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Abstract: We report on our investigation of a low Reynolds number non-equilibrium electrokinetic
flow in a micro/nanochannel platform. Non-equilibrium electrokinetic phenomena include so-called
concentration polarization in a moderate electric field and vortex formation in a high electric field.
We conducted a spectral analysis of non-equilibrium electrokinetic vortices at a micro/nanochannel
interface. We found that periodic vortices are formed while the frequency varies with the applied
voltages and solution concentrations. At a frequency as high as 60 Hz, vortex generation was obtained
with the strongest electric field and the lowest concentration. The power spectra show increasing
frequency with increasing voltage or decreasing concentration. We expect that our spectral analysis
results will be useful for micromixer developers in the micromachine research field.

Keywords: Vortex generation; spectral analysis; concentration polarization; micro/nanochannel;
micromixer; electrokinetics

1. Introduction

With the improvement of micromachining technology over the past few years, the integration
of nanoscale features has produced versatile microfluidic devices for various applications, such
as sample preconcentration, biomolecule and DNA separation, and efficient filtration [1–13].
Recently, the ionic depletion-enrichment phenomenon in a micro-nanofluidic chip has attracted
attention [2,5–7,9,10,14–16]. Researchers have reported that nanochannels (or nanopores) having
nanometer dimensions exhibit unique ion perm-selectivity at low ionic strengths. These phenomena
can be explained by an electric double layer overlap, since the electric double layer thickness is
comparable to the nanochannel dimension [10,12,17–20]. In such a case, only selective ions can
pass through the nanochannel. This ion selectivity results in so-called concentration polarization
(CP) [5–7,14,21].

Non-equilibrium electrokinetic phenomena include CP and a nonlinear current–voltage relation
across nanoporous membranes [2,6,10,14,16]. Concentration polarization refers to the creation of
separate regions of enriched and depleted ion concentrations, respectively, upon the application of
an electric field across micro/nanochannel interfaces. An interesting behavior that accompanies this
concentration polarization is that local electrokinetic responses can be greatly amplified, especially
in the ion depletion zone. As the CP zone widens in the depletion zone, a so-called depletion shock
can occur [11,20,22–25]. This is possible when ions with low mobility travel in the same direction
as the bulk flow toward the reservoir region, or when ions with high ion mobility move away from
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the depletion region. Applied voltages can be coupled with heterogeneous electric properties—in
particular, gradients of ionic conductivity—to generate electric body forces in the bulk liquid. The
depletion shocks result in a steep change in the concentration over a very short distance. These large
concentration gradients in the background electrolyte create high electric field gradients. These strong
electric field gradients at the ion depletion zone result in instability and consequently form strong
vortices, which are useful in micromixing. Typical fluid flows in a microchannel have low Reynolds
numbers since inertial forces were strongly damped by viscous forces [26,27]. Micromixing is, thus, one
of the difficult problems in micromachine technology. We believe that non-equilibrium electrokinetic
vortices can be efficiently utilized in micromixers.

There have been several experimental studies related to vortex generation induced by
non-equilibrium electrokinetics in micro/nano fluidic mixing systems. Pu et al. first reported
the visualization of CP near micro/nanochannel interfaces and showed a qualitative model of
CP [19]. Han et al. first visualized strong vortex structures generated by the aforementioned
mechanism [5,6,14,21]. Santiago et al. presented theoretical and experimental approaches to explain
CP and vortex generation [10,11,26]. Kim et al. proposed a U-shaped microfluidic device utilizing
vortices near micro/nanochannel interfaces to enable mixing [4]. They demonstrated the application
of this type of mixer as an efficient micromixing technique. Song et al. described a quantitative study
on a passive polydimethylsiloxane (PDMS) microfluidic mixer using a vortex index [28]. Lee and
Kim achieved millisecond-order rapid mixing in their microfluidic device using vortices induced by
non-equilibrium electrokinetics [9]. They also conducted a parametric study of active microfluidic
mixing. Their results show that the mixing performance is greater with a higher applied voltage and a
lower ion concentration. The mixing characteristics were quantified in terms of a mixing index and
mixing time. Rubinstein et al. suggested similar non-equilibrium electrokinetic flow on the surface of
perm-selective membranes [22].

We present spectral analysis results for non-equilibrium electrokinetic flows at micro/nanochannel
interfaces. One related study is Posner et al. [26] (although the mechanism of vortex generation is
different). They reported temporal power spectra with time-delay phase maps of the vortices in a
T-shaped single microchannel, and analyzed the low Reynolds number flow with an electric Rayleigh
number. In our spectral analysis at a micro/nanochannel interface, we measured the frequency under
various conditions of electric fields and solution concentrations. The electric field affects the electric
body forces inside a microchannel. The concentration of a working solution is related to the dimensions
of an electric double layer. We expect that our results can contribute to an understanding of unstable
electrokinetic flows and active microfluidic mixing.

2. Experimental

The non-equilibrium electrokinetic microfluidic device considered in this study is comprised of
double U-shaped microchannels and a set of nanochannels across the two sections of this microchannel,
as shown in Figure 1. The microchannel has a single stream and there is short-circuited flow through
nanochannels. The amount of fluid flow is expected to be negligible through the nanochannels because
of high flow resistance. The purpose of these nanochannels is to create CP or vortex generation around
the micro/nanochannel interface. We fabricated this device using a standard microelectromechanical
systems (MEMS) process. We patterned the microchannels and nanochannels on a silicon substrate
with photolithography, and etched these channels using a two-step reactive ion etching (RIE) process.
For electrical insulation, we deposited SiO2 onto the substrate using a thermal oxidation process.
Finally, we bonded a glass wafer to this patterned silicon substrate for sealing and visualization
purposes. Mao and Han studied the temperatures of bonding required to maintain nanochannels
while avoiding nanochannel collapse [29].



Micromachines 2016, 7, 109 3 of 8

Micromachines 2016, 7, 109  3 of 8 

 

electrolyte solution and a small quantity of Rhodamine B (~0.3 µM) that was contained in an 
electrolyte solution. We were able to observe non-equilibrium vortex flow patterns in 
micro/nanochannel devices using inverted epifluorescent microscopy (IX-51, Olympus, New York, 
NY, USA) with a 20×, NA = 0.4 objective lens in a dark room. A charge-coupled device (CCD) camera 
(Coolsnap, Photometrics, Tucson, AZ, USA) connected to the microscope was used to take digital 
images of mixing patterns and transfer the visualization data to a personal computer (PC). We used 
a commercial power supply (IT 6834, Itech, Nanjing, China) to deliver electrical power to the 
microfluidic device through platinum wires submerged in the reservoirs.  

 

Figure 1. Schematic of the micro/nano channel device and the probing point for spectral analysis. The 
microchannel is 15 µm deep, 150 µm wide, and 1.5 cm long. The nanochannel is 10 µm wide and 50 
nm deep. Inset: microscopic image of the fabricated microchannel and nanochannel. 

In the first step of the experiments, we completely filled the microchannels with KCl solution 
after the initial flushing steps with deionized water. Then, we applied DC electric potentials across 
the microfluidic device and observed the micro/nanochannel interfaces. By using the CCD camera, 
we recorded 10,000 frame images (the limit of our current setup in a single experiment) of vortex 
formation in 20 s at a frame rate of 500 frames/s. In our previous study, we calculated the 
millisecond-order mixing time for a similar micro-mixer design based on the same vortex generation 
mechanisms [9]. The frame rate of 500 frames/s was adequate for the time scale of the flow 
phenomena. For sufficient statistics, we repeated the recording eight times for both experimental 
conditions: the applied electric field and the concentration of the KCl solution. 

3. Results and Discussion  

Figure 2 shows the visualized images of non-equilibrium electrokinetic vortices in the 
microfluidic device under applied electric fields. We obtained the time sequence of the fluorescent 
intensity field for all the experimental conditions. We normalized the digitalized intensity values in 
each pixel from 0 to 1 as follows: 

Figure 1. Schematic of the micro/nano channel device and the probing point for spectral analysis.
The microchannel is 15 µm deep, 150 µm wide, and 1.5 cm long. The nanochannel is 10 µm wide and
50 nm deep. Inset: microscopic image of the fabricated microchannel and nanochannel.

The microchannel is 15 µm deep, 150 µm wide, and has an overall length of approximately 1.5 cm.
The distance between two microchannel sections, across which the set of eight nanochannels is located,
is 50 µm. This distance, thus, coincides with the nanochannel length. All of the nanochannels are 50 nm
deep, 10 µm wide, and have 10 µm spacing. The microfluidic device has four reservoirs at the end of
two parallel microchannels (see Figure 1). Direct current (DC) electrical potentials were applied through
submerged platinum wire electrodes in the electrolyte solutions at the reservoirs. We prepared various
concentrations of potassium chloride (KCl) solution as the electrolyte solution and a small quantity
of Rhodamine B (~0.3 µM) that was contained in an electrolyte solution. We were able to observe
non-equilibrium vortex flow patterns in micro/nanochannel devices using inverted epifluorescent
microscopy (IX-51, Olympus, New York, NY, USA) with a 20ˆ, NA = 0.4 objective lens in a dark room.
A charge-coupled device (CCD) camera (Coolsnap, Photometrics, Tucson, AZ, USA) connected to the
microscope was used to take digital images of mixing patterns and transfer the visualization data to
a personal computer (PC). We used a commercial power supply (IT 6834, Itech, Nanjing, China) to
deliver electrical power to the microfluidic device through platinum wires submerged in the reservoirs.

In the first step of the experiments, we completely filled the microchannels with KCl solution
after the initial flushing steps with deionized water. Then, we applied DC electric potentials across the
microfluidic device and observed the micro/nanochannel interfaces. By using the CCD camera, we
recorded 10,000 frame images (the limit of our current setup in a single experiment) of vortex formation
in 20 s at a frame rate of 500 frames/s. In our previous study, we calculated the millisecond-order
mixing time for a similar micro-mixer design based on the same vortex generation mechanisms [9].
The frame rate of 500 frames/s was adequate for the time scale of the flow phenomena. For sufficient
statistics, we repeated the recording eight times for both experimental conditions: the applied electric
field and the concentration of the KCl solution.
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3. Results and Discussion

Figure 2 shows the visualized images of non-equilibrium electrokinetic vortices in the microfluidic
device under applied electric fields. We obtained the time sequence of the fluorescent intensity field
for all the experimental conditions. We normalized the digitalized intensity values in each pixel from 0
to 1 as follows:

Inorm “

ˇ

ˇ

ˇ

ˇ

I ´ Imin

Imax ´ Imin

ˇ

ˇ

ˇ

ˇ

(1)

where Inorm is the normalized value in each pixel; I is the measured fluorescent intensity in each pixel;
and Imax and Imin are the bright-field and dark-field intensities, respectively. First, we subtracted
the background noise from the images and we set a non-dye area as zero intensity with Imin.
We subsequently applied Equation (1) to our focused area for further analysis. Figure 2 shows three
images taken at different time frames under the same experimental conditions. Vortices are found at
the micro/nanochannel interface upon the application of an electric voltage of 120 V. The concentration
of the working solution (KCl) is 0.5 mM. The Reynolds number inside the microfluidic channel
is approximately 0.046, which was calculated using the hydraulic diameter and the flow rate.
All experiments were performed with this fixed Reynolds number to analyze only the electrokinetic
effects on the vortex formation in this device.
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Figure 2. Images of vortex generation near the micro/nanochannel interface.

We selected the region of interest in the microchannel as the probing point for our spectral analysis
(see Figure 1). This region is located near the micro/nanochannel interface along the center line of
the microchannel. The probing point corresponds to a two-by-two square matrix of the normalized
fluorescent intensities. We averaged these four intensity values to obtain a single representative
value at each time frame. This representative fluorescent intensity at this probing point fluctuates
significantly when vortices were formed during our experiments. We conducted the spectral analysis
based on the time sequence of the representative fluorescent intensity value.

In our spectral analysis, we used about 80,000 frames of vortex images around the
micro/nanochannel interface. Figure 3 shows one example spectrum exhibiting a single peak
near 50 Hz. This means that periodic vortices were formed around 45 Hz when we applied
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120 V with 0.1 mM KCl solution. We performed the same type of spectral analysis for other
experimental conditions.
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mixer [4]. A stronger electric field generates a stronger electroosmotic flow inside the microfluidic 
chip, and the resulting electric body force enhances the collapsing of the CP effect. Upon the collapse 
of the concentration polarization effect, an abrupt ionic flux through the nanochannels is generated 
and it leads to unstable microflows near the micro/nanochannel interface.  

 

Figure 3. Example of the power spectrum.  

 
Figure 4. Spectral analysis results with different applied voltages. 

Figure 3. Example of the power spectrum.

Figures 4 and 5 show the power spectra under various voltage and concentration conditions.
The frequency ranged from 29 to 60 Hz in our experiments with a voltage range of 80 to 230 V and a
concentration of 0.1 to 50 mM. We established the periodic behavior of non-equilibrium electrokinetic
vortices, which has not previously been reported in the literature. The maximum vortex frequency is
60 Hz at 230 V and 0.1 mM. The minimum vortex frequency is 29 Hz at 80 V and 50 mM.

Figure 4 shows the effect of different applied voltages on the frequency of vortex generation. A
higher electric potential results in a higher vortex formation frequency in a system with a fixed KCl
concentration. This indicates a stronger vortex formation in a stronger electric field. Kim et al. reported
the relation between applied voltage and vortex formation by using a similar microfluidic mixer [4].
A stronger electric field generates a stronger electroosmotic flow inside the microfluidic chip, and
the resulting electric body force enhances the collapsing of the CP effect. Upon the collapse of the
concentration polarization effect, an abrupt ionic flux through the nanochannels is generated and it
leads to unstable microflows near the micro/nanochannel interface.
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Figure 5. Spectral analysis results with different solution concentrations.

Figure 5 shows the relation between the concentration of the solution and the vortex formation
frequency. A higher concentration of the solution decreases the size of the electric double layer on
the nanochannels. This decrease lowers the ion perm-selectivity of the nanochannel (see Introduction
for a detailed explanation). The lowered ion selectivity consequently mitigates the CP effect, thereby
weakening vortex formation. The decreased size of the electric double layer is closely related to the
so-called overlimiting current, which is an important factor in vortex formation. The thickness of an
electric double layer depends on the corresponding electrolyte solution: the thicker the electrical double
layer (EDL), the better the ion selectivity in a nanochannel, leading to faster and easier generation
of a vortex. Moreover, the velocity of electroosmotic flow depends on electric fields in the channels.
Therefore, higher voltage applied between electrodes with the same distance may increase the velocity
of electro-osmotic flow, thus affecting the frequency of vortex generation. Our experimental spectral
analysis observations are consistent with those reported in previous research (e.g., [4,9]).

4. Conclusions

We performed spectral analysis with a micro/nanochannel platform based on non-equilibrium
electrokinetics. The collapse of the concentration polarization effect results in strong vortices near
the micro/nanochannel interface, albeit at a low Reynolds number. We calculated the temporal
power spectra of vortex generation and investigated the relation between frequency and two major
operation parameters: the applied voltage and the solution concentration. The spectra show the
periodic nature of non-equilibrium electrokinetic vortices. Higher frequency vortices are formed either
with a stronger electric field or with a lower solution concentration. We believe that our results relating
to the frequency of non-equilibrium electrokinetic vortices can be useful in future micromixer research
and development.
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