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Abstract: This paper presents a reflection-type phase shifter (RTPS) at W-band in a 0.13 µm 
complementary metal oxide semiconductor (CMOS) process. The RTPS is composed of a 
90° hybrid coupler and two identical reflection loads. Lumped-distributed element 
transmission line is introduced in the 90° hybrid coupler to reduce the chip size. Series 
inductor-capacitor (LC) resonators are used as the reflective loads and parallel inductors are 
deployed to reduce insertion loss variation. By cascading two-stage RTPS, 90° phase 
shifting range and 10.5 dB insertion loss with 1 dB variations from 80 GHz to 90 GHz are 
achieved. An impressive 0.1 dB variation is obtained at 86 GHz. 
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1. Introduction 

Phase shifters (PS) play an extremely important role in phased array systems [1,2]. Among the 
available options, reflection-type phase shifter (RTPS), adapting the passive loads, suffers from small 
phase shift, poor linearity and inconvenience of digital controlling; however, there are a lot of 
advantages, such as continuous phase shifting, compact circuit structure, bidirectional phase shifting, 
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and zero direct current (DC) power consumption [3–8]. Although a variable-gain amplifier (VGA) can 
be used to compensate the amplitude distortion within the phased array system, it would cause a lot of 
complexity to the control mechanism and the system performance would be more reliable on the PS and 
VGA [3], especially at higher frequencies such as the W-band. Several designs of real-time power 
system simulator (RTPSs) with regard to insertion loss variation at 2 GHz on printed circuit board (PCB) [4], 
2.45 GHz [5] and 24 GHz [3] in the complementary metal oxide semiconductor (CMOS) process are 
reported. Some publications have also demonstrated RTPSs operating at higher frequency bands, e.g., 
V-band [6,7] and W-band [8], but none of them consider the insertion loss variation. 

The authors present an RTPS design with compact size, zero DC power consumption and low 
insertion loss variation in this paper. A schematic diagram is presented in Figure 1 of the proposed 
RTPS, which includes a 90° hybrid coupler with two identical reflection loads. The phase shifting range 
is determined by the phase angle of the reflection coefficient. The lumped-element transmission line is 
introduced in the 90° hybrid coupler to reduce the size. The tunable reflective loads are realized through 
series LC resonators; in this way, the insertion loss variation is significantly reduced. 

1

4

2

3

jXL

jXL

90° Hybrid

In

Out

Δφ L C

LC Series load  

lumped-distributed 
elements

Lp

Lp

 

Figure 1. Schematic of the proposed reflection-type phase shifter (RTPS). 

2. Design Concept 

The branch line coupler is popular as a hybrid in microwave circuit design, especially in planar 
circuitry; however, it requires a large chip area. The loaded line is an alternative solution to reduce the 
size of transmission-line based circuits such as branch-line and ring hybrids [7,9]. 

In this paper, lumped-distributed elements are added into the wider branch lines of the hybrid coupler 
to decrease the length [9], as shown in Figure 1, where the solid symbol line is the simulated result of the 
lumped-distributed elements loaded 90° hybrid, while the hollow symbol line is the conventional 90° 
hybrid. The narrow branch lines are designed as rat-race lines to reduce the length. The passive 
components are finally simulated and optimized using the full-wave simulator (HFSS) with the 
considerations of the design rules of the 0.13 µm CMOS process. In this way, the chip size is effectively 
reduced without decreasing the performance of the hybrid, as can be seen from the comparison between 
the simulated S parameters of the hybrid coupler with lumped-distributed elements loaded and the 
conventional hybrids, as presented in Figure 2. 

Figure 1 also depicts the schematic diagram of the implemented series LC resonator load, consisting 
of a MOSFET varactor with an inductor (in the dashed box) in series. The maximal relative phase 
shifting range ∆φmax is given as: 
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∆φmax =2·tan−1(2·∆XL/Z0) (1) 

and is determined by the load reactance variation range ∆XL [4]. 
In order to decrease the insertion loss variation, a parallel inductor Lp is added at each load. The 

resistant Rp in [4] is not presented in this work, since the parasitic resistance of the finite-Q inductor will 
play the same role. As a result, the parasitic effect caused by the physical structure of the resistant can  
be removed. 
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Figure 2. Simulated results of the lumped-distributed elements loaded 90° hybrid compared 
with the conventional 90° hybrid. 

3. Measurement 

Figure 3 shows the micrograph of the proposed RTPS with series LC resonator loads and 
lumped-distributed elements, where the chip size is 0.51 mm2 including the testing pads. The RTPS 
performance was measured through on-wafer testing. 

 

Figure 3. Micrograph of the proposed RTPS. 

Figure 4 depicts the measured phase shifting range from 80 to 90 GHz with the control voltage 
changing from 0 V to 2.0 V. The phase tuning range is greater than 90° in the whole band. The return 
losses are more than 15 dB and the insertion loss variation is less than 1 dB from 80 to 90 GHz giving a 
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10 GHz bandwidth. At 86 GHz, the insertion loss variation is even less than 0.1 dB. The insertion loss is 
10.5 dB on average, which is shown in Figure 5. Note that the testing pads are not de-embedded from 
the measurements. 
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Figure 4. Measured phase shift of the proposed RTPS 
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Figure 5. Measured return loss and insertion loss of the proposed RTPS. 

Table 1 shows the measured results comparisons of this proposed PS with other reported RTPSs using 
silicon-based technology [3,6–8]. By using 0.18 µm CMOS technology, the RTPS circuits in [3,6] operate 
at 24 GHz and 60 GHz, respectively, while the RTPS circuits in this paper is working at 80–90 GHz with 
a comparable insertion loss to those designs at lower frequencies. The authors of [8] reported a RTPS 
design using 0.12 µm SiGe BiCMOS technology at the same frequency band as our work; however, the 
phase shifting range and insertion loss variation are 65° and ±3.5 dB, while ours are 101° and ±0.05 dB, 
respectively. Finally, the PS in this work consumes zero DC power, which has a great potential in 
low-power consumption applications. 
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Table 1. Comparisons between the measured results of the proposed Phase shifters (PS) 
monolithic microwave integrated circuit (MMIC) with other reported RTPSs using 
silicon-based technology. 

Reference Technology Frequency (GHz) Phase Shift Insertion Loss Variation Chip Area (mm2) 
[3] 0.18 µm CMOS 24 360° 10.1–12.5 dB (±1.2 dB, ±10.6%) 0.33 
[6] 0.18 µm CMOS 60 270° 9.8–14.8 dB (±2.5 dB, ±20.3%) 0.18 
[7] 0.13 µm CMOS 60 100° 5.1–7.8 dB (±1.35 dB, ±20.9%) 0.2 
[8] 0.12 µm BiCMOS 94 65° 7–14 dB (±3.5 dB, ±33%) 0.21 

This work 0.13 µm CMOS 
80 
86 
90 

119° 
101° 
92° 

10.5–11.5 dB (±0.5 dB, ±4.5%) 
10.4–10.5 dB (±0.05 dB, ±0.5%) 
10.25–10.75 (±0.25 dB, 2.4%) 

0.51 

4. Conclusions 

This paper presents a W-band RTPS using a 0.13 µm CMOS technology. The phase tuning range is 
greater than 90° in the frequency range of 80–90 GHz, with the insertion loss variations below ±0.5, 
±0.1, and ±0.25 dB at 80, 86 and 90 GHz, respectively. To the best of the authors’ knowledge, the 
proposed phase shifter has the lowest insertion loss variation of all reported RTPSs. 
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