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Abstract: More and more services are based on knowing the location of pedestrians equipped with
connected objects (smartphones, smartwatches, etc.). One part of the location estimation process is
attitude estimation. Many algorithms have been proposed but they principally target open space areas
where the local magnetic field equals the Earth’s field. Unfortunately, this approach is impossible
indoors, where the use of magnetometer arrays or magnetic field gradients has been proposed.
However, current approaches omit the impact of past state estimates on the current orientation
estimate, especially when a reference field is computed over a sliding window. A novel Delay Kalman
filter is proposed in this paper to integrate this time correlation: the Delay MAGYQ. Experimental
assessment, conducted in a motion lab with a handheld inertial and magnetic mobile unit, shows
that the novel filter better estimates the Euler angles of the handheld device with an 11.7˝ mean error
on the yaw angle as compared to 16.4˝ with a common Additive Extended Kalman filter.

Keywords: attitude estimation; extended Kalman filter; Kalman filter with delay; inertial mobile unit
(IMU); magnetometer; pedestrian navigation

1. Introduction

Many smart connected objects have been developed for the internet of things (IoT). They are meant
to facilitate daily life activities with many services that are based on embedded sensors. Among these
services are geolocation of lost objects, home automation services or monitoring human well-being.
These sensors are primarily made of telecommunication chipsets and inertial micro electro-mechanical
sensors (MEMS): a tri-axis accelerometer and tri-axis gyroscope. Tri-axis magnetometers are more and
more available in connected objects. Indeed, whereas several years ago, hardware manufacturers had
to mount separated triads of accelerometers and gyroscopes on printed circuit boards, they are now
commonly available in a single 9-degrees-of-freedom magnetic and inertial mobile unit (MIMU), which
consists of calibrated and co-aligned triads of accelerometers, gyroscopes and magnetometers. As they
are increasingly available in everyday objects, there is an increasing interest in the development of
methods to process the magnetometer measurements and propose novel IoT personal applications.

Historically, magnetometer and compass records were processed to estimate the direction toward
the Earth North Magnetic Pole. As illustrated in Figure 1, this direction is changed into the azimuth
angle, i.e., angular direction toward the True (geographic) North, using the local deviation angle
extracted from geographical tables. This popular method can only be applied if the measured magnetic
field vector corresponds to the Earth Magnetic Field. Indeed, when the magnetometer measurement is
perturbed, the estimated direction points toward the local magnetic perturbation source instead of the
North Pole [1]. Consequently, this method is only valid in environments where there is no artificial
source of magnetic field. This is typically the case in open outdoor spaces, but not in the urban and
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indoor spaces where most IoT applications are expected to function. To overcome this limitation,
research has been conducted to invent novel processing strategies of magnetic field measurements
for urban/indoor surroundings. Three main different approaches have been proposed to process
magnetometer data even when they are perturbed by artificial sources of magnetic field:

1. Magnetic field fingerprinting (FP);
2. Velocity estimation from spatial magnetic field gradients measured with an assembly

of magnetometers;
3. Attitude angles estimation from magnetic field gradients measured in time with a single

tri-axis magnetometer.
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The performance of this method strongly depends on the calibration of each individual 
magnetometer because they must all measure the same magnetic field, which can be very 
challenging when the hosting platform exhibits varying fields. The distance between each 
magnetometer is also critical to precisely measure the spatial gradient. Globally, the performance of 

Figure 1. Estimation of the azimuth angle using the Earth’s magnetic field measurement ym and the
declination angle between the True North and the horizontal component.

1.1. Magnetic Field Fingerprinting (FP)

The first approach is based on the fingerprinting principle that was first developed to geolocate
mobile objects using Wi-Fi receiver signal strength (RSS) data. In the context of magnetometer based
positioning, instead of using Wi-Fi RSS, magnetic field amplitudes are used [2]. The method works as
follows. In an offline phase, there is a map of indoor/urban magnetic field amplitudes. A database
stores all amplitude fingerprints along with their geographical coordinates in the map. During the
online phase, real time magnetic field measurements are compared with the database to extract the
associated geographical positions.

The advantage of this method is that it directly provides the user’s location in the mapped
environment and it is built on the diversity and complexity of indoor/urban magnetic fields to
distinguish between different geographical positions. Similarly to Wi-Fi FP, this approach assumes that
the measured urban/indoor magnetic fields are the same as the one measured to build the map in the
offline phase. This is a strong assumption that is not always true. It is the for example the case when
the smart object is close to an elevator lift or during emergency situations when all metal doors are
automatically closed to prevent the spread of fire. In these situations, the performance will deteriorate.

1.2. Velocity Estimation from Spatial Magnetic Field Gradients Measured with an Assembly of Magnetometers

The second approach uses an array of magnetometers separated by known distances to measure
the local spatial magnetic field gradient and derive the velocity estimate. The magnetic field space
gradient is related to the derivative of the position and the magnetic field temporal derivate based
on Biot-Savart laws [3]. A recursive process is then applied to track the mobile object in time
using the successive velocity estimates and knowing the initial geographical coordinates of the
magnetometer array.

The performance of this method strongly depends on the calibration of each individual
magnetometer because they must all measure the same magnetic field, which can be very challenging
when the hosting platform exhibits varying fields. The distance between each magnetometer is also
critical to precisely measure the spatial gradient. Globally, the performance of this method increase
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in surroundings with large magnetic field anomalies, and the best performances are achieved in
environments where many artificial sources of magnetic field are present. Because the magnitude
of the magnetic field rapidly drops when the separation between the artificial field source and the
magnetometer array increases (it follows an inverse cubic law), on many occasions the use of gradients
is not sufficient to compute good velocity estimates and complementary methods are needed.

1.3. Attitude Angles Estimation from Magnetic Field Gradients Measured in Time by a Single
Tri-Axis Magnetometer

The third approach computes the magnetic field gradient based on magnetometer measurements
that are recorded at different epochs while the mobile object is moving. When the local magnetic
field is assessed as static over two consecutive epochs, it is used to observe the rotation of the mobile
object between the two epochs. The angular rate of the dynamic object is then derived from the
successive quasi static magnetic field records [4]. Then, a recursive process estimates the attitude
angles of the connected object using the angular rate estimates and the known initial attitude angles.
In this approach requires only one tri-axis magnetometer.

When the local magnetic field is fluctuating over time (e.g., power on of an IT object, a moving
elevator, etc.), this approach cannot be applied. To mitigate this issue, magnetically derived angular
rates are merged with gyroscopes angular rates and accelerations. This hybridization enables
continuous tracking of the orientation of the MIMU. It provides also a continuous calibration of
the large accelerometer and gyroscope errors that are inherent to the low cost nature of MEMS. Existing
attitude estimation filters are principally based on the Extended Kalman Filter (EKF) with a quaternion
parameterization of the attitude angles. Quaternion parameterization has also been recently proposed
to model the gyroscope signal [5]. Three popular hybridization filters have been tested for manual
and locomotion tasks performed by six human subjects [6]. A comparison of four main hybridization
filters of MIMU signals has also been recently conducted in a motion laboratory [7]. Despite good
performances (several degrees in average), they show that magnetic anomalies are still a challenge for
many filters.

1.4. Challenge of Attitude Estimation Filters Based on Magnetic Fields Recorded at Different Epochs

Existing filters, which are based on the magnetically derived angular rate principle, merge
magnetic field data that have been recorded at different epochs: at the beginning of the quasi static
magnetic field period (t0) and at the epoch of state’s computation (tk). However they do not consider
the fact that the orientation of the mobile object is different at the two epochs 0 and k, which limits
the solution. They also do not consider the correlation between the two epochs and the quality of the
orientation estimate at the beginning of the quasi static period. This approximation is made in existing
filters where averaged data and instantaneous data are fused to estimate the attitude at epoch k.

These limitations are addressed in this article with a novel delay EKF, which is called the Delay
Magnetic, Acceleration Fields and Gyroscope Quaternion (Delay MAGYQ) and considers the states’
correlation over the quasi-static period of magnetic field. The novelty is that this algorithm considers
the quality of the magnetic field estimated at the beginning of the quasi static period, which serves as
a reference for deriving the angular rates, and its correlation with the current epoch to estimate the
orientation angles of the mobile object and its variance. The past MAGYQ filter does not consider this
time correlation to estimate the attitude angles.

2. The Delay MAGYQ Attitude Estimation Filter

2.1. MEMS Signals Modelling

A signal model is introduced for each accelerometer, gyroscope and magnetometer measurement.
These mathematical models are essential to represent the measurement errors that are known to be
very large with MEMS and must be mitigated in the attitude estimation process.
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2.1.1. Magnetometer Signal Model

The tri-axis magnetometer senses the local magnetic field vector. In order to measure only
the surrounding magnetic field and not the one produced by the hosting platform, it must first be
calibrated. Soft and hard iron errors are estimated along with other deterministic errors due to the
fabrication process [8,9]. Once the magnetometer is calibrated, it can be modeled by:

ym “ mb ` nm (1)

where ym is the magnetometer measurement, mb is the local magnetic field expressed in the body
frame (frame of mobile object) and nm is a white Gaussian noise (0, σ2

m).

2.1.2. Accelerometer Signal Model

The accelerometer measures the specific force experienced by the IMU. Its output is a vector that
can be modeled by:

ya “ ab
ib ´ gb ` ba ` na (2)

where ya is the measured acceleration vector, ab
ib is the acceleration vector expressed in the body frame

with respect to the inertial frame, na is a white Gaussian noise (0, σ2
a) and ba is the accelerometer bias.

2.1.3. Gyroscope Signal Model

The gyroscope measures the angular rate of the MIMU in the body frame with respect to the
inertial frame and some error terms. The gyroscope signal is modeled by:

yg “ω
b
ib ` bg ` ng (3)

where yg is the gyroscope measurement,ωb
ib is the angular rate of the MIMU with respect to the inertial

frame, expressed in the body frame, ng is a white Gaussian noise (0, σ2
g) and bg is the gyroscope bias.

Instead of considering the gyroscope’s signal as an angular rate, it can be expressed in terms of
rotational elements. The exponential function of the quaternion is used to perform the change of state
as follows:

@q P H, exp pqq “
`8
ÿ

i“0

pqqi

i!
(4)

The average angular velocity ω between two epochs, corresponding to the time interval ∆t,

induces the rotation qω,∆t defined by qω,∆t “ exp
´

∆t
2 pωqq

¯

, with pωqq “

´

0 ωT
¯T

the
quaternion form of a vector. Based on the quaternion set, a new gyroscope signal model is proposed:

qyg ,∆t “ qω,∆t ` bqg ,∆t ` nqg ,∆t (5)

qyg ,∆t is the quaternion corresponding to the rotation sensed by the gyroscope between two consecutive
epochs over the time interval ∆t. qω,∆t is the quaternion that represents the true rotation of the MIMU
gyroscope between two successive epochs over the time interval ∆t. nqg ,∆t is a white Gaussian noise
(0, σ2

qg ,∆t) and bqg ,∆t is the rotation bias introduced by the gyroscope.

3. Analysis of the Influence of Past Estimates on the Orientation Estimation with
Magnetometer Measurements

3.1. Problem Statement

As introduced earlier, the first algorithms, which assume that the magnetometer records
correspond to the Earth magnetic field, cannot be applied in urban and indoor surroundings. Indeed,
the large time and space fluctuations of the magnetic field in these surroundings complicate the
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processing of magnetometer data. The goal is still to estimate the attitude angles of the MIMU in
the magnetically perturbed environment. This is still possible using magnetic anomalies since they
provide useful information about the orientation changes of the MIMU, especially when the local
magnetic field is steady over a time interval. This period is the “quasi static field” (QSF) period and it
is defined by:

TQSF “ ptkq0ďkďN and mn
re f (6)

where mn
re f is the steady magnetic field that is the reference vector for the period. The following

observation equation is used to estimate the orientation error using the magnetometer data over the
QSF interval.

´

δmn
tk

¯

q
“

´

mn
re f

¯

q
´ q̂n

btk
b pym ptkqqq b q̂n

btk
(7)

To estimate δmn
tk

in Equation (7), the reference magnetic field mn
re f must first be computed. It is

defined at the beginning of the quasi static period TQSF from the magnetometer measurement at epoch
t0 by:

ˆ

m̂n
re fTQSF

˙

q
“ q̂n

bt0
b pym pt0qqq b q̂n

bt0
(8)

The reference magnetic field in Equation (8) is estimated from the measurements and the
orientation estimate introducing two different errors. The first error comes from the magnetometer
measurement that is associated to a white Gaussian noise. This error can be mitigated with a low
pass filter. The second error comes from the orientation estimation of the MIMU at epoch t0, which is
not perfect.

Knowing the reference magnetic field from Equation (8), it is possible to estimate the innovation
δzk, at epoch tk from Equation (7), which becomes:

`

δztk

˘

q “

ˆ

m̂n
re fTQSF

˙

q
´ q̂n

btk
b pym ptkqqq b q̂n

btk
(9)

3.2. Magnetic Field Based Observation Equation

Equation (9) is expanded using the reference field mn
re f associated to the QSF period.

`

δztk

˘

q “

ˆ

m̂n
re fTQSF

˙

q
´

´

mn
re f

¯

q
`

´

mn
re f

¯

q
´ q̂n

btk
b pym ptkqqq b q̂n

btk
(10)

This equation is linked to two error terms. The first one δmn
tk

comes from the transformation of
the magnetic field measured in the body frame into the navigation frame at epoch tk. The navigation
frame corresponds to the local mapping frame (East North Up frame). The second error term δmn

t0
comes from the transformation of the magnetic field measured in the body frame into the navigation
frame at epoch t0. This second error term also corresponds to the error on the reference magnetic field
estimate over the quasi-static period.

δzk “ δmn
k ´ δmn

0 (11)

The first error, which comes from the transformation of the magnetic field into the navigation
frame δmn

tk
, can be related with a first order development to the error on the quaternion estimate

δqn
btk

by:

δmn
k “ 2

”

Atk atk Id´
“

Atkˆ
‰

ı

δqn
btk
`Cn

b

´

q̂n
btk

¯

nm (12)
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where atk “ xq̂n
btk

,
´

m̂n
tk

¯

q
y is the scalar product, Atk “ q1tk m̂n

tk
´

“

uqtkˆ
‰

m̂n
tk

with

q̂n
btk
“

´

q1tk uqtk

¯T
, Cn

b

´

q̂n
btk

¯

is the rotation matrix calculated from the quaternion estimate

q̂n
btk

, ryˆs “

¨

˚

˝

0 ´y3 y2

y3 0 ´y1

´y2 y1 0

˛

‹

‚

is the antisymmetric matrix of the vector y “
´

y1 y2 y3

¯T
.

The innovation δztk , which is sensed by the magnetometer, can be related to the errors on the
orientation estimation δqn

btk
and δqn

bt0
by

δzk “ Htkδqn
btk
´Ht0δqn

bt0
`Mtk ,t0nm (13)

The Jacobean matrices in Equation (13) are given by:

Htk “ 2
”

Atk atk Id´
“

Atkˆ
‰

ı

, Ht0 “ 2
”

At0 at0Id´
“

At0ˆ
‰

ı

(14)

and
Mtk ,t0 “

”

Cn
b

´

q̂n
btk

¯

`Cn
b

´

q̂n
bt0

¯ı

(15)

4. Design of the Novel Attitude Estimation Filter: Delay MAGYQ

The design of the novel attitude estimation filter Delay MAGYQ is based on [5]. The modification
to integrate the delay induced by the use of an averaged angular rate is inspired by [10]. Other articles
have also addressed the delay approach in Kalman Filter [11,12].

4.1. State Vector

The eleven parameters state vector is given by

x “
”

qn
b bqg ,∆t ba

ıT
P R11 (16)

where qn
b is the quaternion that describes the transformation of the MIMU between the body and the

navigation frames, ba is the accelerometer bias introduced in Equation (2) and bqg ,∆t is the gyroscope
quaternion bias given in Equation (5).

4.2. Dynamic Evolution of the State Vector

The rotation qωtk´1,∆t between the epochs tk´ 1 and tk is first estimated. The subscript ∆t is

omitted in the development of the following equations to ease the reading. x̂tk “

”

q̂n
btk

b̂qgtk b̂atk

ıT

is the state vector estimate at epoch tk.

$

’

’

’

’

’

&

’

’

’

’

’

%

qygtk´1
“ exp

ˆ

´

ygtk´1

¯

q

˙

q̂ωtk´1 “ qygtk´1
´ b̂qgtk´1

q̂ωtk´1
“

q̂ωtk´1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
q̂ωtk´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(17)

The quaternion qn
b is propagated using the gyroscope measurements. The biases bqg and ba are

modeled with random walks.
$

’

&

’

%

q̂n
btk
“ q̂n

btk´1
b q̂ωtk´1

b̂qgtk “ b̂qgtk´1

b̂atk “ b̂atk´1

(18)
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4.3. Dynamic Evolution of the Covariance Matrix

The covariance matrix Ptk is associated to the perturbation of state vector δxtk . The time evolution
of Ptk depends on the stochastic models chosen to describe the evolution in time of the biases bqg

and ba. This choice impacts the Jacobian matrices Ftk´1 and Gtk´1 and the covariance matrix Qtk´1

associated with the system noise. They are given by

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Ftk´1 “

¨

˚

˝

Cq̂ωtk´1
´Mq̂n

btk´1
0

0 I 0
0 0 I

˛

‹

‚

Gtk´1 “

¨

˚

˝

´Mq̂n
btk´1

0 0

0 TsI 0
0 0 TsI

˛

‹

‚

ñ Ptk “ Ftk´1Ptk´1Ftk´1
T `Gtk´1Qtk´1Gtk´1

T (19)

The matrices Mq and Cq are defined using the quaternion product, which is modified into a
product of matrices by

q1 b q2 “ Mq1q2 “ Cq2q1 (20)

4.4. Time Evolution of the Covariance Matrix Involving Past Orientation Estimate

It is assumed that the orientation information sensed by the magnetometer depends on the
attitude angles at epoch t0. This orientation is labelled qn

bt0
. The corresponding estimation error δqn

bt0
is linked to the covariance matrix Pq,t0 . To integrate the time correlation of orientation estimates, the
covariance matrix that relates δqn

bt0
and δxtk must be computed. It corresponds to the correlation

between past orientation estimate and the present one and is given by

Pt0 “

«

Pq,t0 Ppq,bq,t0

Ppq,bq,t0
T Pb,t0

ff

(21)

with Pq,t0 is the covariance matrix of δqn
bt0

, Pb,t0 is the covariance matrices of the biases and Ppq,bq,t0
is

the covariance matrix between δqn
bt0

and the biases.

We define also the product Γt0,tk “
k
ś

p“0
Ftp´1 and P̆tk the covariance matrix of the state vector

perturbation
”

δxtk
T δqn

bt0
T
ıT

. Using previously introduced notations, this covariance becomes:

P̆tk “

»

—

—

–

Ptk Γt0,tk

«

Pq,t0

Ppq,bq,t0
T

ff

”

Pq,t0 Ppq,bq,t0

ı

Γt0,tk
T Pq,t0

fi

ffi

ffi

fl

(22)

4.5. Update Equations

The Kalman Gain K̆tk is computed for
”

δxtk
T δqn

bt0
T
ıT

using Equations (13) and (22).

K̆tk “ P̆tk H̆tk S̆tk
´1 (23)

where H̆tk “

”

Htk 0 ´Ht0

ı

, S̆tk “ H̆tk P̆tk H̆tk
T `Mtk ,t0RmMtk ,t0

T with Rm being the magnetometer
measurement covariance matrix.

The error state estimate δxtk is updated by:

δxtk “ Ktkδztk (24)
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where K̆tk “

«

Ktk

Kq,t0

ff

.

The update of the global covariance matrix P̆tk is classically computed:

P̆tk “ P̆tk ´ K̆tk H̆tk P̆tk (25)

The update of the covariance matrix Ptk is performed:

Ptk “

´

Id´Ktk

”

Htk 0
ı¯

Ptk `Ktk Ht0

”

Pq,t0 Ppq,bq,t0

ı

Γt0,tk
T (26)

5. Performance Evaluation with Experimental Data

5.1. Experimental Setup

For the experimentation, the subjects hold an MIMU in hand. Two units were used: the
ADIS-16488 from Analog Device and the VN-300 from VectorNav (Dallas, TX, USA). Both units
comprise a tri-axis gyroscope, a tri-axis accelerometer and a tri-axis magnetometer whose MEMS
technical specifications are given in [13,14] respectively. The acquisition frequency is set to 200 Hz for
the VN-300 and 100 Hz for the ADIS-16488.

The reference orientations and positions are estimated by the ART IR tracking system [15] installed
in a motion capture room (Figure 2a). It consists of 4 cameras on the floor and 4 cameras on the ceiling
working at a 60 Hz sampling frequency. The subject is equipped with the ART MoCap target set
comprising 6-degrees-of-freedom passive reflective markers. A marker tree is rigidly attached to the
handheld MIMU (Figure 2b) in order to track its reference positions and orientations in time. The
accuracy of the angular estimation of the ART IT tracking system is about one degree.Micromachines 2016, 7, 79 9 of 17 
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the test subject holding the MIMU in hand. (b) An ART MoCap targets tree is rigidly fixed to the
handheld MIMU.

The surface of the motion capture room is 9 m2, which is too small for performing pedestrian
walks. Consequently the test subjects were asked to walk on a treadmill even if this may modify the
human walking gait as compared to the natural gait of a pedestrian walking on a non-moving ground.
Four test subjects (S1, S2, S3 and S4) participated in the experiment.

5.2. Experimental Scenarios

Three different walking modes were performed: “texting”, “swinging” and unsupervised walking.
They correspond to the motions that travelers would do in the context of pedestrian navigation using
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a connected object. All four subjects performed the texting and swinging scenarios whereas only one
subject (S1) performed the unsupervised walking scenario.

‚ Texting mode: The test subjects are walking on the treadmill at a 5 km/h comfortable with
handheld IMU in a fixed position as compared to the pedestrian’s center of mass. This position
corresponds to a traveler that is reading navigation instructions given on the screen of the
connected object. Each dataset includes 100 to 140 strides, which corresponds to approximately
120 s.

‚ Swinging mode: The walking speed is again set to 5 km/h but the arm is naturally oscillating
during the walk. The MIMU is still carried in hand during the acquisition and its duration is the
same as in the texting scenario.

‚ Unsupervised walking: The walking speed ranges between 1 and 1.7 m/s. MIMU data was
acquired over a 13 min walk, which corresponds to a 780 m to 1.3 km range of distances. No
specific instruction was given to the test subject on how to carry the handheld MIMU. He/she
walks freely on the treadmill, simulating the use of a connected object that gives navigation
indications. During the experiment, several object carrying modes are observed. They correspond
to the outcomes of the human activity classification algorithm defined in [16]. Among them are the
“Swinging” mode (natural arm oscillation), the “Texting” mode (the upper limbs are constrained),
the “Phoning” mode or the Irregular mode (unclassified).

Figures 3 and 4 show, in blue, the norms of the MIMU’s acceleration vector and the sensed local
magnetic field for the unsupervised scenario respectively. For comparison purposes, the norms of the
Earth gravity field and the Earth magnetic field are plotted in red on the same figures. Figure 3 shows
that the subject performed large-amplitude hand motions during the experiment. Figure 4 shows that
many artificial sources of magnetic field are present in the motion lab room with a strongly perturbed
Earth magnetic field.Micromachines 2016, 7, 79 10 of 17 
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5.3. Attitude Estimation Algorithms Comparison Approach for AEKF, MAGYQ and Delay MAGYQ

The MIMU dataset are post-processed with three different attitude estimation algorithms: AEKF,
MAGYQ and MAGYQ Delay.

‚ Additive Extended Kalman Filter. The AEKF is a well-known algorithm that estimates the
orientation with a quaternion parameterization in its additive form [17]. It assumes that the
tri-axis magnetometer measures the Earth magnetic field. This hypothesis is common in most of
existing algorithms [18,19].

‚ Magnetic, Acceleration Fields and Gyroscope Quaternion (MAGYQ) Based Attitude Estimation.
This processing exploits steady magnetic field, even perturbed by artificial sources, to estimate the
orientation angles. The reference field is not anymore the Earth field but the magnetometer vector
measured at the beginning of the quasi static field period. Magnetic angular rates are then derived.
Furthermore this algorithm proposes a gyroscope error modelling directly in the quaternion space
to reduce linearization errors [5].

‚ Delay MAGYQ that is proposed in this paper and consider the correlation between the orientation
estimate at the beginning of the quasi static magnetic field period and the orientation estimate at
the epoch of the filter’s calculation.

Three different features are used to compare these algorithms:

‚ The convergence, which is used to assess the filter’s ability to correctly estimate the
state parameters.

‚ The convergence speed, which completes the convergence criteria by including the time needed
to achieve the convergence.

‚ The stability for assessing the filter’s ability to continue to correctly estimate the state parameters
once the convergence is achieved.

The choice of the initial state parameters impacts the filter’s behavior. The filter’s convergence
is more easily assessed when the initial state is different from the “true” values. When the filter is
initialized with a state vector that is close to the correct values, it is rather the filter’s stability that is
assessed. In what follows, all algorithms are initialized using the outcomes of the ART motion tracking
system. This allows concentration on assessing the ability of the filter to correctly estimate the state
parameters when large hand motions and large magnetic field fluctuations occur. The accelerometer
and magnetometer noises are set to be 10% of the signal to noise ratio. The gyroscope noise is set
according to the datasheet, around 0.0035˝/(s¨Hz1/2).
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5.4. Experimental Results

The performance analysis is conducted on the Euler angles estimates. The angular errors for the
roll, pitch and yaw angles are computed using the reference orientations computed by the ART IR
tracking system.

5.4.1. Texting Scenario

Table 1 gives the angular errors for all four subjects in the texting scenario. µ corresponds to the
absolute value of the mean error and σ is the associated standard deviation.

Table 1. Angular errors of AEKF, MAGYQ and Delay MAGYQ attitude estimation filters for the texting
scenario with all four subjects.

Algorithms AEKF MAGYQ Delay MAGYQ

Mean/standard
deviation µ σ µ σ µ σ

Roll (˝) 0.6 0.5 1.8 1.1 1.0 0.9
Pitch (˝) 1.8 0.6 2.7 1.8 1.6 1.3
Yaw (˝) 6.7 4.7 6.5 4.4 6.2 4.7

The results are similar for all subjects and algorithms, with not more than a 1˝ difference between
the three algorithms. In the texting scenario on the treadmill at 5 km/h, the MIMU’s acceleration
is relatively small compared to the Earth’s gravity field (Figure 5). Consequently, the measured
accelerations give a good observation of the gravity field in the MIMU’s frame and the roll and pitch
angles are well estimated by all algorithms. The yaw angle is also correctly estimated with a 6.2˝ to
6.7˝ average error. This is explained by the fact that the local magnetic field is relatively stable and
close to the Earth’s magnetic field. This is can be seen in Figure 6 that show the differences between
the Earth magnetic field vector and the local magnetic field vector computed with the MIMU’s records
that have been transformed into the local frame using the MotionLab orientation data. In this texting
scenario, the good magnetic field conditions and the rather small range of MIMU motions explain the
good accuracy of the orientation estimates with all algorithms.Micromachines 2016, 7, 79 12 of 17 
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5.4.2. Swinging Scenario

Table 2 gives the angular errors for all four subjects in the swinging scenario. Similarly to the
texting scenario, µ corresponds to the absolute value of the mean error and σ is the corresponding
standard deviation.

Table 2. Angular errors of AEKF, MAGYQ and Delay MAGYQ attitude estimation filters for the
swinging scenario with all four subjects.

Algorithms AEKF MAGYQ Delay MAGYQ

Mean/standard deviation µ σ µ σ µ σ

Roll (˝) 5.3 14.0 5.0 12.0 3.2 5.3
Pitch (˝) 3.8 6.0 3.8 5.0 4.1 5.1
Yaw (˝) 24.4 10.6 21.3 9.3 19.0 8.6

In the swinging scenario, the orientation estimation performance is reduced for all algorithms as
compared to texting scenario. The hand movements, which are synchronized with the oscillations of
the arm, induce large accelerations as compared to the amplitude of the Earth’s gravity field (Figure 7).
These accelerations strongly impact the roll and pitch angles estimation. Consequently the average
error is increased by 2˝ to 4˝ for these two angles. The drop in performance is even greater on the
standard deviation that increases by approximately 10˝ for the AEKF and MAGYQ filter.

Large magnetic field variations are observed for all four subjects. This phenomenon is illustrated in
Figure 8 for the subject S4. These magnetic field fluctuations especially occur during the arm oscillations
when the MIMU gets closer and further apart from the surrounding ferromagnetic compounds. This
explains why the accuracy of the estimated yaw angles is fairly poor.
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However, the three algorithms have different performances. Delay-MAGYQ achieves better angle
estimates with smaller mean errors and smaller standard deviations. Contrary to the MAGYQ filter,
Delay–MAGYQ integrates the covariance data of the orientation estimates to compute the reference
field, which improves the orientation estimation. Indeed the two filters will process the measurement
error in different ways. With the algorithm MAGYQ, the measurement error is completely passed onto
the attitude estimate at the current time, whereas with Delay-MAGYQ, it is distributed not only on the
estimate at the current time but also on the orientation at the first epoch of the quasi-static phase.

5.4.3. Unsupervised Walking Scenario

The orientation estimation errors and the corresponding statistics are detailed in Table 3 for the
unsupervised walking scenario. The yaw estimates for the AEKF, MAGYQ and Delay MAGYQ filters
are also plotted in Figure 9 for comparison purposes.
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Table 3. Orientation estimates and their statistics for the unsupervised walking scenario.

Algorithms AEKF MAGYQ Delay MAGYQ

Mean/standard deviation µ σ µ σ M σ

Roll (˝) 5.8 7.4 6.0 8.8 5.0 8.5
Pitch (˝) 2.0 2.6 3.9 4.2 3.3 3.3
Yaw (˝) 18.1 8.6 11.3 10.2 8.2 9.8

It is observed that the best orientation estimates are achieved with the filter Delay MAGYQ
whereas the AEKF gives the worst results. Indeed, the errors on the roll and pitch angles are in the
same order of magnitude for both algorithms but the yaw estimate is strongly deteriorated with the
AEKF. This is explained by the experimental environment where large magnetic field anomalies are
present. The motion acquisition room is equipped with many electronic devices, wires and metallic
walls that strongly modify the Earth magnetic field. This can be observed in Figure 2 where the Earth
magnetic field norm and the measured local magnetic field norm are plotted in red and blue respectively.
Consequently, the AEKF functioning hypothesis H0, which assumes that the magnetometer measures
the Earth magnetic field, is not valid and the orientation gets biased.

MAGYQ and Delay-MAGYQ algorithms are immune to local perturbations because the
assumption H0 is not required to process the raw inertial signals and magnetometer measurements.
Consequently, better yaw estimates are obtained thanks to the magnetically derived angular rates
with a reference magnetic field that is closer to the reality, i.e., the field at the beginning of the quasi
static period. Furthermore the use of magnetic field gradients, when the local field is steady, enables
continuous calibration of the gyroscope errors.

Because the Delay MAGYQ algorithm considers the impact of past orientation estimates on the
magnetic reference field estimate and the current orientation estimate, it gives the best results with
a slightly larger standard deviation. With the Pedestrian Dead Reckoning (PDR) approach, which is
applied to provide navigation services on connected objects, the accuracy of the yaw angle directly
impacts the accuracy of the geolocation services, whereas roll and pitch angles have a smaller impact
on the location estimate. Indeed, current PDR position is derived from the previous position knowing
the yaw angle and the step length. This highlights why it is important to consider the correlation
between states estimated at different times to enhance the accuracy of the yaw angle and provide more
accurate handheld based navigation services.
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An innovation test is performed to analyze the gain of Delay-MAGYQ as compared to the MAGYQ
filter. The test is performed over a QSF period of magnetic field during which the MIMU is static. The
initial orientation is set as equal to the orientation (the reference) estimated by the MotionLab for both
filters. The performance of the two filters is analyzed with the norm of the orientation’s residuals: δqn

bt.
Figure 10 shows the residual errors estimated by both filters.
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The main observation is that the norm of the innovation is lower for Delay MAGYQ than for
MAGYQ. Because the initial orientation of both filters corresponds to the “true” one and there is no
orientation change, the filter that exhibits the lowest innovation will perform better. This is observed
with Delay MAGYQ, which includes covariance data of the first QSF state’s estimate in the computation
of the Kalman gain. Indeed, MAGYQ filter gain is classically given by

Ktk “ Ptk Htk
T
´
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whereas the gain of Delay MAGYQ filter integrates the orientation error δqn
b in
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Pq,t0 , Ppq,bq,t0
, S̆tk and Γt0,tk are detailed in Equations (21) and (23).

6. Conclusions

Whereas some MIMU-based attitude estimation filters try to mitigate the impact of an artificial
field on the angular estimation, other exploit the distorted field when the perturbation is assessed
as static. They are based on magnetic field gradients and a reference field, which is estimated at the
beginning of the period of interest. However, these filters do not consider the time correlation of past
state estimates on the current orientation estimate.

A novel Delay MAGYQ filter is proposed to overcome this limitation. The design of the filter
directly integrates the time correlation of the orientation estimates, in particular with a covariance
matrix that relates the error on the quaternion estimates at previous times with the current state
estimate. The impact of including the time correlation in the angles estimation is assessed in a motion
laboratory with four persons. Three scenarios are built for the context of pedestrian navigation with a
handheld MIMU. They correspond to a total of 30 min of data collection.
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The novel filter is found to better estimate the Euler angles of the handheld device. Looking at the
yaw angle, it is estimated with an 11.7˝ mean error by Delay-MAGYQ as compared to a 16.4˝ with
the Additive Extended Kalman filter and a 12.7˝ mean error without considering the time correlation
of the filter’s estimates. These mean errors are computed for the entire data collection. The same
standard deviation, ranging from 7.7˝ to 8˝, is associated to the error on the yaw angle for all three
filters. Another finding is that the linear acceleration sensed by the MIMU perturbs the orientation
estimation for all filters. Globally, Delay-MAGYQ is found to be more robust thanks to an improved
processing of errors at past epochs for the orientation estimates.

7. Perspectives

Despite the good performances achieved for the orientation estimation, the identification of the
periods during which the local magnetic field is assessed as steady should be improved in order to
better apply opportune QSF updates. Being able to mitigate large accelerations in the orientation
estimation is also planned in future research, especially when the arm is oscillating during natural
walking (e.g., with a smartwatch).

Acknowledgments: This research was supported by the European Marie Curie Actions fellowships for the
smartWALK project.

Author Contributions: V.R. and C.C. conceived and designed the algorithms; C.C. performed the experiments
and analyzed the data; V.R. and C.C. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Renaudin, V.; Afzal, M.H.; Lachapelle, G. Magnetic perturbations detection and heading estimation using
magnetometers. J. Locat. Based Serv. 2012, 6, 161–185. [CrossRef]

2. Haverinen, J.; Kemppainen, A. Global indoor self-localization based on the ambient magnetic field. Robot.
Auton. Syst. 2009, 57, 1028–1035. [CrossRef]

3. Vissiere, D. Guidance, Navigation and Control Solutions for Unmanned Heterogeneous Vehicles in a
Collaborative Mission. Ph.D. Thesis, Ecole des Mines de Paris, Paris, France, 2008.

4. Afzal, M.H.; Renaudin, V.; Lachapelle, G. Use of earth’s magnetic field for mitigating gyroscope errors
regardless of magnetic perturbation. Sensors 2011, 11, 11390–11414. [CrossRef] [PubMed]

5. Renaudin, V.; Combettes, C. Magnetic, acceleration fields and gyroscope quaternion (MAGYQ) based
attitude estimation with smartphone sensors for indoor pedestrian navigation. Sensors 2014, 14, 22864–22890.
[CrossRef] [PubMed]

6. Bergamini, E.; Ligorio, G.; Summa, A.; Vannozzi, G.; Cappozzo, A.; Sabatini, A. Estimating orientation using
magnetic and inertial sensors and different sensor fusion approaches: Accuracy assessment in manual and
locomotion tasks. Sensors 2014, 14, 18625. [CrossRef] [PubMed]

7. Michel, T.; Fourati, H.; Geneves, P.; Layaida, N. A comparative analysis of attitude estimation for pedestrian
navigation with smartphones. In Proceedings of the 2015 International Conference on Indoor Positioning
and Indoor Navigation (IPIN), Banff, AB, Canada, 13–16 October 2015; pp. 1–10.

8. Berman, Z. Inertial sensors: Further developments in low-cost calibration and testing. In Proceedings of the
ION/IEEE Position Location and System (PLANS), Myrtle Beach, SC, USA, 24–26 April 2012; pp. 837–848.

9. Renaudin, V.; Afzal, M.H.; Lachapelle, G. Complete triaxis magnetometer calibration in the magnetic domain.
J. Sens. 2010, 2010, 967254. [CrossRef]

10. Roumeliotis, S.I.; Burdick, J.W. Stochastic cloning: A generalized framework for processing relative state
measurements. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA
102), Washington, DC, USA, 11–15 May 2002; pp. 1788–1795.

11. Kwakernaak, H. Optimal filtering in linear systems with time delays. IEEE Trans. Autom. Control 1967, 12,
169–173. [CrossRef]

12. Lu, X.; Zhang, H.S.; Wang, W.; Teo, K.-L. Kalman filtering for multiple time-delay systems. Automatica 2005,
41, 1455–1461. [CrossRef]

http://dx.doi.org/10.1080/17489725.2012.698109
http://dx.doi.org/10.1016/j.robot.2009.07.018
http://dx.doi.org/10.3390/s111211390
http://www.ncbi.nlm.nih.gov/pubmed/22247672
http://dx.doi.org/10.3390/s141222864
http://www.ncbi.nlm.nih.gov/pubmed/25474379
http://dx.doi.org/10.3390/s141018625
http://www.ncbi.nlm.nih.gov/pubmed/25302810
http://dx.doi.org/10.1155/2010/967245
http://dx.doi.org/10.1109/TAC.1967.1098541
http://dx.doi.org/10.1016/j.automatica.2005.03.018


Micromachines 2016, 7, 79 17 of 17

13. Analog Device. Tactical Grade Ten Degrees of Freedom Inertial Sensor, ADIS16488. Available online:
http://www.analog.com/static/imported-files/data_sheets/ADIS16488.pdf (accessed on 26 April 2016).

14. VectorNav. Vectornav VN-300 Dual Antenna GPS/INS. Available online: http://www.vectornav.com/docs/
default-source/documentation/vn-300-documentation/PB-12-0004.pdf?sfvrsn=24 (accessed on 1 April 2016).

15. Advanced Realtime Tracking. Available online: http://www.ar-tracking.com/technology/optical-tracking/
(accessed on 15 January 2016).

16. Susi, M.; Renaudin, V.; Lachapelle, G. Motion mode recognition and step detection algorithms for mobile
phone users. Sensors 2013, 13, 1539–1562. [CrossRef] [PubMed]

17. Bar-Itzhack, Y.; Oshman, Y. Attitude determination from vector observations: Quaternion estimation. IEEE
Trans. Aerosp. Electron. Syst. 1985, 21, 128–136. [CrossRef]

18. Marins, J.L.; Yun, X.; Bachmann, E.R.; McGhee, R.B.; Zyda, M.J. An extended kalman filter for
quaternion-based orientation estimation using marg sensors. In Proceedings of the International Conference
on Intelligent Robots and Systems, Maui, HI, USA, 29 October–3 November 2001; pp. 2003–2011.

19. Hamel, T.; Mahony, R. Attitude estimation on SO[3] based on direct inertial measurements. In Proceedings
of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006;
pp. 2170–2175.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s130201539
http://www.ncbi.nlm.nih.gov/pubmed/23348038
http://dx.doi.org/10.1109/TAES.1985.310546
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	
	
	
	
	

	
	
	
	
	


	
	
	

	
	
	
	
	
	

	
	
	
	
	
	
	
	


	
	

