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Abstract: This paper presents a non-linear state observer-based integrated navigation 

scheme for estimating the attitude, position and velocity of micro aerial vehicles (MAV) 

operating in GPS-denied indoor environments, using the measurements from low-cost 

MEMS (micro electro-mechanical systems) inertial sensors and an RGB-D camera.  

A robust RGB-D visual odometry (VO) approach was developed to estimate the MAV’s 

relative motion by extracting and matching features captured by the RGB-D camera from 

the environment. The state observer of the RGB-D visual-aided inertial navigation was 

then designed based on the invariant observer theory for systems possessing symmetries. 

The motion estimates from the RGB-D VO were fused with inertial and magnetic 

measurements from the onboard MEMS sensors via the state observer, providing the MAV 

with accurate estimates of its full six degree-of-freedom states. Implementations on a 

quadrotor MAV and indoor flight test results demonstrate that the resulting state observer 

is effective in estimating the MAV’s states without relying on external navigation aids 

such as GPS. The properties of computational efficiency and simplicity in gain tuning 

make the proposed invariant observer-based navigation scheme appealing for actual MAV 

applications in indoor environments. 
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1. Introduction 

Micro aerial vehicles (MAV) are playing an increasingly important role in both civil and military 

applications. The recent development of MAV technologies has provide such vehicles with capabilities 

to accomplish a variety of tasks such as search and rescue, disaster relief, surveillance of hostile 

territory, as well as inspection of hazardous environments such as indoor fire monitoring, investigation 

of hazardous or hostile buildings, disaster inspection of enclosed infrastructures (collapsed buildings, 

underground mines and subway stations after earthquakes or terrorist attacks, etc.) [1–4]. MAVs with 

autonomous capabilities are ideal candidates for these tasks since such environments are highly risky 

for human beings and inaccessible by ground robots. In recent years, the development of MAV 

navigation technologies in indoor or enclosed environments has been an active area of research. 

However, the development of such autonomous MAVs poses a number of technical challenges in the 

field of navigation and control. One of the key problems is the state estimation of MAVs since the 

control and other decision-making functions rely on reliable and accurate knowledge of the MAV’s 

position, attitude and velocity. This requires the design and development of lightweight navigation 

systems to provide reliable state estimation of the vehicle. Due to onboard payload limitations,  

the navigation of MAVs generally relies on lightweight, low-cost MEMS (micro electro-mechanical 

systems) based IMU (inertial measurement unit) sensors which typically consist of rate gyroscopes, 

accelerometers and magnetometers. Although the angular velocity and attitude of the vehicle can be 

estimated using inertial measurements, the accurate translational velocity and position cannot be 

obtained by simply integrating inertial data due to the unbounded bias of low-cost MEMS sensors.  

For conventional outdoor robot applications, a GPS is commonly used as an aid to provide absolute 

position measurement for the vehicle. However, a GPS does not function effectively in urban canyons 

and it is even unavailable in indoor and enclosed environments. As a result, exteroceptive sensors such 

as laser rangefinders, cameras and RGB-D sensors are used as aids to inertial systems, and 

measurements of exteroceptive sensors can be fused with inertial measurements to bound the sensor 

bias and provide more accurate state estimates. 

In recent years, there has been considerable research on the development of indoor MAV systems 

using exteroceptive aided inertial navigation approaches. Laser rangefinders have been successfully 

implemented in previous MAV systems for indoor exploration and mapping [5–10]. However, laser 

rangefinders can only provide distance measurements inside the 2D sensing plane of the sensor, thus 

their effectiveness is restricted to environments characterized with vertical structures. Moreover, they 

are unable to fully utilize the information in a 3D environment. In addition, both monocular [11–13] 

and stereo vision [14–16] technologies based on onboard cameras have also been employed to provide 

relative estimates for indoor navigation of MAVs. Although appealing in many applications, the 

monocular and stereo vision based approaches have several drawbacks in addressing indoor MAV 

navigation problems: Conventional RGB cameras do not directly provide distance information of 
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environments, thus monocular/stereo vision based approaches must calculate the depth data using 

image features, which is a computationally intensive process.  

The recent development of low-cost commercial RGB-D devices has led to increased capabilities 

for MAV applications. RGB-D devices are based on structured light technologies and can provide 

depth data even in poorly textured environments. Taking advantage of RGB-D devices, many 

researchers have achieved successful results in the field of indoor MAV navigation, such as state 

estimation, control and indoor mapping [17,18]. Despite these advances achieved in this domain, there 

is still significant progress to be made in developing more robust and computationally efficient visual 

odometry approaches for MAVs in complex environments, using lightweight and low-cost RGB-D 

devices and MEMS sensors. 

The primary contributions in this paper are as follows: firstly, this paper presents a novel robust 

RGB-D based visual odometry (VO) approach that estimates the MAV’s relative motion by extracting 

and matching features of successive frames captured by the RGB-D camera. We made several extensions 

in the primary aspects of RGB-D visual odometry and proposed a robust featuring detection and 

matching strategy (termed OFC-ORB, optical flow-constrained ORB), as well as a robust inlier detection 

and relative motion estimation framework (termed Consistency-RANSAC, Consistency- random sample 

consensus). The properties of the proposed robust RGB-D VO ensure the algorithm’s computational 

efficiency and improve its robustness for complex environments with various texture conditions, as 

well as images blurs and partitions caused by the MAV’s maneuvers, making the approach particularly 

suitable for MAVs operating in complex environments. The second contribution is the design of a 

nonlinear observer-based state estimation framework that fuses the inertial data with aiding 

measurements from the RGB-D VO, which is built upon the invariant observer theory. The system 

dynamics and observation model for the RGB-D visual-aided inertial navigation problem is 

formulated, followed by the verification of system symmetries, and the invariant state observer is 

finally derived based on the system model. Using the resulting RGB-D aided-inertial navigation 

framework, the drift of inertial sensors can be corrected, yielding a more accurate estimate of the 

MAV’s states. Taking advantage of the invariant observer’s tuning and computational simplicity, the 

resulting state estimation approach is well-suited to implementations on MAVs with constrained 

payloads and computation capabilities. Finally, the paper presents the implementations of the proposed 

approaches and design on a quadrotor MAV platform, along with validations through indoor flight 

experiments. Experimental results demonstrate that the proposed RGB-D visual aided-inertial 

navigation framework can provide accurate and reliable state estimates for MAVs without relying on 

external navigation aids such as GPS. 

The remaining contents of this paper are organized as follows. A brief review of related work is 

presented in Section 2. Section 3 provides an overview of the RGB-D visual/inertial navigation 

scheme. Details of the robust RGB-D relative motion estimation are described in Section 4, followed 

by the design of invariant observer-based state estimation method in Section 5. After the 

implementations and experimental validations of the resulting system design in Section 6, the paper is 

finally concluded in Section 7. 
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2. Related Work 

Most types of MAV have non-linear dynamics and the aided inertial navigation systems are 

formulated as nonlinear models. Therefore, the state estimation of such systems is a typical non-linear 

state observer design problem, where the most widely used approach by far is the extended Kalman 

filter (EKF) and its variants. In recent research on MAVs, EKF-based methods have been applied in 

the vast majority of MAV state estimation applications and have demonstrated appealing performance. 

Rather than directly accounting for the nonlinearity, the EKFs linearize the system dynamics and 

observation model about the current best estimate, and apply the Kalman filter based on the linear 

approximation of the system. There are several variants and implementations of the EKFs, depending 

on the formulation of the system dynamics and observation model, as well as the representation of 

attitude and estimation errors. Typical examples of the conventional EKF-based state estimation 

scheme proposed by Bachrach et al. [5–7], Chowdhary et al. [8,9] and Sobers et al. [10] utilize laser 

scan-matching algorithms to provide position and heading measurements of the MAV, and fuse these 

measurements with inertial information via EKFs. The systems developed by Bachrach et al. [5–7] 

employ two groups of measurements, where the IMU readings are treated as measurements of the 

attitude and accelerations, and laser scan-matching outputs are incorporated as position and heading 

measurements. In contrast, the state estimation scheme in [8–10] utilizes the gyroscope and 

accelerometer measurements as noisy inputs of the state propagation model, while the attitude error is 

estimated as part of the MAV states and is used to correct the final altitude estimates. Similarly,  

EKF-based approaches have also been applied to visual-aided state estimation schemes of MAVs. In [11], 

a single camera is leveraged in an inertial-optical flow framework to obtain a metric velocity estimate, 

which is then treated as a measurement to a real-time EKF scheme. The proposed navigation scheme is 

capable of operating onboard a processor and enables real-time control of the MAV. A navigation and 

mapping system developed by Wu [12,13] consists of two EKF estimators, where the MAV’s position, 

velocity and attitude are estimated via a EKF scheme by fusing IMU measurements and observations 

of landmark features provided by monocular-vision. A separate mapping EKF estimator approximates 

the landmark feature positions when the MAV’s state estimates are available. Acgtelik et al. [14,15] 

use an EKF estimator to provide state estimates for the autonomous navigation and exploration of 

MAVs. The EKF sensor fusion filter combines relative motion estimates from the stereo visual 

odometry with IMU measurements, and periodically incorporates position corrections from a SLAM 

module to bound the drift. More recently, Voigt et al. [16] proposed an EKF-based visual-inertial  

ego-motion estimation method that combines stereo vision and IMU measurements in a tightly coupled 

manner. The resulting scheme utilizes IMU state and covariance propagation information to aid the 

feature matching of the stereo vision, leading to increased efficiency and robustness of MAV state 

estimation in complex industrial environments. In addition, EKF based methods have also proven 

useful for RGB-D vision-aided navigation of MAVs, and relevant examples can be found in [17,18]. 

Among the variants of the EKFs, multiplicative extended Kalman filters (MEKF) are especially useful 

for MAV attitude estimation applications. In order to employ a non-singular attitude representation in 

the estimator, MEKFs formulate the attitude as a multiplication of an estimated attitude quaternion and 

an error quaternion representing the deviation between the above estimates and true attitude. Due to 

the advantages of the non-singularity representation, the MEKF method has been applied to the design 
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of micro attitude and heading reference system (AHRS) [19], as well as the MAV velocity and attitude 

estimation problem [20]. Although EKFs have been successfully applied in a number of applications, 

they have several disadvantages in addressing the navigation problem of MAVs. Since EKFs relies on 

the linearization of the system, the accuracy of state estimation may degrade significantly in cases that 

involve high degree of nonlinearities. In addition, the tuning and identification of EKFs’ parameters 

such as noise covariance and initial estimate parameters require extensive experiments, which may 

reduce the suitability for actual MAV applications. 

The sigma-point unscented Kalman filter (UKF) is an effective alternative to the conventional EKFs 

when the system dynamics or observation model is highly non-linear, or the states are highly uncertain. 

To cope with high non-linearity and uncertainty, the UKF employs a high-order stochastic linear 

approximation of non-linear systems using weighted sigma-points. A UKF-based monocular  

vision-IMU system is proposed in [21] to perform state estimation, mapping, as well as self-calibration 

of the transform parameters between the camera and IMU. Moreover, Van der Merwe et al. [22] apply 

a UKF estimator to the design of a loosely-coupled GPS/INS (inertial navigation system) integration 

navigation system on an autonomous unmanned helicopter. However, the UKF also operates under the 

assumption of a Gaussian system, and it is therefore less effective for applications with non-Gaussian 

models. In contrast, the particle filter (PF) does not necessarily require the assumption that the process 

and measurement noise are Gaussian, and it operates by approximating the posterior distribution of the 

states using sampled, weighted particles. This property makes the PF more suitable for non-Gaussian 

estimation problems. A typical example of the PF-based state estimation method can be found in [23], 

where a Gaussian PF-based filter is employed to compute pseudo-measurements from laser data, and 

these laser measurements are integrated with IMU data to yield a full estimate. The resulting 

framework is implemented onboard a fixed wing MAV which is capable of performing aggressive 

flight in indoor environments. Due to the high computational cost, the PFs have not yet found wide use 

in actual MAV applications. 

Alternatively to the aforementioned optimal estimators, several nonlinear observer approaches have 

been introduced into MAV state estimation applications in the past few years. Unlike optimal 

estimation approaches that propagate the posterior conditional probability distribution of the state 

using sequences of observations, nonlinear observer-based approaches are generally designed directly 

on the nonlinear geometry of the systems. Nonlinear observers are especially attractive since they are 

usually accompanied by global stability proofs of observer error dynamics, i.e., global convergence of 

the estimation error for all initial conditions and system trajectories [24]. In [25], a Luenberger  

observer-based fusion filter is designed and implemented onboard a quadrotor MAV. The proposed 

filter combines the IMU measurements and absolute position estimates provided by a monocular visual 

SLAM (simultaneous localization and mapping) module, featuring a high update rate of position and 

velocity estimates to enable fast position control. Similarly, Boutayeb et al. [26] propose a  

time-varying reduced-order Luenberger-like observer for the velocity estimation for a MAV using 

linear acceleration measurements. Recent work has also focused on applying sliding-mode observers 

and adaptive observers to the MAV state estimation problems. Benallegue et al. [27,28] utilize a  

sliding-mode observer to estimate the MAV’s velocity, as well as model uncertainties and disturbances 

such as winds. Taking advantage of this observer, a feedback linearization controller [27] and a  

back-stepping controller [28] are employed to achieve MAV position tracking control in the presence 
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of external disturbances. Nonlinear adaptive observer techniques are employed in [29] for velocity 

estimation of a quadrotor MAV, using noisy acceleration and angular measurements from IMUs, and 

the resulting observer demonstrates robustness to measurement noise in simulations. However, the 

proposed adaptive observer may be computationally demanding for onboard implementations since the 

cascade observer contains high-order terms. It is also worth mentioning the recent work on the 

observer based simultaneous state estimation and sensor fault diagnosis for MAV. In [30], a group of 

reduced-order time varying observers are designed to diagnose and isolate accelerometers faults, and 

to simultaneously estimate the MAV velocity from acceleration measurements. Despite the 

aforementioned research on observer-based approaches, it remains to be seen whether the non-linear 

observer can be more generally useful for actual MAVs. 

In particular, an important development that came from previous research on system symmetries 

theory is the symmetry-preserving observer. Bonnabel et al. [31,32] propose the invariant observer 

which is built on the invariant properties (symmetry geometry) of such systems. In [31,32], it is proved 

that when the system is invariant by a transformation Lie-group, one can design a nonlinear invariant 

observer that possesses the same symmetry properties as the original system. A relevant approach that 

is closely related to invariant observer is the complementary filter [33], which is designed directly on 

the matrix representation of the special orthogonal group SO(3). The invariant observer method is 

applied to the design of low-cost AHRS in [34–36], and is further used in the GPS-aided inertial 

navigation system for outdoor MAV applications in [37–39]. In addition, examples of complementary 

filter-based visual/inertial state estimation of a helicopter MAV can be found in [40]. 

The invariant observer provides a systematic approach of designing non-linear state observer for a 

class of systems symmetry properties. Instead of linearizing the system model as in the EKF based 

approach, the invariant observer takes advantage of the symmetry geometry of the system, yielding an 

invariant state estimation error dynamics, and therefore the calculation of observer gains can be 

simplified. Moreover, the gain matrices of the observer are constant on permanent trajectories sets 

rather than equilibrium points. Due to its properties of computational efficiency and simplicity in 

parameters tuning, the invariant observer is well suitable for the state estimation of actual MAV 

platforms with limited onboard computational resources. Motivated by previous research, we seek to 

adapt the invariant observer approach to the design of a RGB-D visual/inertial navigation scheme, in 

order to provide state estimates for indoor MAV systems without relying on external navigation aids. 

3. Overview of the RGB-D Visual/Inertial Navigation System Framework 

The overall RGB-D visual/inertial navigation scheme is depicted in Figure 1. A typical onboard 

sensor set mounted on a MAV consists of a RGB-D camera, a MEMS IMU and a magnetometer  

(In this paper, a sonar altimeter is also utilized to provide altitude measurements). The RGB-D camera 

captures the RGB image and depth data (depth image) of the surrounding environment structures that 

fall within its sensing range. A MEMS IMU typically integrates tri-axial gyroscopes and tri-axial 

accelerometers, providing tri-axial angular rates and tri-axial linear acceleration measurements of the 

MAV (both expressed in the MAV body-fixed frame), respectively. The magnetometer measures the 

local magnetic field vector expressed in the MAV body-fixed frame. 
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Figure 1. Block diagram of the RGB-D visual/inertial navigation scheme.  

MEMS, micro-electro-mechanical system; IMU, inertial measurement unit; MAV,  

micro-aerial vehicle. 

As illustrated in Figure 1, the RGB-D visual odometry (cyan blocks in Figure 1) algorithm utilizes 

the RGB image and depth data captured by the RGB-D camera, and estimates the relative motion 

sequence of the MAV by extracting and matching features from consecutive RGB-D images.  

The above motion estimate sequence is then combined and transformed to obtain an estimate of the 

MAV’s pose in a global frame. The RGB-D VO motion estimates and IMU measurements are finally 

fused by the invariant observer, yielding a full estimate of the MAV’s 6-DOF (degree of freedom) 

states, as well as inertial sensor biases. 

4. Robust RGB-D Visual Odometry 

As described previously, RGB-D visual odometry refers to the process of estimating the relative 

motion of the MAV between successive time steps, using environmental features from consecutive 

images captured by the RGB-D camera. The sequence of motion estimates can then be integrated as 

position observations into the data fusion algorithm. A contribution from this paper is the development 

of a robust RGB-D VO approach which extends existing algorithms in VO operations including 

feature detection and matching, as well as relative motion calculation. The overall process flow of the 

robust RGB-D VO is illustrated in Figure 2. Details on the proposed robust RGB-D VO steps will be 

specified in the following subsections. 

4.1. Robust Feature Detection and Matching 

The robust feature detection and matching strategy proposed in this paper is built on the ORB 

detector (oriented FAST (features from accelerated segment test) and rotated BRIEF; ORB is first 

proposed in [41]) as well as the optical flow method (Figure 2). The RGB image captured by the  

RGB-D camera is converted to grayscale first, and a scale pyramid scheme of the image is then 

established using Gaussian kernels with different scale factors, such that features can be extracted from 
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each level to enhance robustness. The ORB detector is utilized in our system due to its computational 

efficiency and robustness in feature detection. The ORB algorithm utilizes the FAST (features from 

accelerated segment test) detector [42] to extract feature points from each level of the image scale 

pyramid. The basic idea of the FAST detector is to determine a feature point by comparing the 

intensity threshold to the grayscale gradient between a center pixel and pixels in its circular 

neighborhood [42]. Although FAST detector is computationally efficient in finding corner features,  

it generates large responses along edges that provide rare useful information. Therefore, the ORB algorithm 

employs a Harris response measure to filter features extracted by FAST. For each FAST feature, a Harris 

response is computed using its grayscale gradient and all the features are then sorted in a descending 

order of the Harris responses. The n features with the highest Harris responses are selected to eliminate 

edge points (where n is a pre-defined number). In addition, the ORB also incorporates an orientation 

component calculated using the intensity centroid method to improve the rotation invariance of feature 

detection. In the feature detection step of our approach, the corresponding depth data is also extracted 

from the depth image, and features without corresponding depth are pruned out to eliminate fault 

detections. After that, a bit string-based descriptor consisting of a fixed-length vector is computed for 

each feature to uniquely describe the feature. The descriptor employed in the ORB algorithm is based on 

an extension of the BRIEF (binary robust independent elementary features) [43], termed the rBRIEF, 

which calculates feature’s descriptor vector by performing a series of grayscale intensity binary tests in 

an image pixel patch around the feature. In order to enhance the BRIEF’s invariance to planar rotation, 

the rBRIEF computes the descriptor by steering the pixel patch according to the orientation of the 

feature. Through the above operations, the feature detection step generates a set of features from an 

image, each with a BRIEF descriptor represented by a vector of length n (n = 256 for the ORB). 

 

Figure 2. Process flow of the robust RGB-D visual odometry. ORB, oriented FAST and 

rotated BRIEF algorithm; OFC-ORB, optical flow-constrained ORB; RANSAC, random 

sample consensus algorithm. 
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Once the features are extracted from consecutive images, the feature matching procedure is 

performed to generate feature correspondence. In order to increase the robustness of the feature 

matching procedure to complex task scenarios that involve varied feature quality, lighting conditions 

and motion blur, we propose a robust feature-matching strategy called OFC-ORB (optical  

flow-constrained ORB) that combines optical-flow tracking and ORB feature descriptor-based 

matching. The basic idea of the OFC-ORB strategy is to constrain the ORB descriptor-based feature 

matching using a confidence sub-window region predicted by the optical-flow tracking. An  

inverse-check procedure based on descriptor-based matching and optical flow estimation is also 

employed to remove false matching. This strategy significantly reduces outliers and increases 

robustness of the feature matching in complex environments. 

The OFC-ORB algorithm proposed in this paper employs the LK-optical-flow approach [44] to 

compute the optical-flow disparities between successive images. Let Im and Im+1 be two consecutive 

grayscale images captured at time tm and tm+1 = tm + ∆t by the RGB-D camera. The functions Im(u) and 

Im+1(u) provide the respective grayscale intensity values of pixel u at the location u = [x, y]T in two 

images. Given a point p = [xp, yp]T in image Im, the objective of the optical flow-based tracking is to 

find the corresponding point q = [xq, yq]T in Im+1, with the optical-flow disparity d = [dx, dy]T that 

minimizes the following error function: 

2

1( ) ( , ) ( , )
p x p y

p x p y

x w y w

m m x y
x x w y y w

I x y I x d y d
+ +

+
= − = −

 ε = − + +  d  (1)

where wx, wv denote the size of the pixel window around p and q. The Lucas–Kanade (LK)-optical-flow 

approach employs the first-order linear approximation of the error function given by Equation (1), and 

solves the above problem using a Newton-Raphson iteration method. Let dk be the optical-flow 

calculated from the kth iteration step and d0 = 0. The k + 1th iteration calculates δk that minimizes the 

following error function: 

[ ]2

1( ) ( ) ( )
p x p y

p x p y

x w y w

k k m m k k
x x w y y w

I I
+ +

+
= − = −

ε = − + + δ x x d δ  (2)

Given δk, the optical-flow from the k + 1th iteration step can be obtained by: 

1k k k+ = +d d δ  (3)

The above calculations repeat until k exceeds the maximum iteration number, or δk < ∆δ (∆δ is a  

pre-defined threshold), and the estimates of dk converge to optimal d ideally. 

In order to achieve a tradeoff between local accuracy and robustness, a pyramid representation [45] of 

the image is established in the OFC-ORB algorithm, and the optical-flow tracking is performed 

recursively through each level of the pyramid to obtain a more accurate optical flow estimate. Let I be 

the original image (i.e., the image intensity function) of size nx × ny, and it is considered as the zeroth 

level of the pyramid, i.e., I0 = I, the pyramid representation of the image I can be established as 

follows: Define l = 0, 1, 2, …, ln as levels of the pyramid, and let Il−1 be the image of the l − 1th level 

of size nl−1 
x , nl−1 

y , the lth level image Il is given by: 
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where x, y denotes the coordinates of pixels in the image, and the size of the l − 1th level image (nl 
x, n

l 
y) 

must satisfy the following constraint: 
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1

1

1 2
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−
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After the construction of the image pyramid, the optical-flow estimation is performed recursively at 

each level. The optical-flow estimation procedure starts from the top level (ln) of the pyramid, and the 

estimate results from the previous level are used as initial parameters of the computations in the next 

level to obtain a refined estimate. This procedure traverses the image pyramid until the original level 

image is reached (l0). 

The pyramid optical-flow tracking procedure is illustrated in Figure 3. Define I0 
m−1 and I0 

m  as the 

original two consecutive images, and denote the corresponding point in the kth level of p as pk,  

pk = [xk 
p , yk 

p ]T. Following Equations (4) and (5), the relationship of pk and p is given by: pk = p/2k. 

Assume that gk = [gk 
x , gk 

y ]T is the optical-flow estimate calculated from level ln to level lk+1, and set the 

initial optical-flow estimate at level ln to zero (i.e., gk = [0 0]T). The level lk images can be  

centered-compensated using the initial estimate gk: 

1, 1

,

( ) ( ),

( ) ( )

k k k
m c m

k k k k
m c m

I I

I I

− −= +

= + +

x x p

x x g p
 (6)

The disparity dk between the compensated images I k 
m−1,c  and I k 

m,c  can be estimated following the 

aforementioned LK-optical-flow method, which operates by minimizing the following error function: 

2
1, ,( ) [ ( ) ( )]

p x p y

p x p y

x w y w
k k k k

m c m c
x x w y y w

I I
+ +

−
= − = −

ε = − + d x x d  (7)

The initial optical-flow estimate gk can then be corrected using dk: 

1 2( )k k k− = +g g d  (8)

gk−1 can be used as the initial estimate of the computation in level lk−1. The above procedure goes on 

through the pyramid to the original level l0, and the final estimate of the optical-flow d is given by: 

0 0= +d g d  (9)

The above pyramid implementation enables the estimation of optical-flow to handle large-scale 

motions, while maintaining local sub-pixel accuracy. 

Taking advantage of the ORB detector and the optical-flow tracking strategy, the OFC-ORB 

proposed in this paper improves the descriptor-based feature matching by employing the optical-flow 

information for predicting confidence regions and checking false matching. The overall process flow 

of the OFC-ORB strategy is depicted in Figure 4, and the primary steps of the OFC-ORB strategy are 

presented in Algorithm 1. For consecutive images, the OFC-ORB employs the optical-flow tracking 
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strategy to predict a confidence sub-window in the previous image of each feature in the current image 

(lines 5 and 6). Therefore, the descriptor-based search of feature matches can then be constrained to 

this sub-window around the expected feature point as predicted by the optical flow algorithm. After 

finding the best matches from the predicted region in the previous image (line 7), an inverse matching 

procedure is performed in the current image to check existing matches, and so that false matches can 

be removed (line 8). Finally, the optical-flow tracking is introduced again to compute the optical-flow 

disparities between the current feature matches (line 10). These disparities are compared to the  

optical-flow parameters obtained in the previous sub-window prediction step to further eliminate 

outliers (lines 11–13). 

 

Figure 3. Pyramid implementation of the optical-flow tracking operation. LK optical-flow: 

Lucas–Kanade optical-flow algorithm. 

 

Figure 4. Process flow of the OFC-ORB feature detection and matching strategy. 
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Algorithm 1. OFC-ORB feature detection and matching. 

Input Two consecutive images { } { }1 1, , ,m m m mI D I D− −  captured by the RGB-D camera 

Output Feature correspondence set S of 1,m mI I−  

1 

Extract features { } { }'
1 1

1 1 '
1 1, 1... , 1...m m m m

n i jn
i n j n− −= = = =P p Q q  from 1,m mI I −  respectively, using the ORB detector, 

compute the descriptor 1( ), ( )m m
i jv v −p q  for each feature of 

'
1 1

1,m m
n n

−P Q  

2 

Extract the depth data for each feature of '
1 1

1,m m
n n

−P Q , discard features that do not have corresponding depth, sort  

features in '
1 1

1,m m

n n

−P Q  in an ascending order of the x-coordinates, obtain '
2 2

1,m m
n n

−P Q  

3 Initialize the feature correspondence set { }S ← ∅  

4 for each 
2

m m
i n∈p P  

5 
Estimate the optical-flow vector m

id  of m
ip  using the pyramid LK-optical-flow algorithm, calculate the 

corresponding point 1m
i

−q  in 1mI − : 1m m m
i i i

−= +q p d . 

6 Build the confidence sub-window 1mw −
q  of size 0.1 0.1x yn n×  centered at 1m

i
−q  

7 Find the best match ˆ m
iq  of m

ip  from 1mw −
q , by searching for 1m

r w −∈ qq  that satisfies: arg min ( ) ( )i rr v v= −p q  

8 Build a sub-window mwp
 centered at m

ip  in 
mI , find the best match ˆ m

ip  of ˆ m
iq from mwp  

9 if ˆ k k
i i=p p  

10 Estimate the optical-flow vector ˆ m
id  between { }ˆ,m m

i ip q  

11 if ˆm m
i i ε− <d d  

12 { }ˆ,m m

i iS S← p q  

13 end if 

14 end if 

15 end for 

16 return S 

The primary advantage of the OFC-ORB feature detection and matching strategy is that it achieves 

a balance between robustness and computational efficiency. The prediction of the sub-window based 

on optical-flow tracking can restrict the search of feature correspondences to a small confidence region, 

which reduces false matches and increases the robustness to complex environments and the impacts 

caused by MAV motion. In addition, the overall computations can be reduced because of the constrained 

search region of feature matching, as well as the increased number of inliers for the relative motion 

estimation procedure. 

4.2. Robust Inlier Detection and Relative Motion Estimation 

Once the 2D image feature matches are extracted by the OFC-ORB procedure, these feature 

matches are corresponded to 3D-space using their corresponding depth data from the depth image, 

yielding two sets of 3D point clouds with known correspondences, denoted as Pm−1, Qm (Pm−1 = {pi}, 
Qm = {qi}, i = 1, …, n, 3,i i ∈p q  ). Given these consecutive 3D feature correspondences captured at 

different time steps, the MAV’s relative motion from the prior to the subsequent time step can be 

estimated based on the transformation of the two 3D point clouds. The concept of relative motion 

estimation is illustrated in Figure 5. 
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Figure 5. Relative motion estimation of MAV based on the RGB-D visual odometry. 

The transformation of two 3D point clouds consists of the rotation R and translation t, and the 

relationship of the 3D feature correspondences can then be given by: 

1, ( , , 1... )i i i i m i m i n−= + + ∈ ∈ =p Rq t ν p P q Q  (10)

where 3
i ∈ν   denotes the error vector. The optimal solution of R and t in a least-square sense can be 

obtained by minimizing the following error function: 

2

2
( , ) ( )

n

i i
i

ε = − +R t p Rq t  (11)

In the system designed in this paper, the above problem is solved using the SVD (singular value 

decomposition) approach [46], where the basic idea is built on the property that rigid motion does not 
change the relative distances between points and their centroid of a rigid body. Assume ˆ ˆ,R t  to be the 

optimal solution that minimizes the error function in Equation (11), and let: P' m−1 = {p'i} be the 3D 
point cloud obtained by applying the optimal transformation ˆ ˆ,R t  to Qm 

' ˆ ˆ 1...i i i n+ =p Rq t  (12)

According to the distance-preserving property of rigid body motion, the centroid of the transformed 3D 

point cloud P' m−1 must coincide with that of the actual point cloud Pm−1: 
' =p p  (13)

where: 

' '

1

1 1ˆ ˆˆ ˆ

n

i
i

n n

i i
i i

n

n n

=

= = + = +



 

p p

p p R q t Rq t

 (14)

q  denotes the centroid of point cloud Qm. Following Equations (13) and (14), we have: 

ˆ ˆ= +p Rq t  (15)

The relative distance between each point and the centroid can be given by: 

, 1...i i i i i nΔ − Δ − =p p p q q q   (16)
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Following Equations (15) and (16), the error function in Equation (11) can be rewritten as: 

2 2

2 2

2

2

( , ) ( ( ) )
n n

i i i i
i i

n

i i
i

ε = + Δ − + Δ + = Δ − Δ + − −

= Δ − Δ

 



R t p p R q q t p R q p Rq t

p R q

 (17)

As can be seen from Equation (17), the transformed error function contains only the transformation 

component R. Therefore, the above simplified least-square problem can be solved through two primary 

steps: (1) Find the optimal R̂  that minimizes the error function in Equation (17); (2) Calculate t̂  

according to Equation (15). 
The detailed procedures of the SVD-based algorithm are as follows. The centroids ( ,p q ) of two  

point clouds are computed first, and the relative distances (∆pi, ∆qi) are then calculated according to 

Equation (16). Given ∆pi, ∆qi, the algorithm computes the following matrix: 

T1 n

i i
in

Δ ΔH q p  (18)

Apply SVD to matrix H: 

T=H UΛV  (19)

The optimal estimate of R̂  and can then be obtained by: 
Tˆ

ˆˆ

=

= −

R VU

t p Rq
 (20)

A detailed mathematical proof of the SVD-based approach can be found in [46]. The above 

procedure yields the optimal estimate of the relative motions between consecutive time steps given two 

groups of 3D feature correspondences. 

It can be concluded from the above calculation procedure that the performance of relative motion 

estimation relies heavily on the quality of extracted feature correspondences, and it is thus highly 

sensitive to outliers. Although the optical-flow-constrained feature matching strategy described in 

Section 4.1 can significantly reduce the ratio of false matches, a robust strategy is necessary to further 

eliminate outliers. In order to ensure robustness and computational efficiency, we propose the 

Consistency-RANSAC, a refinement of the conventional RANSAC, which employs feature consistency 

check in the inlier detection procedure. The distance-preserving constraint of rigid motion is used again 

in the design of the consistency check strategy: ideally, the relative Euclidean distance between two 

points belonging to a rigid body should be identical to thier distance after rigid motions. For the visual 

odometry problem, this property indicates that the distances between different 3D features do not 

change substantially from one time step to the subsequent time step (i.e., consistency). Recall the two 

3D point clouds Pm−1, Qm, let pi, pj ϵ Pm−1 be two arbitrary 3D features from the 3D point clouds Pm−1 

at time m − 1, and qi, qj ϵ Qm denote their corresponding matches in Qm at time m, respectively. The 

consistency constraints of {pi, pj} and {qi, qj} is then given as: 

δi j i j− − − <p p q q  (21)
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where δ represents the threshold, and pi, pj, qi, qj are expressed in the same global coordination.  

By performing the consistency check to the 3D feature correspondences, the algorithm can prune out 

incorrect matches that do not satisfy the consistency constraints in Equation (21) (i.e., The deviations 

of relative distances exceed the threshold δ). Using the consistency check results, finding the largest 

set of inliers can be transformed into the problem of determining the maximum clique on a graph. This 

problem can then be solved by iteratively adding feature matches with the greatest degree (i.e., feature 

matches with the largest number of consistent matches), which is consistent with all the feature matches 

in the existing consistent set. After finding the set of inliers, the final relative motion is estimated using 

an improved RANSAC procedure which operates by selecting consensus feature matches based on 

their similarity to a hypothesis, and progressively refining the relative motion hypothesis based on the 

selected inliers [47]. Since the consistency check-based inlier detection procedure has already 

increased the ratio of inliers, the RANSAC procedure can generate a good estimate through only a very 

limited number of iterations. This significantly reduces the overall computation cost of the algorithm. 
The overall Consistency-RANSAC inlier detection and relative motion estimation procedure is 

illustrated in Algorithm 2. The algorithm starts by checking the consistency of the given 3D feature 

matches. Unlike the conventional consistency check strategy that directly utilizes the relative distances 

between different feature points, we first calculate the centroid of each 3D point cloud ( ,p q , line 1), 

and then compute the relative distances ((∆pi, ∆qi) from each 3D feature point to its corresponding 

centroid (line 3). These relative distances-to-centroid are then used to check the consistency of each pair 

of feature matches: the algorithm computes the errors between the distances-to-centroid of feature points 

and those of their corresponding matches (line 4), and sort all the 3D feature points according to these 

consistency errors (line 6). The last ξ% (ξ = (n − n1)/n) feature match pairs with the largest consistency 

errors in the sorted feature point set are discarded (line 7). Using the distances-to-centroid information, the 

above refined strategy exempts the consistency check from the conventional time-consuming 

maximum-clique search procedure, and can ensure a high ratio of inliers. 

Based on the detected inlier feature point set (Q), a refined RANSAC procedure is performed to further 

prune out outliers and compute the final motion estimate. In each iteration, λ pairs of feature matches 

are drawn randomly from the inlier set Q (line 11) to compute an initial hypothesis of the relative 

motion (R0, t0 line 13), using the SVD-based least-square approach described previously. The rest of 

the feature match pairs in Q are then checked for their compatibility with this initial hypothesis, by 

computing the transformation error using R0, t0, and comparing this error to the consensus error bound ε 

(line 15), and all compatible feature match pairs are added to a consensus set Sc (line 16). This operation 

serves to prune out outliers from Q. Once we get a sufficient number of feature match pairs in the 

consensus set (line 16), these data in Sc are used to compute a refined motion estimate (R1, t1).  

To adjust the consensus threshold, the average transformation error of feature matches in Sc is 

calculated using (R1, t1) (lines 21–24), and this error is used as the updated consensus error bound ε in 

the next iteration cycle if it is lower than the original ε (line 26). The above procedure continues until 

the probability of finding a better solution becomes sufficiently low (e.g., the difference between 

current average transformation error and prior consensus error is negligibly small), and the current 

solution is then accepted as the final motion estimate of (R, t) (line 28). 
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Algorithm 2. Consistency-RANSAC inlier detection and relative motion estimation. 

Input Two 3D point clouds with correspondences: { } { }1= , = , 1...m i m i i n− =P p Q q  

Output Relative motion ( , )R t  of 1,m m−P Q  

1 Calculate the centroid ,p q  of 1,m m−P Q  

2 for i = 1 to n 

3 ,i i i iΔ ← − Δ ← −p p p q q q  

4 i i id ← Δ − Δp q  

5 end for 

6 Sort the point set { }( , ), 1...i iM i n= =p q  in the ascending order of id : sortedM M←  

7 Select the top n1 pairs of feature matches: { }sorted 1( , ) | ( , ) , 1...i i i iQ M i n← ∈ =p q p q  

8 RANSAC initialization: 1j ← , ( , ) ( , )←R t I 0 , ε ← ∞  

9 while MaxIterationj <  do 

10 Initialize the sample set and the jth consensus set: ,j j
cS S← ∅ ← ∅ , ' 0ε ←  

11 Randomly select λ  pairs of feature matches from Q: { }( , ) | ( , ) , 1...λj
i i i iS Q i← ∈ =p q p q  

12 
j j

cS S←  

13 
Estimate 0 0( , )j jR t that minimizes the error function given in Equation (17) based on SVD approach, 

using features in 
jS  

14 for each ( , )i i Q∈p q  AND ( , ) j
i i S∉p q  do 

15 if 
0 0( )j j

i i− + < εp R q t  

16 { },j j
c c i iS S← p q  

17 end if 

18 end for 

19 if 1size( ) ηj
cS n>  

20 
Re-estimate 1 1( , )j jR t  that minimizes the error function based on SVD approach, using features in  

the consensus set j
cS  

21 for each ( , ) j
i i cS∈p q  do 

22 
' '

1 1( )j j
i iε ← ε + − +p R q t  

23 end for 

24 
' ' size ( )j

cSε ← ε  

25 if 
'ε < ε  

26 
'ε ← ε , 1 1( , ) ( , )j j←R t R t  

27 end if 

28 if 'ε ε σ− <  

29 break 

30 end if 

31 end if 

32 1j j← +  

33 end while 

34 return ( , )Rt  
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Taking advantage of the reduced ratio of outliers generated by consistency check, the number of 

iterations in RANSAC can be constrained effectively. The maximum iteration number (MaxIteration in 

line 9) can be set to a small integer between 5 and 10. The consistency check strategy along with 

RANSAC framework can significantly reduce outliers and increase robustness in motion estimation, 

while ensuring computational efficiency for real-time implementations. 

4.3. Global Transformation of Relative Motions 

The motion estimation procedure described in Section 4.2 provides a sequence of estimated 

transformations (R, t) of consecutive 3D feature point clouds at different time steps. Note that in actual 

applications, the features are actually fixed in the environment while the MAV moves around the 

features. Therefore, given the estimated feature transformation T of feature points, the corresponding 

motion (∆T) of the MAV’s current body frame with respect to the prior frame can be obtained by: 

1

1 3 1 31 1

T T
−

× ×

Δ Δ  − 
Δ = = =   

   

R t R R t
T T

0 0
 (22)

where ∆R, ∆t denote the rotation and translation component, respectively. We can derive a global 

representation of the MAV’s pose with respect to an initial pose T0 using the following sequence of 

homogenous transformations:  

1 1 0...t t t t n− − += Δ ⋅ Δ ⋅ ⋅ Δ ⋅T T T T T  (23)

where ∆T denotes the relative transformation of the MAV’s pose at different time steps. This global 

motion estimate can then be used as a measurement of the MAV’s state in the data fusion scheme. 

5. Invariant Observer Based State Estimation 

5.1. Review of Invariant Observer Theory 

The state estimation based on aided-inertial navigation systems is a typical nonlinear state observer 

design problem, where few general approaches exist for such problem. However, when the system 

possesses the geometry with symmetries under a transformation group, its state observer can be 

designed using a systematic approach, namely the invariant observer, which is originally proposed by 

Bonnabel et al. [31,32]. The primary feature of the invariant observer is that it is built upon the system’s 

symmetry geometry and yields an invariant form of the state estimation error, which significantly 

simplifies the derivation of the observer gains and convergence analysis, making the observer 

particularly suitable for MAVs with computationally constrained onboard embedded systems. In this 

section, the theoretical foundations of the invariant observer are reviewed, which will be used to design 

the state observer of the RGB-D/inertial navigation system in following sections. 

Definition 1. (Transformation Lie roup) Define G as a Lie group with identity e, and let M be a 

manifold. The transformation group ϕgϵG acting on the manifold M can be defined as a smooth map 
( ), ( )gg G M Mμ ∈ × φ μ ∈  and:  

1 2 1 2 1 2( ), , ,

( ) ,

g g g g

e

g gφ φ = φ μ ∀ ∈ Σ ∀μ ∈

φ μ = μ ∀μ ∈


 (24)
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The inverse group action 1g −φ  is also a smooth map, this makes g G∈φ  a diffeomorphism. 

Consider a system of the following form: 

( , )

( , )

f

h

=
=

x x u

y x u


 (25)

where both f, h are smooth maps, and (x, u, y) ϵ X × U × Y. For the state estimation problem of systems 

modeled as the above formulation, (x, u, y) represent the state, system input and output, respectively, 

where n m r∈ ∈ ∈  X ,U ,Y  are all smooth manifolds (i.e., the state manifold, the input manifold and 

the output manifold, respectively). Assuming that B = X × U is the trivial fiber bundle over the state 

manifold X, let φg: G × X → X, ψg: G × U → U and ρg: G × Y → Y be the smooth Lie group actions on 

the system’s state, input and output manifold, respectively, where is G the system’s Lie group with the 

property described in Definition 1. The invariance of the system in Equation (25) by the transformation 

group G can be defined as: 

Definition 2. (G-invariance and G-equivariance) The system dynamics in Equation (25) is  

G-invariant if: 

( ( ), ( )) ( ) ( , )g g gf D fϕ ψ = ϕ ⋅x u x x u , , ,g G X U∀ ∈ ∀ ∈ ∀ ∈x u  (26)

and for the output map , ,g G X U∀ ∈ ∀ ∈ ∀ ∈x u , the system is G-equivariant if: 

( ( ), ( )) ( ( , ))g g gh hϕ ψ = ρx u x u , , ,g G X U∀ ∈ ∀ ∈ ∀ ∈x u  (27)

The property in Equations (26) and (27) can also be expressed as: X = f(X, U), Y = h(X, U), i.e.,  

the system dynamics and outputs is invariant by the transformation group G. In coordinates,  

Equation (26) reads: 

( ( )) ( ( ), ( ))g g g

d
f

dt
ϕ = ϕ ψx x u , , ,g G X U∀ ∈ ∀ ∈ ∀ ∈x u  (28)

Similarly, Equation (27) can be rewritten as: 

( ) ( ( , ))g g hρ = ρy x u , , ,g G X U∀ ∈ ∀ ∈ ∀ ∈x u  (29)

If the invariant system of Equation (25) verifies the properties described in Definition 2, the 

existence of its invariant observer can be verified by the following theorem [31]: 
Theorem 1. For a G-invariant and G-equivariant system ( , )f=x x u , y = h(x, u), there exists an 

invariant observer ˆ ˆ( , , )F=x x u y  that verifies the following properties: 

(a) ( , , ( , )) ( , )F h f=x u x u x u ; 
(b) ˆ ˆ( ) ( , , ) ( ( ), ( ), ( ))

g g g g
F Fϕ ⋅ = ϕ ψ ρx u y x u y , i.e., the observer is invariant by the transformation group. 

and the invariant observer ˆ ˆ( , , )F=x x u y  associated with the system reads: 

1

ˆ ˆ ˆ ˆ ˆ( , , ) ( , ) ( ( , ), ( , , )) ( , , )
n

i i
i

F f L w
=

= + ε εx u y x u I x u x u y x u y  (30)

where the terms in Equation (30) are as follows: 

(1) wi is the invariant frame. A vector field w: TX → X is G-invariant if it verifies: 

( ) ( ( )),g gw w g Gϕ ⋅ = ϕ ∀ ∈x x  (31)
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The invariant frame is defined as the invariant vector fields that form a global frame for TX. 
Therefore, 1 2( ( ), ( )... ( ))nw w wx x x  forms a basis for TxX. An invariant frame can be calculated by: 

( )1 1( ) ( )
( ) ( ) / ( )i i ix x

d
w x

d
− −γ γ

= ϕ ⋅ ∂ ∂ = ϕ υ τ
τ

x  (32)

where υi ϵ TeX is a basis of υi ϵ TeX, and γ(x) is the moving frame. Following the Cartan moving frame 

method, the moving frame γ(x) can be derived by solving φg(x) = c for g = γ(x), where c is a constant. 

In particular, one can choose c = e such that γ(x) = x−1. 

(2) ˆ( , , )ε x u y  denotes the invariant output error, which is defined as follows: 

Definition 3. (Invariant output error) The smooth map ˆ ˆ: ( , , ) ( , , )ε εx u y x u y  is an invariant error 

which verifies the following properties: 

(a) For any ˆ,x u , ˆ ˆ: ( , , ) ( , , )ε εx u y x u y  is invertible; 

(b) For any ˆ,x u , ˆ ˆ( , , ( , )) 0hε =x u x u ; 

(c) For any ˆ,x u , ˆ ˆ( ( ), ( ), ( )) ( , , )g g gε ϕ ψ ρ = εx u y x u y ; 

According to the moving frame method, the invariant output error can be given by: 

ˆ ˆ( ) ( )ˆ ˆ( , , ) ( ( , )) ( )hγ γε = ρ − ρx xx u y x u y  (33)

(3) ˆ( , )I x u  is the invariant of G, which verifies: 

( ( )) ( )gϕ =I x I x  (34)

Following the moving frame method, the invariant ˆ( , )I x u  is obtained by: 

ˆ ˆ( ) ( )ˆ ˆ( , ) : ( ) ( )γ γ= ϕ × ψx xI x u x u  (35)

where γ(x) is the moving frame. 

(4) Li is a 1 × r observer gain matrix that depends on I and ε, such that: 

ˆ( ( , ),0) 0iL =I x u , ˆ∀ ∈x X  (36)

The observer gains can be obtained using the invariant state estimation error, which is defined as:  
Definition 4. (Invariant state estimation error) The smooth map ˆ ˆ( , ) ( , )ηx x x x  is an invariant 

state estimation error if it satisfies the following properties: 

(a) ˆ( , )η x x  is a diffeomorphism on X × X; 

(b) For any ∈x X , ( , ) 0η =x x ; 

(c) ˆ ˆ( ( ), ( )) ( , )g gη ϕ ϕ = ηx x x x . 

Theorem 2 [31]. For a G-invariant and G-equivariant system given by Equation (25), the state 

estimation error of its invariant state observer is given as: 

( ) ( )ˆ ˆ( , ) ( ) ( )x xγ γη = ϕ − ϕx x x x  (37)

with the following dynamics: 

ˆ( , ( , ))η = ϒ η I x u  (38)

where ˆ( , )I x u  are the invariants that take the form as in Equation (35). 
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As can be seen from Equation (38), in contrast to the state error dynamics of general nonlinear 

observer which depends on the trajectory of the system ((x(t), u(t))), the dynamics of the invariant state 
error depends only on the estimated invariants ˆ( , )I x u . This significantly simplifies the stability 

analysis and the selection of observer gains. 

A comprehensive description of the mathematical foundation and proof of the invariant observer 

theory can be found in [31,32]. 

5.2. Sensor Measurement Models 

As described previously, the onboard sensors equipped on the MAV consist of two primary parts: 

the MEMS IMU module and the RGB-D camera. The MEMS IMU module integrates three types of  

tri-axial sensors, generating tri-axial scalar measurements expressed in the MAV’s body-fixed 

coordinate: a tri-axial gyroscope module that provides measurements of the angular rate ωm, a tri-axial 

accelerometer module that provides measurements of the acceleration fm, as well as a tri-axial 

magnetometer module that measures the local magnetic field vector expressed in the body-fixed frame: ym, 

where the magnetic field vector can be considered as constant over a small-scale operating environment. 

All measurements provided by the above inertial sensor are corrupted by sensor bias and 

measurement noises. It is a common practice to assume that the imperfections of sensor measurements 

include two components: a constant additive bias term and a Gaussian noise term with mean zero. 

Therefore, the gyroscope signals ωm can be modeled as: 

m bω ωω = ω + + ν  (39)

where ω is the actual angular rate, bω denotes the constant gyroscope bias, and νω is Gaussian noise 

with zero mean. Similarly, signals of the accelerometer model can be modeled as: 

m f ff f b ν= + +  (40)

where f is the actual acceleration, bf represents the constant accelerometer bias, and νf is also a 

Gaussian noise vector with zero mean. 

The local magnetic field in the earth-fixed can be expressed frame as m = [mx, 0, mz]T. Since the 

magnetometer is fixed with the MAV body, the magnetic readings provided by the magnetometer are 

measured in the body-fixed frame, which also contain sensor noises. Denoting q as the quaternion that 

represents the orientation of the MAV’s body fixed frame with respect to the ground-fixed frame, the 

magnetometer model can be given as: 
1

m my q m q v−= × × +  (41)

where ym is the readings of the magnetometer, and m denotes the Gaussian noise with zero mean. 

The RGB-D visual odometry described in Section 4 can provide estimates of the MAV’s relative 

motion, which form observations of the MAV’s state and can be used as an aid to the inertial 

measurements (note that estimates of MAV’s rotations are not used as observations of the MAV’s 

attitude, since it is more desirable to utilize the inertial measurements for attitude estimation). In addition, 

an ultrasonic altimeter is employed in our system to measure the MAV’s altitude relative to the ground. 

For our system, the translation estimates of the RGB-D visual odometry are transformed into the MAV’s 

positions in the global frame, this yields the following output model of the RGB-D VO and altimeter: 
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,p x y p

s z s

y p v

y p v

= +

= +
 (42)

where yp and ys are measurements of the RGB-D visual odometry and altimeter, respectively. px,y and 

pz denote the MAV’s planar positions and altitude in the global frame. Both yp and νs are the Gaussian 

white-noise of measurements. 

5.3. RGB-D Visual/Inertial Navigation System Model 

In our system, the MAV’s orientation is represented in the quaternion formulation since the 

quaternion parameterization is nonsingular and well-suited for implementation on computer systems. 

Using the aforementioned measurement model of gyroscope and accelerometer sensors, as well as the 

kinematics of a rigid body, the quaternion-based dynamics model of the MAV can be formulated as: 

ω ω

1
ω

ω

1
(ω )

2

( )

0

0

m

m f

f

q q b

p v

v q f b q

b

b

ν

ν −

= × − −

=
= × − − × +

=

=

g









 (43)

where q is the unit attitude quaternion ( , 1)q H q∈ =  representing the orientation of the body-fixed 

frame with respect to the global frame; 3p ∈  and 3v ∈   represent the MAV’s position and velocity 

in the global frame, respectively; g = [0 0 g]T is the local gravity vector in the ground-fixed frame. The 

state vector chosen for observer design is x = [q p v bω bf]T, along with the system input u = [ωm fm g]T. 

The observations of the system consist of two parts: the magnetic measurements ym in the body-fixed 

frame and measurements of the MAV’s position yp ys provided by RGB-D VO and altimeter, both 

expressed in the global frame. Using the measurement model given in Equations (41) and (42), the 

system output is written as: 

1

,

m m

p x y p

s z s

y q m q v

y p v

y p v

− × × + 
   = +  
 +    

 (44)

5.4. Observer Design of the RGB-D Visual/Inertial Navigation System 

In order to verify the invariant properties of the RGB-D/inertial navigation system, the system 

dynamics model in Equation (43) is rewritten by ignoring the noise terms: 

ω

1

ω

1
(ω )

2

( )

0

0

m

m f

f

q q b

p v

v q f b q

b

b

−

= × −

=
= × − × +

=

=

g









 (45)
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Similarly, the system output model in Equation (44) is now given as: 
1

,

m

p x y

s z

y q m q

y p

y p

−= × ×
=

=

 (46)

Following the definitions and theorems described in Section 5.1, we can verify the invariant 

properties of the system dynamics and output model, by defining the transformation Lie group G that 

acts on the state manifold X through the following actions: 

0 0 ,0 ,0

0
1

0 0 0
1

0 0( , , , )

,0

,0

( )

( )
fg q p b b

f f f

q q q

p q p p q

v q v q

b b b

b b b

ω

−

−

ω ω ω

×   
   × + ×   
   × ×ϕ = ϕ =
   +   
   +   

x  (47)

where g = (q0, p0, bω,0, bf,0) denotes the group action of G with the following physical meaning: q0 and p0 

represent the constant rotations and translations in the global frame, and bω,0, bf,0 ϵ R3 denote constant 

translations on the bias of gyroscopes and accelerometers, respectively. 

Similarly, the group actions on the system input and output manifold (U, Y) can be defined as: 

0 0 ,0 ,0

,0

,0

( , , , ) 1
0 0

1
0 0

( )= =
f

mm

m fm
g q p b b

b

f bf

q q

m q m q

ω

ω

−

−

ω + ω 
   +  ψ ψ    × ×    × ×   

u
g g

 (48)

0 0 ,0 ,0

11

( , , , ) , , 1
0 0 0

( )
fg q p b b x y x y

z z

q m qq m q

p p
q p q

p p
ω

−−

−

 × × × ×
  ρ = ρ =        × + ×             

y  (49)

Following Equation (28), we have: 


0 0 0 ω

1 1 1
0 0 0 0 0 0 0

1 1 1 1
0 0 0 0 0 0

1 1
0 0 0 0

ω ω,0 ω
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1
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0

0

m

m f

m f

f f f

q q q q q b
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+ = =
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g
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 (50)

Therefore, the dynamics model in Equation (45) verifies ( ) ( , ) ( ( ), ( ))g g gD f fϕ ⋅ = ϕ ψx x u x u . Following 

Definition 2, it can be concluded that the RGB-D visual/inertial navigation system is G-invariant. 
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Similarly, using the group actions ψg(u) and ρg(y), we can directly verify: 

1 1 1
0 0 0 0

, ,1 1
0 0 0 0 0 0

( ) ( )

( ( ), ( )) ( )g g gx y x y

z z

q q q m q q q q m q

h p p
q p q q p q

p p

− − −

− −

   × × × × × × × ×
   

ϕ ψ = = = ρ         × + × × + ×         
         

x u y (51)

Following Definition 2, the system output model given in Equation (46) is G-equivariant under the 

group actions φg, ψg and ρg. As a result, the existence of the invariant observer ˆ ˆ( , , )F=x x u y  for the 

system in Equations (45) and (46) can be guaranteed by Theorem 1. Using the verified invariant 

properties of the system dynamics and output, we can now design the invariant state observer for the 

RGB-D visual/inertial navigation system by following the systematic steps described in Section 5.1. 

As mentioned previously in Section 5.1, the moving frame γ(x) of the invariant observer can be 

obtained by solving φg(x) = c. Let c be the unity (i.e., c = e), φg(x) can be given as: 

0

1
0 0 0

ω ω,0

,0

1

( ) 0
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0f f
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q p p q

b b

b b

−

× =

× + × =
+ =
+ =

 (52)

Solving the above equations, the moving frame can be given by: 

( )T1( ) fx g q p b b−
ωγ = = − − −  (53)

Therefore, the invariants of group G can be obtained by: 
1
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(54)

1

ˆ( ) ,1
ˆ( , ) ( )

ˆ ˆ ˆx x y

z

q m q

J p
q p q

p

−

γ −

 × ×
 

= ρ =    × − ×   
   

x y y  (55)

where ˆ( , )J x y  is the complete set of invariants of G which depends on the system output y = h(x, u). 

Using the invariants ˆ( , )I x u  and ˆ( , )J x y , the invariant output error can be obtained by following 

Definition 3: 

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

1 1 1 1

, , ,1 1 1

ˆ ˆ ˆ( , , ) ( ( , )) ( ) ( ( , )) ( )

ˆ ˆ ˆ ˆ

ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ
x y x y x y

z z z

h J h J

q m q q m q q m q q m q

p p p
q p q q p q q p

p p p

γ γ γ γ

− − − −

− − −

ε = ρ − ρ = −

   × × × × × × − × ×
   

= − =            × − × × − × × −            
            

x x x xx u y x u y x u y
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 × 
 

 
(56)

Denoting iυ  ( fbbq p v
i i i i i eT Xωυ υ υ υ υ× × × × ∈ ) as the basis vectors of the tangent space TeX over the 

state manifold 3 3 3 3 3R R R R× × × ×X = S , the invariant frame  wi(x) is calculated by: 
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 (57)

where ( )T1( ) fx q p b b−
ωγ =  according to Equation (53). 

Following Theorem 1 and Equation (57), the invariant observer of system in Equations (45) and (46) 

can be given by: 

ω
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(58)

where Li are 1 × 3 gain matrices of the observer. Notice that: 

( )
13 3

2
1 1
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q q q q
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where Lq is a 3 × 6 matrix, and the rows of Lq are from row matrix Lq 
i . Other terms in Equation (58) 

that associated with the observer gains can also be transformed in the same manner, leading to: 
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 (60)

Following Equation (37), the invariant state estimation error η of the observer can be obtained by: 
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 (61)
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Therefore, the dynamics of the state estimation error η can be directly obtained by calculating
( / )d dt η and bringing in the invariant terms ˆ( , )I x u : 
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 (62)

As can be seen from Equation (62), the dynamics of the invariant state error depends on the 
estimated state only through the invariant terms ˆ( , )I x u  rather than the trajectory of the system, which 

simplifies the calculation of the observer gains. Using the invariant state error in Equation (61), the 

invariant output error is rewritten as: 
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x u y

 (63)

5.5. Calculation of Observer Gains Based on Invariant-EKF 

In order to calculate the gain matrices (L) of the invariant observer in Equation (60), we adopted a 

systematic approach based on the invariant-EKF (IEKF) [37]. The basic idea of the IEKF is to 

linearize the dynamics of the invariant state estimation error η about the current estimated state, and 

implement a Kalman filter on the linearized error dynamics to obtain the optimal observer gains. 

Details of the IEKF-based observer gains calculation will be specified in the parts of this subsection. 

To better illustrate the IEKF method, we first recall the standard EKF approach that operates by 

linearizing the system dynamics. Consider the following nonlinear system described by: 

( )

( )

f w

h v

= +
= +

x x,u B

y x,u D


 (64)

where w, v denote the mutually-independent process and measurement Guassian white-noise with 

covariances T
wE ww = Q , T

vE vv = Q , respectively. B, D are the input matrices of the noise vectors. 

The optimal state estimate x̂  that minimizes the estimation error ˆ=ε −x x  can be obtained using the 

conventional continuous-time EKF procedure given by: 



Micromachines 2015, 6 512 

 

1

1

ˆ ˆ ˆ( ) ( ( ))

( )

( )

T T
v

T T T T
w v

f h
−

−

= + −
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 (65)

where K denotes the Kalman gain, and A, C are the Jacobian of the process model f and measurement 
model h with respect to the current estimated state ( ˆ( ) |xf= ∂ ∂A x, u x , ˆ( ) |xh= ∂ ∂C x, u x ), respectively. 

According to the EKF method, we linearize the system dynamics and output model given by Equation (64) 

about the latest estimated state using Taylor expansion: 
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ˆ
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ˆ
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 (66)

Equation (65) can be rewritten as: 

ˆ ˆ ˆ( ) [ ( ) ]f v= + − +x x, u K C x x B  (67)

Following Equations (66) and (67), the dynamics of the EKF state estimation error is given by: 

ˆ ( ) w vε = − = − ε − +x x A KC B KD   (68)

As described in Section 5.1, the invariant observer ˆ( )F x u y， ，  of the RGB-D visual/inertial navigation 

system was initially designed without considering the process and measurement noises. Introducing the 

noise terms w, v, the system dynamics and the associated invariant observer are rewritten as: 

ˆ ˆ( ), ( )f w F v= = +x x, u - x x, u, y    (69)

Recall the invariant state estimation error given by Equation (37): ( ) ( )ˆ ˆ( , ) ( ) ( )x xγ γη = ϕ − ϕx x x x . From 

Equation (69), we can find that the time derivative of the estimation error η  will also contain the noise 

terms w, v. According to the IEKF, we can now linearize η  about the latest estimated state. Denote η as 

the actual state estimation error, and η  should be close to the group identity e (i.e., eη = ) when ˆ =x x . 

Let δη = η− η , it is proved in [48] that by linearizing η  about η=η, 0, 0w v= =  the dynamics of δη  reads: 

δη ( )δη w v= − − +A KC B KD  (70)

which takes the same form as in the conventional EKF case (Equation (68). Therefore, the observer 

gains L can be obtained from K, which is calculated following the procedure given by Equation (65). 

As discussed in subsection 5.3, the RGB-D visual/inertial navigation system model with noise terms is 

given as in Equations (43) and (44) (Note that px,y, pz and vp, vs are now merged and denoted as p and vp): 
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The invariant observer with noise terms is now written as: 
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 (72)

where the invariant output error E  is given as: 
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 (73)

The derivation of the invariant state estimation error dynamics is the same as described in  

Subsection 5.4. Computing the time derivative of η, we have: 
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 (74)

where ω ω̂ω
m mI b= − , and ˆ

mf m fI f b= − . 

Linearizing the output error E  given by Equation (73) about , 0, 0w vη = η = =  and omitting the 

high-order terms ( ( , )Q δη δη , ( , )Q ν δη ), we can obtain: 

1

2

ˆ ˆ
m q m

p p

I v
E E E

q v q−

× δη − 
δ = − =  δη − × × 
    (75)

Similarly, denoting δη = η− η , the linearized δη  is given by: 
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Denoting 
T

fw v vω =    and 
T

m pv v v =   , Equation (76) takes the following form: 

( ) w vδη = − δη − +A KC B KD  (77)

where: 
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(78)

As can be found from Equation (78), the matrix K is composed by the gains of the invariant 

observer in Equation (60). Therefore, observer gains L can be extracted from matrix K, which is 

updated via the procedure given by Equation (65) using matrices A, B, C, D. 

6. Implementation and Experimental Results 

6.1. Implementation Details and Experimental Scenarios 

In order to validate the effectiveness of the proposed RGB-D visual/inertial navigation scheme via 

flight test, the robust RGB-D VO and invariant observer were implemented on a prototype quadrotor 

MAV system shown in Figure 6a. The quadrotor was equipped with an onboard low-cost MEMS IMU 

(ADIS16405, produced by Analog Devices Inc., Norwood, MA, USA, Figure 6b) and an RGB-D 

camera (PrimeSense Carmine 1.08, produced by PrimeSense Inc., Tel-Aviv, Israel, Figure 6c). 

The ADIS16405 IMU consists of tri-axial gyroscope, accelerometer and magnetometer and 

provided inertial and magnetic measurement data at a rate of 100 Hz. The PrimeSense Carmine camera 

outputs RGB image and depth data with a resolution of 640 × 480 (pixels), at a rate of 30 Hz. The 
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robust RGB-D VO algorithm described in Section 4 is implemented based on C++ and the OpenCV 

library [49], and runs at a same rate of 30 Hz. The overall invariant observer is implemented using an 

Euler numerical integration method and a complementary update scheme: the rough state estimate ˆ −x  
is propagated at 100 Hz, using the system dynamics ˆ( , )f x u  and inertial measurements (u), while the 

full estimate x̂  is updated at a rate of 30 Hz, when the measurement from the RGB-D VO is available. 

Using the prototype quadrotor MAV system, a series of flight tests were carried out in two typical  

indoor scenarios shown in Figure 7. Scenario 1 represents the indoor environment inside a laboratory, 

and the MAV is controlled to follow a smooth 3D rectangular trajectory in the laboratory. The 

environment of Scenario 2 was a corridor inside a building, and after taking off from one end, the MAV 

is guided to traverse the corridor to land at the other end. For all flight experiments, the environments 

are without access to GPS signal and the MAV must rely only on the RGB-D visual/inertial navigation 

scheme to obtain state estimates. 

(a) (b) (c) 

Figure 6. Experiment system: a prototype quadrotor MAV equipped with a RGB-D 

camera and a low-cost MEMS IMU module. (a) Prototype quadrotor MAV system;  

(b) MEMS IMU: ADIS16405; (c) RGB-D Camera: PrimeSense Carmine 1.08. 

(a) (b) 

Figure 7. Indoor flight test scenarios. (a) Scenario 1: an actual laboratory; (b) Scenario 2:  

a corridor inside a building. Both environments are without access to GPS signal. 

6.2. Indoor Flight Test Results 

6.2.1. RGB-D Visual Odometry Test Results 

We first conducted a number of experiments to evaluate the performance of the robust RGB-D VO 

described in Section 3, using the RGB image and depth data provided by the onboard PrimeSense Carmine 
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RGB-D camera. Figure 8 shows the feature detection and matching results in Scenario 1. Figure 8a 

illustrates the features (drawn in green and blue) extracted by the ORB detector from two consecutive 

images. Examples of the feature correspondences found by the OFC-ORB strategy from the detected 

features are show in Figure 8b, and the lines connecting the pairs of points represent the correspondence 

relationships of features. Figure 8c shows the corresponding depth image and the optical-flow disparity 

(drawn in green) between consecutive images. The experimental results demonstrate the effectiveness 

of the OFC-ORB strategy, as well as its robustness to image noise and motion blur. 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Experimental results of feature detection and matching. (a) Features extracted 

from images captured at time step m − 1 (left) and m (right); (b) feature correspondences; 

(c) depth image captured by the RGB-D camera (left) and optical-flow between consecutive 

images (right). 

To further evaluate the computational efficiency of the proposed strategy, the performance of  

OFC-ORB and various existing methods (Harris Corner, SIFT (Scale-invariant feature transform), SURF 

(speeded up robust features)) were compared in terms of time spent on finding feature correspondences. 

We applied different methods to the same pairs of 640 × 480 images captured by the RGB-D camera 

and recorded the overall computation time. For each method, the algorithm ran on the same computer 
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platform (a single-board computer mounted on the MAV), the experiment was repeated 30 times and 

the average computation time was calculated over these experiments. The performance comparisons of 

various methods are shown in Table 1. As can be seen from Table 1, the OFC-ORB feature detection 

and matching strategy outperforms other existing in terms of computation efficiency. This feature 

makes it suitable for implementation on computationally constrained onboard platforms. 

Table 1. Performance comparisons of various algorithms. 

Algorithms Average Time (ms)

Harris Corner 16.6 
SIFT 6290.1 
SURF 320.5 

OFC-ORB 13.2 

6.2.2. State Estimation Results 

The state estimation results from indoor flight tests are plotted in Figure 9. Figure 9a,c depicts examples 

of attitude and velocity estimates of Scenario 1 and Scenario 2 from the invariant observer, respectively. 

The estimated position of Scenario 1 and Scenario 2 are shown in Figure 9b,d. These results indicate 

that the drifts of the low-cost MEMS IMU sensor can be effectively bounded through data fusion of 

RGB-D VO estimates and inertial measurements using the proposed invariant observer. 

For comparison purposes, an external motion capture camera is employed in the flight tests of 

Scenario 1 to record the actual flight data, which is used as the ground truth trajectory. Both the 

estimated position and the ground truth 3-D trajectory derived from the external motion capture 

camera are plotted in Figure 9b. The results indicate that the estimated position closely matches the 

ground truth trajectory, except for a slightly larger deviation in the x-direction (east) of approximately  

7 cm in maximum, which is likely due to a decreased number of environmental features along that 

direction. Despite these occasional deviations, the flight test results prove that the overall performance 

and accuracy of state estimation are satisfactory, and the proposed navigation scheme can provide 

reliable and accurate state estimates for stabilization and control of the MAV. In addition, the overall 

RGB-D visual/inertial navigation scheme can operate effectively in indoor environments, without 

relying on external navigation aids such as GPS. 

(a) (b) 

Figure 9. Cont. 



Micromachines 2015, 6 518 

 

 
(c) (d) 

Figure 9. State estimation results. (a) Attitude and velocity estimates of Scenario 1;  

(b) estimated position vs. ground truth trajectory of Scenario 1; (c) attitude and velocity 

estimates of Scenario 2; (d) estimated position of Scenario 2. 

7. Conclusions and Future Work 

This paper presents an integrated RGB-D visual/inertial navigation scheme for the state estimation 

of MAVs operating in GPS-denied indoor environments. A robust RGB-D visual odometry approach was 

developed to estimate the relative motions of the MAV using consecutive image and depth data provided 

by the RGB-D camera. The motion estimates from the RGB-D VO are fused with MEMS IMU 

measurements through the invariant observer, which is designed based on the symmetry-preserving 

observer theory. The proposed navigation scheme and corresponding algorithms were implemented on a 

quadrotor MAV, and experimental results from indoor flight test demonstrate the efficiency and 

robustness of the RGB-D VO, as well as the effectiveness of the invariant observer-based estimation 

approach. Future work will focus on evaluating the system in more challenging, actual indoor 

environments with disturbances, and comparing the invariant observer-based approach with other 

existing filters. 

Acknowledgments 

This work was supported in part by the China High-Tech 863 Program under Grants 

2001AA415340 and 2007AA04Z1A6, and in part by the National Natural Science Foundation of 

China under Grant 61174168, as well as the Aviation Science Foundation of China under Grants 

20100758002 and 20128058006. The authors appreciate the technical support in the experiments 

provided by Zhen Tian. 

Author Contributions  

Dachuan Li proposed the integrated RGB-D visual/inertial navigation scheme, designed and 

developed the invariant observer-based state estimation approach, and wrote the paper. Liangwen Tang 

developed the RGB-D visual odometry algorithm, and Sheng Yang developed the quadrotor MAV 

prototype system and conducted the flight experiments. Nong Cheng provided advices on the 

derivation of the navigation system model. Qing Li and Jingyan Song supervised the work. 



Micromachines 2015, 6 519 

 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Bouabdallah, S.; Bermes, C.; Grzonka, S.; Gimkiewicz, C.; Brenzikofer, A.; Hahn, R.;  

Schafroth, D.; Grisetti, G.; Burgard, W.; Siegwart, R. Towards palm-size autonomous helicopters. 

J. Intell. Robot. Syst. 2011, 61, 445–471. 

2. Goodrich, M.A.; Cooper, J.L.; Adams, J.A.; Humphrey, C.; Zeeman, R.; Buss, B.G. Using a  

mini-UAV to support wilderness search and rescue: Practices for human–robot teaming.  

In Proceedings of 2007 IEEE International Workshop on Safety, Security and Rescue Robotics 

(SSRR 2007), Rome, Italy, 27–29 September 2007. 

3. Tomic, T.; Schmid, K.; Lutz, P.; Domel, A.; Kassecker, M.; Mair, E.; Grixa, I.L.; Ruess, F.; 

Suppa, M.; Burschka, D. Toward a fully autonomous UAV: Research platform for indoor and 

outdoor urban search and rescue. IEEE Robot. Autom. Mag. 2012, 19, 46–56. 

4. Lin, L.; Roscheck, M.; Goodrich, M.; Morse, B. Supporting wilderness search and rescue with 

integrated intelligence: autonomy and information at the right time and the right place.  

In Proceedings of 24th AAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 11–15 

July 2010; pp. 1542–1547. 

5. Bachrach, A.; He, R.; Roy, N. Autonomous flight in unknown indoor environments. Int. J. Micro 

Air Veh. 2009, 4, 277–298. 

6. Bachrach, A.; He, R.; Roy, N. Autonomous flight in unstructured and unknown indoor 

environments. In Proceedings of European Conference on Micro Aerial Vehicles (EMAV 2009), 

Delft, The Netherlands, 14–17 September 2009. 

7. Bachrach, A.; Prentice, S.; He, R.; Roy, N. RANGE: Robust autonomous navigation in  

GPS-denied environments. J. Field Robot. 2011, 28, 644–666. 

8. Chowdhary, G.; Sobers, D.M., Jr.; Pravitra, C.; Christmann, C.; Wu, A.; Hashimoto, H.; Ong, C.; 

Kalghatgi, R.; Johnson, E.N. Self-contained autonomous indoor flight with ranging sensor 

navigation. J. Guid. Control Dyn. 2012, 29, 1843–1854. 

9. Chowdhary, G.; Sobers, D.M.; Pravitra, C.; Christmann, C.; Wu, A.; Hashimoto, H.; Ong, C.; 

Kalghatgi, R.; Johnson, E.N. Integrated guidance navigation and control for a fully autonomous 

indoor UAS. In Proceedings of AIAA Guidance Navigation and Control Conference, Portland, 

OR, USA, 8–11 August 2011. 

10. Sobers, D.M.; Yamaura, S.; Johnson, E.N. Laser-aided inertial navigation for self-contained 

autonomous indoor flight. In Proceedings of AIAA Guidance Navigation and Control Conference, 

Toronto, Canada, 2–5 August 2010. 

11. Weiss, S.; Achtelik, M.W.; Lynen, S.; Chli, M.; Siegwart, R. Real-time onboard visual-inertial 

state estimation and self-calibration of MAVs in unknown environments. In Proceedings of 2012 

IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA,  

14–18 May 2012; pp. 957–964. 



Micromachines 2015, 6 520 

 

12. Wu, A.D.; Johnson, E.N.; Kaess, M.; Dellaert, F.; Chowdhary, G. Autonomous flight in  

GPS-denied environments using monocular vision and inertial sensors. J. Aerosp. Comput. Inf. 

Commun. 2013, 10, 172–186. 

13. Wu, A.D.; Johnson, E.N. Methods for localization and mapping using vision and inertial sensors. 

In Proceedings of AIAA Guidance, Navigation, and Control Conference, Honolulu, HI, USA,  

18–21 August 2008. 

14. Acgtelik, M.; Bachrach, A.; He, R.; Prentice, S.; Roy, N. Stereo vision and laser odometry for 

autonomous helicopters in GPS-denied indoor environments. Proc. SPIE 2009, 7332, 733219. 

15. Achtelik, M.; Roy, N.; Bachrach, A.; He, R.; Prentice, S.; Roy, N. Autonomous navigation and 

exploration of a quadrotor helicopter in GPS-denied indoor environments. In Proceedings of the 

1st Symposium on Indoor Flight, International Aerial Robotics Competition, Mayagüez, Puerto Rico, 

21 July 2009. 

16. Voigt, R.; Nikolic, J.; Hurzeler, C.; Weiss, S.; Kneip, L.; Siegwart, R. Robust embedded 

egomotion estimation. In Proceedings of 2011 IEEE/RSJ International Conference on Intelligent 

Robots and Systems (IROS), San Francisco, CA, USA, 25–30 September; pp. 2694–2699. 

17. Bachrach, A.; Prentice, S.; He, R.; Henry, P.; Huang, A.S.; Krainin, M.; Maturana, D.; Fox, D.; 

Roy, N. Estimation, planning, and mapping for autonomous flight using an RGB-D camera in 

GPS-denied environments. Int. J. Robot. Res. 2012, 31, 1320–1343. 

18. Leishman, R.; Macdonald, J.; McLain, T.; Beard, R. Relative navigation and control of a 

hexacopter. In Proceedings of 2012 IEEE International Conference on Robotics and Automation 

(ICRA), Saint Paul, MN, USA, 14–18 May 2012; pp. 4937–4942. 

19. Guerrero-Castellanos, J.F.; Madrigal-Sastre, H.; Durand, S.; Marchand, N.; Guerrero-Sanchez, W.F.; 

Salmeron, B.B. Design and implementation of an attitude and heading reference system (AHRS). 

In Proceedings of 2011 8th International Conference on Electrical Engineering Computing Science 

and Automatic Control (CCE), Merida, Mexico, 26–28 October 2011. 

20. Bonnabel, S.; Martin, P.; Salaün, E. Invariant extended Kalman filter: Theory and application to a 

velocity-aided attitude estimation problem. In Proceedings of Joint 48th IEEE Conference on 

Decision and Control and 2009 28th Chinese Control Conference (CDC/CCC 2009), Shanghai, 

China, 15–18 December 2009; pp. 1297–1304. 

21. Kelly, J.; Sukhatme, G.S. Visual-inertial sensor fusion: Localization, mapping and sensor-to-sensor 

self-calibration. Int. J. Robot. Res. 2011, 30, 56–79. 

22. Van der Merwe, R.; Wan, E. Sigma-point Kalman filters for integrated navigation. In Proceedings 

of 60th Annual Meeting of the Institute of Navigation (ION), Dayton, OH, USA, 7–9 June 2004; 

pp. 641–654. 

23. Bry, A.; Bachrach, A.; Roy, N. State estimation for aggressive flight in GPS-denied environments 

using onboard sensing. In Proceedings of 2012 IEEE International Conference on Robotics and 

Automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012; pp. 1–8. 

24. Crassidis, J.L.; Markley, F.L.; Cheng, Y. Survey of nonlinear attitude estimation methods.  

J. Guid. Control Dyn. 2007, 30, 12–28. 
  



Micromachines 2015, 6 521 

 

25. Achtelik, M.; Achtelik, M.; Weiss, S.; Siegwart, R. Onboard IMU and monocular vision based 

control for MAVs in unknown in- and outdoor environments. In Proceedings of 2011 IEEE 

International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; 

pp. 3056–3063. 

26. Boutayeb, M.; Richard, E.; Rafaralahy, H.; Souley Ali, H.; Zaloylo, G. A simple time-varying 

observer for speed estimation of UAV. In Proceedings of 17th IFAC World Congress, Seoul, 

Korea, 6–11 July 2008; pp. 1760–1765. 

27. Benallegue, A.; Mokhtari, A.; Fridman, L. High-order sliding-mode observer for a quadrotor 

UAV. Int. J. Robust Nonlinear Control 2008, 18, 427–440. 

28. Madani, T.; Benallegue, A. Sliding mode observer and backstepping control for a quadrotor 

unmanned aerial vehicles. In Proceedings of 2007 American Control Conference, New York, NY, 

USA, 9–13 July 2007; pp. 5887–5892. 

29. Benzemrane, K.; Santosuosso, G.L.; Damm, G. Unmanned aerial vehicle speed estimation via 

nonlinear adaptive observers. In Proceedings of 2007 American Control Conference, New York, 

NY, USA, 9–13 July 2007; pp. 985–990 

30. Rafaralahy, H.; Richard, E.; Boutayeb, M.; Zasadzinski, M. Simultaneous observer based sensor 

diagnosis and speed estimation of unmanned aerial vehicle. In Proceedings of 47th IEEE 

Conference on Decision and Control (CDC 2008), Cancun, Mexico, 9–11 December 2008;  

pp. 2938–2943. 

31. Bonnabel, S.; Martin, P.; Rouchon, P. Symmetry-preserving observers. IEEE Trans. Autom. 

Control 2008, 53, 2514–2526. 

32. Bonnabel, S.; Martin, P.; Rouchon, P. Non-linear symmetry-preserving observers on lie groups. 

IEEE Trans. Autom. Control 2009, 54, 709–1713. 

33. Mahony, R.; Hamel, T.; Pflmlin, J.-M. Nonlinear complementary filters on the special orthogonal 

group. IEEE Trans. Autom. Control 2008, 53, 1203–1218. 

34. Martin, P.; Salaun, E. Invariant observers for attitude and heading estimation from low-cost 

inertial and magnetic sensors. In Proceedings of 46th IEEE Conference on Decision and Control, 

New Orleans, LA, USA, 12–14 December 2007; pp. 1039–1045. 

35. Martin, P.; Salaun, E. Design and implementation of a low-cost attitude and heading nonlinear 

estimator. In Proceedings of Fifth International Conference on Informatics in Control, Automation 

and Robotics, Signal Processing, Systems Modeling and Control, Funchal, Portugal, 11–15 May 

2008; pp. 53–61. 

36. Martin, P.; Salaün, E. Design and implementation of a low-cost observer-based attitude and 

heading reference system. Control Eng. Pract. 2010, 18, 712–722. 

37. Bonnabel, S. Left-invariant extended Kalman filter and attitude estimation. In Proceedings of the 

46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 12–14 December 2007; 

pp. 1027–1032. 

38. Barczyk, M.; Lynch, A.F. Invariant extended Kalman filter design for a magnetometer-plus-GPS 

aided inertial navigation system. In Proceedings of the 50th IEEE Conference on Decision and  

Control and European Control Conference (CDC-ECC), Orlando, FL, USA, 12–15 December 

2011; pp. 5389–5394. 



Micromachines 2015, 6 522 

 

39. Barczyk, M.; Lynch, A.F. Invariant observer design for a helicopter UAV aided inertial navigation 

system. IEEE Trans. Control Syst. Technol. 2013, 21, 791–806. 

40. Cheviron, T.; Hamel, T.; Mahony, R.; Baldwin, G. Robust nonlinear fusion of inertial and visual 

data for position, velocity and attitude estimation of UAV. In Proceedings of the 2007 IEEE 

International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007;  

pp. 2010–2016. 

41. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or 

SURF. In Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV), 

Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. 

42. Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In Proceedings of 

Computer Vision–ECCV 2006, 9th European Conference on Computer Vision, Graz, Austria,  

7–13 May 2006; Springer: Berlin, Germany, 2006; Volume 1, pp. 430–443. 

43. Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. Brief: Binary robust independent elementary 

features. In Proceedings of Computer Vision–ECCV 2010, 11th European Conference on 

Computer Vision, Heraklion, Crete, Greece, 5–11 September 2010; Springer: Berlin, Germany, 

2010; pp. 778–792. 

44. Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo 

vision. Proc. IJCAI 1981, 81, 674–679. 

45. Bouguet, J.Y. Pyramidal Implementation of the Affine Lucas Kanade Feature Tracker Description 

of the Algorithm. Available online: http://robots.stanford.edu/cs223b04/algo_affine_tracking.pdf 

(accessed on 20 April 2015). 

46. Arun, K.S.; Huang, T.S.; Blostein, S.D. Least-squares fitting of two 3-D point sets. IEEE Trans. 

Pattern Anal. Mach. Intell. 1987, 5, 698–700. 

47. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with 

applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. 

48. Nistér, D. Preemptive RANSAC for live structure and motion estimation. Mach. Vis. Appl. 2005, 

16, 321–329. 

49. OpenCV. Available online: http://opencv.org/ (accessed on 27 December 2014). 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


