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Abstract: We report on the realization of free-standing GaMnAs epilayer sheets using nanomachining
techniques. By optimizing the growth conditions of the sacrificial Al0.75Ga0.25As layer, free-standing
metallic GaMnAs (with ~6% Mn) microsheets (with TC ~85 K) with integrated electrical probes are
realized for magnetotransport measurements in the van der Pauw geometry. GaMnAs epilayer needs
to be physically isolated to avoid buckling effects stemming from the release of lattice mismatch
strain during the removal of the AlGaAs sacrificial layer. From finite element analysis, symmetrically
placed and serpentine-shaped electrical leads induce minimal thermal stress at low temperatures.
From magnetotransport measurements, changes in magnetic anisotropy are readily observed.
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1. Introduction

Since the first observation of ferromagnetic ordering in highly Mn-doped GaAs two decades
ago [1], the ferromagnetic diluted magnetic semiconductor (DMS) GaMnAs has been an instrumental
“test bed” for spintronics and magnetic systems with strong spin-orbit interactions [2,3].
Carrier-mediated ferromagnetic ordering in DMS systems can be readily observed as a dependence of
the magnetic ordering temperature (TC) on the hole carrier concentration as well as through the novel
control of ferromagnetism by electric fields [4,5] and light [6]. Such novel demonstrations are facilitated
by magnetotransport measurements, such as measurements of the temperature dependence of the
resistivity, anisotropic magnetoresistance (AMR) measurements, and measurements of the anomalous
Hall effect (AHE). In metallic GaMnAs samples, an anomaly in the temperature dependence of the
resistivity is seen near TC [7], AMR measurements, particularly in the planar Hall effect geometry,
have been instrumental in studying magnetic anisotropy [8]. Since the advent of the low-temperature
molecular beam epitaxy (LT-MBE) of GaMnAs, it has been well established and documented that the
choice of the underlying substrate and the resulting strain from lattice mismatch, either compressive or
tensile, exerts a large influence on the magnetization direction [9]. Demonstrations of the static control
of the magnetic anisotropy in GaMnAs by means of post-growth patterning via strain relaxation [10],
domain wall motion [11], and reversible magnetization induced by relativistic effects [12] may offer
new avenues for the development of GaMnAs-based spintronic devices and applications. In magnetic
systems with strong spin-orbit interactions, magnetocrystalline anisotropy, which is readily evident in
AMR and planar Hall effect measurements, is generally a direct manifestation of this phenomenon.
An understanding of the AHE and its intrinsic origins in GaMnAs [13] has led to the development
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of a directly related spin Hall effect and other related relativistic effects, such as spin transfer torque.
AHE measurements, along with the scaling relationship between the longitudinal conductivity and
the Hall conductivity, demonstrate the intrinsic nature of GaMnAs [14] and have been shown to be
sensitive to secondary phases [15]. Because relativistic spin-orbit interactions are highly sensitive to
strain, a dynamic means of varying the strain in GaMnAs may lead to a better understanding of this
behavior and serve as an avenue for adding new functionalities, stemming from mechanical degrees
of freedom, to develop novel GaMnAs-based spintronic devices [16].

Here, we demonstrate the first steps of incorporating mechanical functionalities into
GaMnAs-based spintronic devices by utilizing a surface nanomachining process that is commonly
applied in nanoelectromechanical systems (NEMS) research [17] to realize free-standing GaMnAs
epilayer sheet structures with incorporated metallic electrical leads. A key process in nanomachining
is selective wet etching between a layer of interest and the sacrificial layer. From research and
development on III–V high-electron-mobility transistors (HEMTs) and light-emitting diodes (LEDs),
processes for highly selective etching between GaAs and various possible sacrificial layers are well
known [18]. In the literature on the LT-MBE growth of GaMnAs, buffer layers of GaAs, AlGaAs,
and InGaAs dominate. For the most extensively studied GaMnAs/GaAs system, the GaMnAs
layer is usually strained because of substitutional Mn and As antisites originating from growth
at low temperatures, and selective etching is difficult. GaMnAs/InGaAs structures have been
studied in some depth. Because the lattice constant of InGaAs is larger than that of GaMnAs,
a tensile strain results in a magnetization in the GaMnAs layer in the direction perpendicular to the
plane. However, under optimal conditions, there is finite selectivity between GaAs and In1−xGaxAs,
whereas for GaAs/Al1−xGaxAs and GaAs/In1−xGaxP, nearly infinite selectivity exists. In particular,
GaMnAs/AlAs heterostructures have been studied in some depth to realize GaMnAs-based tunneling
anisotropic magnetoresistance (TAMR) devices [19,20]. GaMnAs/InGaP can be tuned to have nearly
zero lattice mismatch, which is ideal for realizing nanomechanical structures [21], but this requires the
regrowth of high-quality GaMnAs on a prepared InGaP surface, which has been found to be difficult.
As a compromise between the realization of a high-quality metallic GaMnAs epilayer and a high
selectivity of the underlying sacrificial/buffer layer, we choose a GaMnAs/GaAs/Al0.75Ga0.25As
heterostructure. Pseudomorphic growth imposes a lateral strain on the GaMnAs, the release of
which may induce buckling, requiring the incorporation of separate metallic leads. Using the
incorporated electrical leads, magnetotransport measurements can be performed to determine the
magnetic properties of the free-standing GaMnAs layer.

2. Materials and Methods

To realize free-standing metallic GaMnAs epilayers, we grew GaMnAs (100 nm)/GaAs
(10 nm)/AlGaAs (2000 nm) on a SI-GaAs (001) substrate (Figure 1a). After the preparation of the
substrate surface, an Al1−xGaxAs layer was grown at a substrate temperature (TS) of 600 ◦C. Under
a constant As flux, TS was lowered to 200 ◦C for the growth of a thin LT-GaAs buffer layer; then, an Mn
flux was introduced for the growth of the final GaMnAs layer. The LT-MBE growth of GaMnAs has
been described in detail elsewhere [14]. Throughout the growth, RHEED monitoring was conducted
to ensure high-quality growth. After growth, an high resolution x-ray diffraction (HR-XRD) θ–2θ

measurement revealed an Mn concentration of ~6% in the GaMnAs epilayer and an Al concentration
of 75% in the AlGaAs sacrificial/buffer layer (Figure 1b). After growth, the sample was annealed at
200 ◦C for 1 h under a dry flow of N2. The resulting lattice mismatch between the GaMnAs epilayer and
the AlGaAs sacrificial layer corresponded to a compressive strain of ~0.2%. Structural beams buckle
because of compressive stresses applied along their axes. The force required is often called the critical
load (or the Euler load). From mechanical beam theory, this critical load is σc = n2π2EI/L2, where
n is the buckling mode, E is the Young’s modulus (here approximated for bulk GaAs), I is the beam’s
moment of inertial about the neutral axis, and L is the beam length. For reasonable geometries, if the
lattice mismatch strain were to be released during the removal of the sacrificial layer, we would expect
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the GaMnAs layer to buckle. To illustrate such buckling, we repeatedly patterned cross-like structures,
representing GaMnAs Hall crosses, using standard e-beam lithography techniques. We patterned the
GaMnAs crosses by selectively removing exposed GaMnAs layers via etching with citric acid [22].
After the removal of the e-beam resist, the underlying AlGaAs sacrificial layer was selectively etched
with 10% HF [23,24]. After the etching of the sacrificial layer, the sample was dried using a critical
point dryer (CPD). As seen in Figure 1c, the free-standing GaMnAs epilayers buckle.
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Figure 1. (a) GaMnAs/LT-GaAs/AlGaAs/SI-GaAs structure and corresponding RHEED images.
(b) HR-XRD θ–2θ measurement of the sample. (c) Scanning electron microscope (SEM) images of
GaMnAs crosses after the GaMnAs etch (top) and after the sacrificial etch (bottom), which show
buckling of the GaMnAs epilayer after the removal of the underlying AlGaAs sacrificial layer. GaMnAs
layer is distinguished with added false color (green).

3. Results and Discussion

To avoid buckling, we patterned and physically isolated the GaMnAs epilayers. The fabrication
process for a 10 µm × 10 µm GaMnAs sheet suitable for use in the van der Pauw geometry is outlined
in Figure 2a,b. First, by means of e-beam lithography and e-beam evaporation, electrical leads of
Au (90 nm)/Cr (10 nm) were fashioned, which also served to physically anchor the resulting GaMnAs
microsheet. Van der Pauw structures were defined via e-beam lithography and a citric acid/hydrogen
peroxide etch at a volume ratio of 7:2 (etch rate: ~200 nm/min). During the etching of the GaMnAs,
the etching time and the lithographic patterns were deliberately controlled to ensure that the GaMnAs
below the metallic electrical leads was completely removed and the GaMnAs structure was physically
isolated. Then, the sample was subjected to a selective sacrificial etch using 10% HF to remove
the sacrificial AlGaAs. Finally, the critical point drying method was applied. In addition to the
free-standing GaMnAs structures, control structures of GaMnAs/AlGaAs were also prepared using
the same nanomachining process, protected with e-beam resist during the AlGaAs etch. Scanning
electron microscope (SEM) images of both control (unsuspended) and free-standing (suspended)
van der Pauw structures with dimensions of 10 µm × 10 µm are presented in Figure 2c.

To demonstrate the quality of the free-standing GaMnAs sheets, the temperature dependence
of the resistivity was plotted for both the free-standing GaMnAs and the control GaMnAs/AlGaAs
structures (Figure 2d). All magnetotransport measurements were performed in a commercially
available closed-cycle magnetocryostat (IceOxford DRYICE4TL, ICE Oxford Ltd., Witney, UK) using
the standard AC lock-in transport technique (I = 0.1 µA at 17 Hz and 23 Hz). Both structures
exhibited clear metallic behavior and a temperature-dependence anomaly corresponding to TC ~85 K.
For the free-standing GaMnAs, ρxx < 10 mΩ·cm; this resistivity is consistent with GaMnAs exhibiting
an intrinsic AHE [14]. Although the free-standing GaMnAs sheets had an increased free surface area
(from which the interstitial Mn may diffuse), we did not perform post-processing low-temperature
annealing, which may increase TC [25]. The fact that the resistivity of the free-standing GaMnAs was
higher than that of the control suggests increased scattering from these free surfaces.
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Figure 2. (a) Schematic illustration of the fabrication of a free-standing GaMnAs microsheet with
integrated electrical leads suitable for use in van der Pauw measurements. (b) Cross-sectional
schematic view of fabrication process. (c) SEM image of control (top) and free-standing (bottom)
van der Pauw structures with added false color to distinguish the GaMnAs layer (green) and electrical
leads (gold). (d) Temperature-dependent resistivity (ρxx vs. T) and the corresponding differential
resistivity (dρxx/dT).

Although the electrical leads were symmetrically patterned with a serpentine geometry to
minimize any thermally induced strain, because of the large difference between the coefficient of
thermal expansion of GaMnAs and that of the metallic electrical leads, we could not fully eliminate
such thermoelastic/piezoresistive effects, which may have served as a source of the slight discrepancy
between the temperature dependences of the resistivities of the two structures. We attempted to
quantify the thermally induced strain using a commercially available finite-element analysis package
(COMSOL Multiphysics 4.3b, COMSOL Inc., Burlington, VT, USA). Figure 3 summarizes the results of
the finite-element analysis by mapping the expected stress for the control GaMnAs/GaAs/AlGaAs
structure and the free-standing GaMnAs microsheet structure anchored by serpentine-shaped metallic
leads at the corners for 300 K and 10 K. At T = 10 K, much of the stress is limited to the sections with
the leads, as expected. On the free-standing GaMnAs sheet, the stress is nearly uniform, and areas
of high stress are limited to the regions where the metallic leads clamp the corners of the sheet (with
a maximum stress value of ~400 MPa, which rapidly falls to <100 MPa within 100 nm from the edge).
Using the Young’s modulus of GaAs, which is 86 GPa, we can estimate the effective strains to be less
than 0.001 at 10 K, which we expect to have minimal effects on ρxx and ρxy [26].
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Magnetotransport measurements were performed to simultaneously measure ρxx and ρxy with
an applied magnetic field perpendicular to the free-standing GaMnAs microsheet (H < ±9 T)
using the AC lock-in measurement technique (I = 0.1 µA at 17 Hz and 23 Hz). Figure 4a plots
the longitudinal resistance as a function of the applied magnetic field at T = 10 K. The low-field
response (H < ±1 T) shows similar absolute resistance changes for both the free-standing GaMnAs
and the control. The switching characteristics, however, show marked differences: the magnetization
of the free-standing GaMnAs flips at much lower fields. Figure 4b plots the transverse resistance as
a function of the applied magnetic field at T = 10 K. As implied by the AMR response presented in
Figure 4a, the Hall response also suggests that the easy magnetization direction is more in-plane-like
for the control sample and more out-of-plane-like for the free-standing GaMnAs microsheet. Beyond
GaMnAs, similar effects have been reported in metallic magnetic thin films in which the magnetic
anisotropy was varied by applying strain to a flexible substrate [27]. Such changes in the GaMnAs
magnetic anisotropy warrant a further detailed study by means of planar Hall effect measurements.
Figure 4c plots the transverse resistance as a function of the applied field at temperature of 10 K,
50 K, and 100 K. At temperatures below TC, the Hall response from the free-standing sample suggests
a stronger Hall effect contribution from spontaneous magnetization, which is ascribed to the more
out-of-plane-like easy magnetization direction. For both samples, a remnant AHE is readily seen
above TC. This remnant AHE is due to residual spontaneous magnetization, which is ascribed to the
second-order transition (or continuous transition) from ferromagnetism to paramagnetism.
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4. Conclusions

We applied nanomachining techniques to realize free-standing GaMnAs microsheets suitable
for use in van der Pauw magnetotransport measurements. By optimizing the growth conditions of
the sacrificial AlGaAs layer, high-quality metallic GaMnAs structures were realized. With a delicate
modification of the fabrication process and the incorporation of metallic electrical leads, free-standing
GaMnAs structures were achieved, avoiding buckling during removal of the sacrificial layer.
Free-standing GaMnAs structure, with significantly reduced strain from lattice mismatch and
thermal stress, exhibited more out-of-plane-like magnetic anisotropy compare to controlled structures.
By modifying the details of the processing steps, various free-standing GaMnAs structures are possible
as well as the incorporation of integrated electrical gate structures to controllably and dynamically
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actuate the free-standing GaMnAs structures by means of electrostatic forces and strain, thereby
allowing for the integration of a mechanical degree of freedom into GaMnAs-based spintronic devices.

Realization of free-standing GaMnAs micro-sheets of high-quality for magnetotransport
measurements allows for further development of free-standing GaMnAs micro-Hall bar structures.
From such Hall bar structures, further magnetotransport measurements (both in standard Hall
and planar Hall geometry) would lead to a better understanding of substrate effects on the
magneto-anisotropy of the resulting GaMnAs epilayer. Furthermore, with further device engineering,
electrostatic gates could be incorporated, which may be used to actuate the buckling process.
Controlled buckling would result in a means to dynamically vary the strain on the GaMnAs, possibly
allowing for a GaMnAs bit based on mechanical states.
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