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Abstract: The fabrication and characterization of a thermoelectric energy harvester using
the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS)
technology were presented. The thermoelectric energy harvester is composed of eight circular
energy harvesting cells, and each cell consists of 25 thermocouples in series. The thermocouples
are made of p-type and n-type polysilicons. The output power of the energy harvester relies on the
number of the thermocouples. In order to enhance the output power, the energy harvester increases
the thermocouple number per area. The energy harvester requires a post-CMOS process to etch the
sacrificial silicon dioxide layer and the silicon substrate to release the suspended structures of hot
part. The experimental results show that the energy harvester has an output voltage per area of
0.178 mV¨mm´2¨K´1 and a power factor of 1.47 ˆ 10´3 pW¨mm´2¨K´2.
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1. Introduction

Thermoelectric energy harvesters can be applied in electronic devices and equipments as an
auxiliary electrical power source [1–4], and they have a capability of converting waste heat into
electrical power to achieve waste energy recycling. Several devices were miniaturized using MEMS
technology [4–8]. Microdevices fabricated by this technology have the benefits of small volume,
high performance and low cost [9–12]. Recently, many studies have employed MEMS technology
to develop various energy harvesters. For instance, Su et al. [13] presented a micromachined
thermoelectric energy harvester with 6 µm high polycrystalline silicon germanium thermocouples.
The area of the harvester was 1 mm ˆ 2.5 mm. The harvester had an output voltage of 1.49 V and an
output power of 0.4 µW at the temperature difference of 3.5 K. Huesgen et al. [14] fabricated a micro
thermoelectric generator using MEMS technology. To enhance the output power, the thermocouples
of the generator were made of p-Bi0.5Sb1.5Te3 and n-Bi0.87Sb0.13, in which deposited by thin-film
processes with high integration density on the wafer surface. The power factors of the generator were
8.14 ˆ 10´3 µW¨mm´2¨K´2. Yu et al. [15] utilized the CMOS process to make thermoelectric energy
generator with an efficient heat dissipation path. To reduce the internal thermal-contact resistance of
the energy generator, the silicon substrate of the generator was etched into two comb-shaped blocks
thermally isolated from each other, which formed the hot and cold sides. The thin-film-based thermal
legs were located between the two blocks along the winding split line. The measured open-circuit
voltage of the generator was 146 mV¨K´1. Yuan et al. [16] employ MEMS technology to manufacture
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a planar micro thermoelectric generator. To obtain a better performance under a large variety of
heat sources, the micro thermoelectric generator with a large thermal resistance was designed.
The generator was built of two periodically etched silicon substrates that were respectively utilized as
heat concentrator and heat evacuator. To prevent the direct heat loss from concentrator to evacuator,
the substrates were etched as the thick air cavities. The maximum output power of the thermoelectric
generator was 138 µW¨ cm´2 when the input power was 4 W¨ cm´2. Kouma et al. [17] fabricated
a micro thermoelectric generator with high aspect ratio and high integration density thermocouples.
To improve the thermoelectric property, the fabrication of the micro generator adopted thermoelectric
nanopowders filled in a photosensitive glass mold using aerosol deposition, followed by hot isostatic
pressing. The thermocouples had an aspect ratio of 3.5. The thermoelectric generator had an output
voltage per area of 0.16 V¨ cm´2¨K´1 and an output power factor of 9.3 µW¨ cm´2¨K´2. Kao et al. [18]
developed a thermoelectric energy harvester using the commercial CMOS process. The measurement
results showed that the harvester had an output voltage per area of 0.093 mV mm´2¨K´1 and a power
factor of 6.4 ˆ 10´7 µW¨mm´2¨K´2. In this work, we develop a thermoelectric energy harvester
using the commercial CMOS process. The fabrication energy harvester in this work is easier than that
of Wang et al. [13], Su et al. [13], Huesgen et al. [14], Yuan et al. [16] and Kouma et al. [17]. The output
power of the energy harvester in this work exceeds that of Kao et al. [18]

MEMS devices made by the commercial CMOS process are called CMOS-MEMS technology [19–21].
Many microsensors and microactuators have been manufactured using this technology [22,23].
In this work, we fabricate a thermoelectric energy harvester using the CMOS-MEMS technology.
This technology usually requires a post-CMOS process to add functional films [24–26] and to release
the suspended structures [27–29]. To obtain the suspended structures of hot part, the thermoelectric
energy harvester needs a post-CMOS process to etch the sacrificial silicon dioxide layer and the
silicon substrate. The structure of the thermoelectric energy harvester consists of eight circular energy
harvesting cells, and each cell is constructed by 25 thermocouples in series. The output power of the
thermoelectric energy harvester depends on the temperature difference between the hot and cold
parts of the thermocouples. To increase the temperature difference of the thermocouples, the hot part
of the thermocouples is designed as suspended structures to decrease heat-sinking.

2. Structure of the Energy Harvester

The thermoelectric energy harvester is made up of eight energy harvesting cells in series.
Figure 1 illustrates the schematic structure of an energy harvesting cell. The diameter of an
energy harvesting cell is 360 µm. Each harvesting cell is composed of 25 thermocouples in series.
Each thermocouple is constructed by p-type and n-type polysilicon strips. Dimensions of each
polysilicon strip are 2 µm wide, 130 µm long and 0.2 µm thick. As shown in Figure 1, the energy
harvesting cell consists of a hot part and a cold part. The hot part of the energy harvesting cell is the
junctions of n-type and p-type polysilicon strips located on the suspended plate, and the cold part
of the energy harvesting cell is the other junctions of n-type and p-type polysilicon strips anchored
on the silicon substrate. The suspended plate of the hot part is sustained by the thermocouples.
The p-type and n-type polysilicon strips in the hot part and cold part are connected with aluminum
each other, as shown in Figure 1.

The output power of the thermoelectric energy harvester is proportional to the temperature
difference between the hot and cold parts. In addition, the hot part of the harvester is suspended to
decrease heat sink. The cold part of the harvester covers with a silicon dioxide layer of 6 µm to insulate
the conduction of heat source. The finite element method software, CoventorWare, was employed
to simulate the temperature distribution of the thermoelectric energy harvester. The model of the
energy harvester is established in accordance with Figure 1, followed by meshing the model using
the triangular element. The materials of the energy harvester contain polysilicon, silicon dioxide,
aluminum, and silicon substrate. The thermal conductivities of the materials [30] are polysilicon,
31 W/m¨K; aluminum, 237 W/m¨K; silicon dioxide, 1.25 W/m¨K; silicon substrate, 149 W/m¨K.
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The ambient temperature of 293 K and thermal flux of 20 pW/µm2 are set. Figure 2 reveals the
simulation of temperature distribution for the thermoelectric energy harvester. The results showed
that the temperature difference between the hot and cold parts of the thermocouples was 15 K.
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The output voltage of the thermoelectric energy harvester is given by [31]:

Vout “ npαp ´ αnq∆T (1)

where n represents the number of thermocouples in series; αp is the Seebeck coefficient of p-type
polysilicon; αn is the Seebeck coefficient of n-type polysilicon; ∆T is the temperature difference of
the hot and cold parts in the thermoelectric energy harvester and Vout is the output voltage of the
thermoelectric energy harvester. According to Equation (1), we know that the output voltage of the
energy harvester is proportional to the number of thermocouples and the temperature difference of
the hot and cold parts, ∆T. The output voltage relies on the Seebeck coefficients of p-type polysilicon,
αp, and n-type polysilicon, αn.

In this design, each harvesting cell has 25 thermocouples, so the number of thermocouples in the
thermoelectric energy harvester is 200. The difference of Seebeck coefficient of αp ´ αn measured by
a polysilicon thermocouple test-key is 0.0014 mV/K. The values n = 200 and αp ´ αn = 0.0014 mV/K
are substituted into Equation (1), and then the relation between the output voltage and temperature
difference for the energy harvester can be yielded. Figure 3 depicts the simulated output voltage of the
thermoelectric energy harvester. The simulate results reveal that the thermoelectric energy harvester
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has an output voltage of about 2.8 mV at the temperature difference of 10 K and an output voltage of
about 4.2 mV at the temperature difference of 15.
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Figure 3. Simulated output voltage and power of the thermoelectric energy harvester.

When connecting an external resistor, the output power of the energy harvester can be used.
If the internal resistance of the energy harvester equals to the external resistance, the maximum output
power of the energy harvester can be expressed as [32]:

Pout “
V2

out
4R

(2)

where Vout represents the output voltage of the energy harvester, R is the resistance of the energy
harvester and Pout is the output power of the energy harvester. In this design, the resistance of the
energy harvester is 8 kΩ. The values n = 200, αp ´ αn = 0.0014 mV/K, R = 8 kΩ and the output
voltage in Figure 1 are substituted into Equation (2), the maximum output power of the thermoelectric
energy harvester can be obtained. Figure 3 presents the simulated maximum output power of the
thermoelectric energy harvester. The simulated results show that the thermoelectric energy harvester
has an output power of 0.245 pW at the temperature difference of 10 K and an output power of
0.55 pW at the temperature difference of 15 K.

3. Fabrication of the Energy Harvester

The thermoelectric energy harvester was manufactured utilizing the commercial 0.18 µm
CMOS process of Taiwan Semiconductor Manufacturing Company (TSMC). Figure 4 illustrates the
fabrication flow of the thermoelectric energy harvester. The cross-sectional view of the thermoelectric
energy harvester after completion of the CMOS process is shown in Figure 4a.

To obtain the suspended structures of the hot part, the thermoelectric energy harvester needed
a post-process to remove the sacrificial materials of silicon dioxide and silicon substrate [33–35]
Figure 4b displays the etching of the silicon dioxide layer. The sacrificial silicon dioxide layer
was etched using CHF3/O2 reactive ion etching (RIE) to expose the silicon substrate. Then, the
silicon substrate was etched using XeF2 RIE to release the suspended structure of hot part in the
energy harvester. The removing of the silicon substrate is shown in Figure 4c. The p-type and
n-type polysilicons in the thermocouples were connected with the aluminum layer. The profile of
the thermoelectric energy harvester was measured using a scanning electron microscope (SEM) [36].
Figure 5 shows a SEM image of the thermoelectric energy harvester after the post-process.
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As shown in Figure 5, the thermoelectric energy harvester contains eight energy harvesting cells.
Figure 6 depicts an SEM image of an energy harvesting cell. As shown in Figure 6, the energy
harvesting cell consists of 25 thermocouples, and the suspended circular plat locates at the
center position.Micromachines 2015, 6015, 6, page–page 
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4. Results and Discussion

Figure 7 shows the measurement instruments for the thermoelectric energy harvester. A heater,
a cooler, a multifunction electrical meter and an LCR (inductance capacitance resistance) meter were
employed to test the performance of the thermoelectric energy harvester. The energy harvester was
set on the cooler. The power supplier provided a power to the heater and cooler. The heater was used
to generate a heat source to the thermoelectric energy harvester. The suspended part of the energy
harvester was heated by the radiation heat source. The cooler was utilized to increase a heat sink for
the cold part of the energy harvester. The LCR meter was adopted to measure the resistance of the
energy harvester. The multifunction electrical meter was employed to record the output voltage of
the energy harvester.
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Figure 7. Measurement setup for the thermoelectric energy harvester.

The resistance of the thermoelectric energy harvester was measured by the LCR meter, and
the measured results showed that the energy harvester had a resistance of 8 kΩ. The temperature
difference between the hot and cold parts in the thermoelectric energy harvester was measured
using an infrared thermometer. The output voltage of the thermoelectric energy harvester was
detected by the multifunction electrical meter. Figure 8 reveals the measurement results of the output
voltage for the thermoelectric energy harvester. The measured results showed that the thermoelectric
energy harvester had an output voltage of 2.65 mV at the temperature difference of 10 K and an
output voltage of 4 mV at the temperature difference of 15 K. The area of the thermoelectric energy
harvester chip was about 1.5 mm2. The output voltage per area of the thermoelectric energy harvester
was 0.178 mV¨mm´2¨K´1. A comparison to the simulated results in Figure 2, the measured output
voltage of the energy harvester has an error percentage of about 5%.
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Figure 8. Measured output voltage and power of the thermoelectric energy harvester.

The output voltage of the thermoelectric energy harvester was utilized to evaluate its output
power. The resistance R = 8 kΩ and the measured output voltage in Figure 8 were substituted
into Equation (2), the maximum output power of the thermoelectric energy harvester was obtained.
Figure 8 depicts the maximum output power of the thermoelectric energy harvester. The results
showed that the thermoelectric energy harvester had an output power of 0.22 pW at the temperature
difference of 10 K and an output power of 0.5 pW at the temperature difference of 15 K. The power
factor of the thermoelectric energy harvester was 1.47 ˆ 10´3 pW¨mm´2¨K´2.

Kao et al. [18] employed the CMOS-MEMS process to manufacture a thermoelectric micro
generator. The output voltage per area of the micro generator was 0.093 mV¨mm´2¨K´1, and its
power factor was 6.4 ˆ 10´7 µW¨mm´2¨K´2. Kouma et al. [17] developed a thermoelectric micro
generator with high aspect ratio thermocouples. The measured results showed that the thermoelectric
generator had an output voltage per area of 0.16 V¨ cm´2¨K´1 and an output power factor of
9.3 µW cm´2¨K´2. A comparison to Kao et al. [18], the output power factor in this work exceeds
that of Kao et al. [18] because the thermocouple number per area in this work is increased.

5. Conclusions

A thermoelectric energy harvester has been manufactured using the commercial CMOS
process. The thermoelectric energy harvester consisted of eight energy harvesting cells, and each
harvesting cell contained 25 thermocouples in series. The thermocouples were made of p-type and
n-type polysilicons. The output power of the energy harvester depended on the number of the
thermocouples. To enhance the output power, the thermocouple number per area was increased.
The energy harvester required a post-process to release the suspended plat of hot part.
The post-process used CHF3/O2 RIE to etch the sacrificial silicon dioxide layer and utilized XeF2 RIE
to etch the silicon substrate. The experimental results showed that the thermoelectric energy harvester
had an output voltage of 4 mV at the temperature difference of 15 K, and its output voltage per area
was 0.178 mV¨mm´2¨K´1. Owing to increase the thermocouple number per area, the output power
factor in this work exceeds that of Kao et al. [18]. The thermoelectric energy harvester is suitable for
application in portable electronic devices as an auxiliary electrical power source.
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