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Abstract: We demonstrate a memory device based on the nonlinear dynamics of an in-plane
microelectromechanical systems (MEMS) clamped–clamped beam resonator, which is deliberately
fabricated as a shallow arch. The arch beam is made of silicon, and is electrostatically actuated.
The concept relies on the inherent quadratic nonlinearity originating from the arch curvature, which
results in a softening behavior that creates hysteresis and co-existing states of motion. Since it
is independent of the electrostatic force, this nonlinearity gives more flexibility in the operating
conditions and allows for lower actuation voltages. Experimental results are generated through
electrical characterization setup. Results are shown demonstrating the switching between the two
vibrational states with the change of the direct current (DC) bias voltage, thereby proving the
memory concept.

Keywords: in-plane MEMS; shallow arch; bistability; mechanical memory

1. Introduction

The quest for mechanical computation is a century old, and can be traced back to at least 1822,
when Babbage presented his concept of a difference engine [1]. Although subsequent developments
in the fields of electronic transistors [2] and magnetic storage [3,4] outperformed the mechanical
approach in computation, this field has reemerged (at least in the research community [5–11]) due
to recent advancements in micro/nano-fabrication and measurement techniques. Various physical
phenomena can be utilized to store data in memory devices. Instead of storing the data in the form of
a packet of electric charge, the single bits of data are retained by a mechanically bistable beam having
two stable states of vibration; this initiated interest in the development of microelectromechanical
systems (MEMS) memory devices [12]. A memory device in the form of a micro-mechanical device is
an alternative memory element for storing digital electronic signals. Micro-mechanical devices can
be fabricated on a semiconductor substrate, such as silicon. The same manufacturing steps used to
fabricate electronic elements in an integrated circuit can be used.

One of the key components in computation is a memory element, which is supposed to work as a
two-state system representing two different states of the memory device, irrespective of the mode of
operation (static or dynamic). In the case of a static mechanical memory device, the logical information
is preserved in one of the two stable spatial states [12–15]. The mechanical element only moves during
the change in the state of the memory. Consequently, the write operation is performed by applying an
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external force. Once the desired state is reached, it does not require continuous forcing to maintain
its state. Several designs based on carbon nanotubes and nanowires have been proposed for static
memory devices [13,14]. Static devices have a large on/off ratio and simple operation mechanism.
However, they have limitations, such as lesser write/read speed and degradation of the contact area
due to large displacement. Another approach to achieve bistability in MEMS is the utilization of its
dynamic motion in nonlinear behavior. The advantages of dynamic MEMS over static devices are small
vibration amplitudes and low switching time. In contrast, a dynamic mechanical memory utilizes
two different vibrational states accessible within the hysteretic region of a nonlinearly resonating
micro/nano resonator to constitute the memory states [5–9]. These micro/nano-electromechanical
systems resonators use resonant motion, in which the compliant structures undergo relatively small
displacements during the memory operation. Thus, they enable high-speed operation with high
durability. Stiction and friction of the beams plays an important role in the failure of static MEMS
devices. An advantage of using a dynamic MEMS approach is the avoidance of these shortcomings.

A MEMS resonator substantially exhibits nonlinear responses at large excitation forces. In this
case, frequency response curves bend toward higher or lower frequencies due to a hardening or
softening effect [16–18]. This means that a nonlinear MEMS resonator can have two stable periodic
states and an unstable periodic state at fixed operating conditions in the hysteresis region [19].
Several applications, such as very-high frequency resonators, mass detection, and up-converter
amplifiers based on the nonlinear behavior of nanoelectromechanical systems/microelectromechanical
systems (NEMS/MEMS) resonators have been published [20–23]. In addition to the experimental
investigations, the literature regarding the theoretical studies is quite extensive [24–38]. Abdel-Rahman
and Nayfeh [24] studied the dynamic response of a MEMS resonator under superharmonic and
subharmonic electric actuations by considering the geometric and electric force nonlinearites, and
employed the method of multiple scales to solve the equation of motion. Nayfeh and Younis [25]
examined the nonlinear dynamic behavior of electrostatically actuated microbeams using a shooting
method along with the Galerkin technique.

Many theoretical studies contributed to the analysis of the nonlinear static and dynamic behavior
of geometrically imperfect beams and microbeams [30–42]. Due to the inability of classical theories
to model size-dependent behavior of microscale structures, several size-dependent theories, such
as the couple stress theory [30], the strain gradient theory [31], and the modified couple stress
theory [32–35] have been developed. Wang et al. [31] developed a microscale Timoshenko beam
model based on the strain gradient elasticity theory. Farokhi and Ghayesh [32] investigated the
thermo-mechanical three-dimensional nonlinear size-dependent behavior of a Timoshenko microbeam
for both initially straight and slightly curved microbeams. Recently, the size-dependent Euler–Bernoulli
and Timoshenko beam models have been further extended to their nonlinear counterparts by taking
the von Karman’s nonlinear strains into account. Ghayesh and Farokhi [33,36] used the Kirchoff
plate theory to investigate the nonlinear dynamics of a rectangular microplate, and obtained the
frequency–response and force—response curves. Saghir and Younis [37] investigated the static
and nonlinear dynamic behavior of electrostatically-actuated microplates using a reduced order
model based on the von Karman equations. Lou et al. [38] investigated the nonlinear bending and
free vibration behavior of simply supported functionally graded microplates based on a general
size-dependent four variable refined plate model. Semnani et al. [39] studied the free flexural vibration
characteristics of functionally graded microbeams with geometric imperfection, taking into account
the size effect phenomenon based on modified couple stress theory. Shafiei et al. [40] investigated the
size-dependent nonlinear vibration behavior of a Euler–Bernoulli functionally graded microbeam made
of porous material. The bistability of MEMS resonators in the hysteretic regime can be effectively used
for the implementation of mechanical memory application. Badzey et al. [5] reported for the first time a
mechanical “1” bit memory based on a nonlinear NEMS resonator. Guerra et al. [6] presented a silicon
nano-resonator controlled by a novel phase modulation scheme to build a controllable resonant switch.
Noh et al. [7] proposed and demonstrated a direct current (DC) modulated memory device based on
optical detection. Vestra et al. [8] investigated the nonlinear dynamics of a micro-cantilever driven
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by a piezo actuator, and demonstrated memory operation utilizing an optical detection technique.
They utilized the hardening behavior of the fundamental mode of a micro-cantilever due to its
geometric nonlinearity for the implementation of the memory device. Uranga et al. [9] demonstrated
a NEMS micro-cantilever and clamped–clamped microbeam based mechanical memory devices
fabricated on commercial complementary metal-oxide-semiconductor (CMOS) technology. Recently,
Yao et al. [11] developed a logic-memory device and a binary counter in single and coupled MEMS
resonators, respectively, based on feedback control of the nonlinear motion of the micro-resonators.

Apart from the work of Badzey et al. [5], most of the above-mentioned works utilized the
hardening nonlinearity of NEMS/MEMS micro-resonators (clamped–clamped straight microbeam
and cantilever beams) for the demonstration of mechanical memory operations. Here, we exploit
the softening behavior in an arch-shaped beam for memory application. Unlike electrostatically
actuated cantilever microbeams, where the softening nonlinear behavior is solely caused by the DC
bias voltage, an arch shaped clamped–clamped microbeam shows softening nonlinearity due to its
initial curvature [41–46]. Hence, the nonlinearity in this case is mainly of mechanical origin, and thus
is almost independent of the DC bias (does not put any restriction on the amount of bias needed to
trigger the nonlinearity), and can even be actuated using other methods, such as piezoelectric. Unlike a
micro-cantilever, a clamped–clamped arch beam exhibits softening nonlinearity at very small motion,
is mechanically robust, and if necessary can be actuated at higher voltages, without pull-in. Further,
exciting micro-cantilever beams into a hardening behavior (as demonstrated in the literature) requires
driving them into significantly large motion compared to their thickness, which adds constraints on
the fabrication and boosts their power demands.

The utilization of electrostatic transduction for memory operation promises the prospect of fully
integrated on-chip system development. In a previous work [47], we demonstrated that an arch beam
can effectively be used to construct all the basic logic gates. Hence, the next step to establishing a
complete integrated computational hardware is to use the same structure for memory applications.

In this work, we present a silicon in-plane microbeam, intentionally fabricated as a shallow arch
shape, operating as a two-state system at room temperature and under modest vacuum conditions
with electrostatic actuation and detection. The softening nonlinearity of quadratic type owing to the
arch initial curvature is utilized to constitute a hysteresis frequency band that can be modulated by
either the drive amplitude or the DC bias voltage. We employ instantaneous change in the DC bias
voltage amount as our modulation signal, and show a memory operation by switching the resonator
between the two stable periodic vibrational states within the bifurcation branch.

2. Device and Experimental Setup

The arch beam is fabricated on a highly conductive Si device layer of silicon on insulator (SOI)
wafer by a two mask process using standard photo-lithography, E-beam evaporation for metal layer
deposition for the actuating pad, deep reactive ion etch (DRIE) for silicon device layer etching,
and vapor HF etch to remove the oxide layer underneath of the resonating structure. It consists
of a clamped–clamped arch shaped beam with two adjacent electrodes to electrostatically induce
the vibration and detect the generated alternating current (AC) output current due to the in-plane
motion. The dimensions of the curved beam are 500 µm in length, 3 µm in width, and 30 µm
in thickness. The gap between the actuating electrode and the beam is 8 µm at the clamped
ends and 11 µm at the mid-point, due to its 3 µm initial curvature. We note that, unlike surface
micro-machined clamped–clamped arch beams where the buckling of the structural layer upon release
due to compressive residual stress may often produce uncontrollable curved beam configuration, the
fabrication process utilized in this work for the in-plane arch is controllable and reproducible, with
minimal constraints from residual stresses.

Figure 1a shows the block diagram of the two-port electrical transmission measurement
configuration for electrostatic actuation and sensing. The drive electrode is provided with an AC
signal from the network analyser (Agilent E5071C, Keysight Technologies, Santa Rosa, CA, USA) and
the beam electrode is biased with a DC voltage source, which is also used to modulate the nonlinear



Micromachines 2016, 7, 191 4 of 9

resonance. The output current induced at the sense electrode is coupled with a low noise amplifier
(LNA) whose output is connected to the network analyser input port. Figure 1b shows an scanning
electron microscope (SEM) image of the fabricated clamped–clamped arch beam.
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Figure 1. (a) Block diagram of the two-port electrical transmission measurement; (b) an scanning
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3. Softening Nonlinearity in Arch Microbeam

At small driving voltages, the responses of the arch beam fit the Lorentzian linear shape. Figure 2a
shows a frequency–response curve measured at VDC = 10 V and VAC = −30 dBm (7.07 mVrms),
indicating a linear resonance frequency near 124.094 kHz with a quality factor Q = 7600 at a pressure
of 200 mTorr. The variation of resonance frequency with applied DC bias voltage for the same arch
beam is predicted theoretically (shown in Figure 2b). As the drive amplitude is increased, the beam
response enters the nonlinear regime. Next, we prove the inherent quadratic nonlinearity of the arch
regardless of its actuation method (i.e., whether there is a DC electrostatic force or not), which shows a
softening nonlinear response. The nonlinear equation governing the transverse motion w(x,t) of the
arch beam based on no axial inertia can be written as [41–45]:
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where x is the spatial position, t is time, and w0 is the initial curvature of the arch. The arch has a
Young’s modulus E, a material density ρ, and is assumed to have a rectangular cross-sectional area A
and a moment of inertia I. Additionally, it is subjected to a viscous damping coefficient c. The arch is of
length L, width b, and thickness h. It is subjected to an electrostatic force F. It is clear from the integral
term of the Equation (1) that the stiffness depends nonlinearly on the displacement, which is a major
source of nonlinear behavior. To distinguish the nonlinearities of the arch from that of the electrostatic
force, we will assume the force is constant (full modelling of its effect can be found in [41–46]). The
initial shape of the arch is assumed to be

w0 = − b0
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where b0 is the initial curvature at the middle of arch. Using a first-mode approximation with the arch
mode shape [45,48] in the Galerkin procedure [16], dropping damping, and after normalization, the
non-dimensional equation governing the modal amplitude u of the first mode can be written as

··
u (t) +ω2

0u (t) + α2u2(t) + α3u3(t) = f (3)

where f is the projected modal force,ω2
0 = 1557.38 is the non-dimensional frequency squared, and

α2 = −3749.87 and α3 = 5283.173 are the quadratic and cubic nonlinearity coefficients, respectively.
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Following [49], it turns out that this system with quadratic and cubic nonlinearities can exhibit
softening or hardening behaviour, depending on whether or not the quadratic nonlinearities are
dominant over the cubic nonlinearities (full analysis of this can be found in [42]. According to [49],
if the sign of the effective nonlinearity coefficient α is positive, the behavior is hardening, otherwise
the behavior is softening. According to [49],

α = α3 −
10

9ω2
0
α2

2 (4)

Based on Equation (4), we found that α = −4749, which proves the dominant inherent quadratic
nonlinearity of the arch, and thus it exhibits softening behaviour regardless of the DC voltage.
We exploit this inherent nonlinearity of the arch for memory operation by modulating its nonlinearity
by the DC voltage.
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Figure 2. (a) The linear resonance frequency and phase response of the arch beam at VDC = 10 V
and VAC = −30 dBm. The magnitude curve is fitted with Lorentzian fit; (b) Theoretically predicted
frequency response of the arch beam with applied direct current (DC) bias voltage.

4. Results and Discussion

Figure 3a shows the nonlinear response of the arch beam with different DC bias voltages.
All curves are measured in forward and backward sweeps with a fixed AC voltage of −5 dBm
(0.125 Vrms). With an increase in the DC bias voltage, the edge of the resonance peak shifts towards
lower resonance frequency due to the softening behavior. The responses demonstrate a noticeable
hysteresis, creating a range of frequencies in which the beam is bi-stable and can be used to implement
the proposed mechanical memory. We chose a frequency of 123.863 kHz (shown as a dashed line in
Figure 3a) as the AC driving frequency for the demonstration of the memory operation.

Next we demonstrate the mechanical memory operation of the clamped–clamped shallow arch
beam. It can be performed by modulating the drive frequency, the drive strength, or a combination of
these across the hysteretic regime. These schemes were also utilized to implement nano-mechanical
memory in clamped–clamped straight beams and cantilever micro-beams [5–9]. Here, the modulation
of nonlinearity is achieved by varying the DC bias voltage. The principle is indicated by the arrows
in Figure 3b, which shows the experimentally determined hysteretic behavior as a function of the
DC bias voltage when the excitation frequency and AC excitation amplitude are fixed at 123.863 kHz
and −5 dBm, respectively. From Figure 3b, it is clear that when the resonator is biased at 10 V, it has
two states of vibration amplitude, depending on the direction of the sweep. Hereafter, we define the
large and small amplitude vibrations as “1” and “0” memory states, respectively. The hysteretic region
exists between 2 and 20 V DC voltages. Any voltage within this hysteretic region can be selected
for operation of the memory device. Here we choose a voltage of 10 V as our operating point for
implementation of the memory element.
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4.1. Switching from Low Vibration Amplitude (“0”) to High Vibration Amplitude (“1”)

Initially, the low vibration amplitude (“0”) memory state is written by setting the DC bias
voltage at 10 V, which corresponds to 4.94 µV of output response measured simultaneously by the
network analyzer. To set the memory state to high vibration amplitude (“1”), the DC bias voltage
is momentarily increased to 20 V. Any vibration amplitude above 21 µV is considered to be high
vibration amplitude state (“1”). As can be seen in Figure 3b, at this DC bias voltage, the resonator has
high vibration amplitude, which corresponds to 47.13 µV of output response and will maintain this
state even when the DC voltage is reverted back to its operating voltage of 10 V. The resonator will be
continued in its high vibration amplitude state indefinitely, until some changes are introduced in the
operating conditions.

4.2. Switching from High Vibration Amplitude (“1”) to Low Vibration Amplitude (“0”)

Next, to access the “0” memory state again, the DC bias voltage is reduced to 2 V. In this case,
any state below 6 µV is considered to be low vibration amplitude state (“0”). This will reset the arch
beam to the low vibration amplitude state, which corresponds to 4.83 µV of output response at this
operating condition, and it will retain this state when the DC bias voltage is increased to its operating
point at 10 V.
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Figure 3. (a) Experimentally obtained frequency–response curves at different applied DC bias voltages
while alternating current (AC) voltage is fixed at −5 dBm (0.125 Vrms). Forward and backward sweeps
(FS/BS) were performed to observe the frequency hysteresis cycle. Forward sweeps for all DC bias
voltages are shown in solid lines, whereas the backward sweep curves are shown in dotted lines;
(b) Response of the resonator with respect to the DC bias voltage at a fixed frequency (123.863 kHz)
and fixed AC voltage (−5 dBm). The response shows a hysteretic behavior when the DC bias voltage
is swept in forward (black line with square symbols) and backward directions (red line with circle
symbols). The chosen operating point at 10 V, which has two states (“1” or “0”), and can be set or reset
to memory states by momentarily increasing or decreasing the DC bias voltage, respectively.

4.3. Sequential Switching Operation between the Memory States

We also performed the sequential operation of the memory device as depicted in Figure 4. It shows
the repeatability of the switching action between the two states. The black curve shows the memory
states (“1” or “0”), whereas the red curve shows the writing operations. From the initial state of “0”,
the resonator is set to a memory state “1” by a write signal (momentarily increasing the DC bias from
10 to 20 V). Again, by a subsequent write signal (momentarily decreasing DC bias voltage from 10 to
2 V), the memory state is reset to “0”. We observed controlled switching between the memory states
during the write operations by the DC bias pulses.
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vacuum conditions. 

5. Conclusions 

We have demonstrated a dynamic memory device based on an intentionally fabricated arch 
shaped in-plane MEMS clamped–clamped resonator, actuated and sensed using standard 
electrostatic techniques. Softening behavior of the arch beam originating from the quadratic 
nonlinearity of its curvature is exploited for the first time for memory application. It is demonstrated 
that the two co-existing vibrational states on the bifurcation branch of a nonlinearly resonating arch 
beam can be effectively used as an information storage element, where the memory set/reset 
operations are performed by modulating the DC bias voltage. This silicon-based memory device is 
fabricated using a SOI fabrication process, works at room temperature and under modest vacuum 
conditions, and has the prospect for on-chip integrated system development to provide 
unprecedented advantages of miniaturization and integration. 
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Figure 4. The sequential operation of the memory device. The black line represents the memory states
(“1” or “0”). The red dashed line represents the waveform of the DC bias voltage used as write signal.

4.4. Maximum Operating Speed and Energy Cost Per Switching between the Memory States

The maximum theoretical operating speed of this memory device can be estimated to be
fres/Q ≈ 16 Hz, which is same for the transition from 0 to 1 and 1 to 0. Another important aspect
to consider is the energy cost of the memory operation. This can be estimated as the change in
energy stored in the system due to the applied voltage necessary to switch the state of arch beam,
E ≈ CVDCVS ~10−13 J, where C is the overlap capacitance between the microbeam and the sense
electrode, on the order of 10−15 F; VDC = 10 V is the initial DC bias voltage; and Vs = 10 V is the
increase in the DC bias to switch the state of the memory device from memory state “0” to memory state
“1”. The operating speed and energy cost of this proposed memory device can be further improved
by shrinking its size and/or reducing the loaded quality factor. Shrinking the dimensions helps to
increase the operation frequency and also significantly improves the areal density, which depends on
second power of the length of the resonator, 1/L2. Additionally, the required voltage load to perform a
memory operation could be reduced significantly by reducing the resonators’ dimensions and/or by
working at high vacuum conditions.

5. Conclusions

We have demonstrated a dynamic memory device based on an intentionally fabricated arch
shaped in-plane MEMS clamped–clamped resonator, actuated and sensed using standard electrostatic
techniques. Softening behavior of the arch beam originating from the quadratic nonlinearity of its
curvature is exploited for the first time for memory application. It is demonstrated that the two
co-existing vibrational states on the bifurcation branch of a nonlinearly resonating arch beam can
be effectively used as an information storage element, where the memory set/reset operations are
performed by modulating the DC bias voltage. This silicon-based memory device is fabricated using
a SOI fabrication process, works at room temperature and under modest vacuum conditions, and
has the prospect for on-chip integrated system development to provide unprecedented advantages of
miniaturization and integration.
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