1, 5 V VAC2, 5 V VAC3,
4 MHz Ω2, 8 MHz Ω3, and 0.1 non-dimensional damping. The maximum amplitude of 11.5 nm in the
figure is due to the primary resonance, while the peaks very close to the primary resonance at 66 MHz
and 74 MHz are due to the combination resonances (Ω1 + Ω2). The peaks, which are shown farther
from the primary resonance, at 62 MHz and 78 MHz, are the combination resonance created from the
primary resonance and the second fixed frequency (Ω1 + Ω3).
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Figure 10. Multifrequency response near the beam primary resonance due to three-source excitation at
VDC = 5 V, VAC1 = 0.7 V, VAC2 = 5 V, VAC3 = 5 V, Ω2 = 4 MHz, Ω3 = 8 MHz, c = 0.1.

Now the multi-frequency response is demonstrated at a range away from the primary resonance
range. In Figure 11, the frequency is swept starting from an initial value of 930 MHz and ending
with a final value of 980 MHz, which is considered in the off-resonance range. The load is taken
to be 3 V, while the fixed frequencies are at 885 MHz and 890 MHz, respectively. According to
the values of the fixed frequencies, two additive combination peaks, Ω2 + Ωn = 958.29 MHz and
Ω3 + Ωn = 960.37 MHz, are created as shown in Figure 11. The bandwidth of the individual peaks is
around 1 MHz. By controlling the fixed frequencies, we can control the bandwidth of these peaks and
a wider bandwidth can be achieved.

To amplify the response in the previous figure, we use different loads in Figure 12. The VDC

bias is set at 5 V and the VAC voltage for the sweep is at 1.5 V, while the first and second fixed VAC

voltages are at 6 V and 8.5 V, respectively. Here we can see the individual peaks created by the additive
combination resonances at Ω2 + Ωn = 958.09 MHz and Ω3 + Ωn = 960.37 MHz. A higher response of
17 nm is achieved.
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Figure 11. Multi-frequency excitation off-resonance: VDC = 3 V, VAC1 = 1 V, VAC2 = 6 V, VAC3 = 6 V,
Ω2 = 885 MHz, Ω3 = 890 MHz, c = 0.1.
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Figure 12. Multi-frequency excitation off-resonance: VDC1 = 5 V, VDC2 = 0 V, VAC1 = 1.5 V,
VAC2 = 6 V, VAC3 = 8.5 V, Ω2 = 887.72 MHz, Ω3 = 887.92 MHz, c = 0.1, amplified response
due to higher loads.

Figure 13 shows another result for more amplified resonance under 5 V VDC and 8 V VAC3, while
the remaining loads remain similar to the loads in the previous figure. In this figure, we choose Ω2

and Ω3 values to be very close to each other, 887.72 MHz and 887.92 MHz, respectively, to produce
two additive combining peaks of Ω2 + Ωn = 958.09 MHz and Ω3 + Ωn = 958.29 MHz. These two
peaks merge as one amplified peak. We can notice a significant increase of 1.6 MHz in the bandwidth
in comparison with 1 MHz for the individual peaks from Figure 11.
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Figure 13. Multi-frequency excitation off-resonance: VDC = 5 V, VAC1 = 1 V, VAC2 = 6 V, VAC3 = 8 V,
Ω2 = 887.72 MHz, Ω3 = 887.92 MHz, c = 0.1, the two peaks merge as one combined peak.
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4. Experimental Case Study

In this section, we demonstrate experimentally the multi-frequency excitation based on a
clamped-clamped microbeam of 600 µm micro length and with two-thirds electrode actuation at
a pressure = 3.6 mTorr (0.4 Pa). The experimental results are validated with simulation results after
we extracted the parameters in Table 4 using the parameter extraction procedure and the model
reported in [16]. Figure 14a shows a top view picture of the fabricated beam. The microbeam is
made of 6 µm polyimide coated with 500 nm nickel from the top and a chrome/gold/chrome layer
from the bottom with thicknesses of 50/250/50 nm, which forms the upper electrode of the resonator.
The lower electrode spans two thirds of the beam length and is fabricated by sputtering 50 nm chrome
and 250 nm gold. The two electrodes are separated by a 2 µm air gap. The fabrication details are
presented in [15,16]. The experimental setup used to test the beam is presented in Figure 14b. The setup
is composed of a high frequency laser-Doppler vibrometer, a micro system analyzer (MSA-500) to
measure the vibration amplitude, a data acquisition card connected with an amplifier to provide the
actuation signals of a wide range of frequencies and amplitudes, and a vacuum chamber equipped with
ports to pass the actuation signal and measure the pressure. Additionally, the chamber is connected to
a vacuum pump. The frequency response curves are generated by taking the steady state maximum
amplitude of the motion.

Table 4. Parameters extracted experimentally.

Parameter Value

Non-dimensional axial force (Nnon) 76.3
Flexural regidity (EI) 2.93 × 10−11 N·m2

Damping ratio 6 × 10−4

First, the beam is tested by a DC load and a single AC source near its primary resonance, shown
in Figure 15a. As the AC amplitude is increased, a hardening behavior of the beam is observed.
The simulations are conducted using a multi-mode reduced order model and the Runge Kutta time
integration [16].
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The simulated results are in good agreement with the experimental results as shown in Figure 15b.
Then, the beam is subjected to a DC load with two AC harmonic excitation loads, as shown in Figure 16,
three AC harmonic loads, as shown in Figure 17, and four AC loads, as shown in Figure 18. In these
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figures, one frequency source is swept around the primary resonance, while the others are set at fixed
values of frequencies, which are selected to be small to generate additive and subtractive resonances
around the primary resonance. One can notice that for every AC source added, two near peaks around
the primary resonance are generated. These experimental and simulation results confirm the attractive
feature of multi-frequency excitations.
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Figure 16. Resonances using two-source excitation near the first mode at VDC = 3 V, VAC1 = 2 V,
Ω1 = Swept, VAC2 = 6 V, (a) Ω2 = as shown; (b) Ω2 = 1 kHz.
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Figure 17. Resonances using three-source excitation near the first mode at VDC = 3 V, VAC1 = 2 V,
Ω1 = Swept, Ω2 = 1 kHz (a) VAC2 = as shown, VAC3 = as shown, Ω3 = 5 kHz; (b) VAC2 = 6 V,
VAC3 = 6 V, Ω3 = 2 kHz.
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Figure 18. Resonances using four-source excitation near the first mode at VDC = 3 V, VAC1 = 2 V,
Ω1 = Swept, VAC2 = as shown, Ω2 = 1 kHz, VAC3 = as shown, Ω3 = 3 kHz, VAC4 = as shown,
Ω4 = 5 kHz.

5. Conclusions

Modeling and simulation for a MEMS cantilever beam resonator under multi-excitation frequency
have been presented. A multi-mode Reduced-Order-Model has been extracted through applying
the Galerkin discretization method. Different case studies were taken into consideration. Static and
dynamic analyses were carried out to explore the behavior of the resonator. From Case I, it has been
found that multi-frequency excitation offers down-conversion of the RF signal from a frequency of
960 MHz to around 50 MHz. It showed the realization of the mixing and filtering of RF signals with a
nominal bandwidth and good enough maximum amplitude. In Case II, mixing at secondary resonances
(superharmonic and subharmonic) is demonstrated. In Case III, multi-frequency excitation using three
sources has been demonstrated. Finally, an experimental case study confirming the conclusions in Case
III was demonstrated based on a clamped-clamped beam. In conclusion, multi-frequency excitation
has been studied in depth, revealing various exciting possibilities to utilize it for practical applications.
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