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Abstract: Certain bacteria have motility and can be made non-toxic, and using them for drug 
delivery has been proposed. For example, using bacteria with flagella motion in multiple spin 
actuators in drug delivery microrobots has been suggested. This paper investigates various 
adhesion enhancement methods for attaching bacteria on preferred surfaces of cubic polymeric 
microstructures to achieve the directional control of motion. Serratia marcescens which has 
an excellent swimming behavior and 50-μm sized cubic structures made of biodegradable  
poly-capro-lactone (PCL) are used. Three treatment methods are investigated and compared 
to the untreated control case. The first method is retarding bacterial attachments by coating 
certain surfaces with bovine serum albumin (BSA) which makes those surfaces anti-adherent 
to bacteria. The second and third methods are roughening the surfaces with X-ray irradiation 
and plasma respectively to purposely increase bacterial attachments on the roughened 
surfaces. The measured motilities of bacteria-tethered PCL microactuators are 1.40 μm/s for 
the BSA coating method, 0.82 μm/s for the X-ray irradiation, and 3.89 μm/s for the plasma 
treatment method. Therefore, among the methods investigated in the paper the plasma treatment 
method achieves the highest directionality control of bacteria motility. 
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1. Introduction 

Drug delivery systems (DDSs) which deliver drugs to target cells have drawn significant attention 
recently [1]. To develop effective drug delivery systems, a time-controlled and site-specific drug release 
method is necessary [2]. By encapsulating drugs in biodegradable polymeric microstructures, a sustained and 
controlled release of drugs can be achieved [3]. For delivering such encapsulated drugs in the human body, 
many methods have been suggested. They include the utilization of external magnetic/electric/acoustic 
fields, bio-actuators, and chemical reactions [4]. Among them, bio-actuators are receiving much 
attention due to the characteristics of low toxicity and low or no power requirement [5–7]. In fact, 
bacteria which have self-powered flagella motion have also been proposed for use as multiple spin 
actuators in microrobots to provide actuation forces [8,9]. The flagellated bacteria, Escherichia coli  
(E. coli), Salmonella typhimurium (S. typhimurium) and Serratia marcescens (S. marcescens), can be 
made non-toxic and have been investigated for use in the cancer therapy [10–13]. 

Our collaborators have fabricated bacteria-based spherical-shaped microstructures for localized drug 
delivery [14]. Salmonella typhimurium is attached to poly(ethylene glycol) (PEG) by covalently 
coupling biotin and streptavidin, and the in vitro and in vivo results show that the bacteria-based 
microrobots move towards tumor sites without additional outside power [14,15]. 

The motive forces in bacteria-based actuators can be generated by several variations of stimuli-induced 
movements (or taxes), including aerotaxis (taxis to oxygen), chemotaxis (taxis to a carbon source), 
magnetotaxis (taxis to magnetic field), and phototaxis (taxis to light) [16–18]. In particular,  
magneto-aerotatic bacteria have a potential for targeting the cancer cells due to the controllable 
movements with an external magnetic field [19]. A sperm-driven micro-robot is also possible for 
developing a new type of DDS [20]. For example, a sperm-tube hybrid system, that also incorporates 
magnetic nanoparticles, allows controlling motion using an outside field [21]. 

Selectively attaching bacteria to specific surfaces to increase the directionality of locomotion can 
shorten the travel time to reach target tumors [22]. There have been several investigations of selective 
bacteria attachment methods to achieve this. Park et al. attached S. marcescens to 30-μm sized microcubes 
made of SU-8 photoresist and demonstrated the directionality of motion [23]. For the preferential 
attachment of bacteria, bovine serum albumin (BSA), which makes coated surfaces anti-adherent to 
bacteria, was selectively coated to the microstructures. The measured motilities of cubes were 2.24 μm/s for 
the control case and 4.72 μm/s for the BSA coated case, respectively. 

Another preferential attachment method for bacteria has also been demonstrated, using S. typhimurium 
and 10-μm sized spherical structures made of PEG with partially coated poly-L-lysine (PLL) [24]. 
Salmonella typhimurium attaches only to certain restricted regions of PLL. The measured motilities of 
spherical structures were 0.03 μm/s for the control case and 0.37 μm/s for the PEG spheres partially 
coated with PLL, respectively. 
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The other selective bacterial adhesion method is modifying the surface morphology of structures. Our 
previous work demonstrated that chemically or physically-modified surfaces can control the bacterial 
attachments [25–27]. Especially, the dioxygen (O2) plasma treatment and X-ray synchrotron irradiation 
methods modify the surface porosity of structures. Cubic structures of 50-μm sides are fabricated using 
poly-capro-lactone (PCL), which is a biocompatible and biodegradable polymer widely used for drug 
carrier. The measured motility of S. marcescens-attached PCL cubes was 3.89 μm/s for the plasma 
treatment case [28]. 

However, these investigations discussed in the above use differently-shaped structures and different 
bacteria. Thus, the motilities of different investigations are not directly comparable. This paper provides 
a quantitative evaluation of different selective adhesion methods for the purpose of bacterial motility 
control. In particular, this paper investigates the methods of BSA coating, X-ray synchrotron irradiation 
and plasma treatment for preferential attachments of S. marcescens and evaluates the motilities of the 
three different methods. To precisely fabricate cubic microstructures made of PCL, this paper uses the 
X-ray-lithography-based microfabrication method. 

2. Preparation of Microfabricated Structures and Bacteria-Tethering 

2.1. Biodegradable Polymeric Microstructures 

For the fabrication of the PCL cubic microstructures, the X-ray-lithography-based microfabrication 
method is used for accurate dimensional control [29]. First, a PCL film which has a thickness of 50 μm 
is prepared by a spin coating process and a lamination process [30]. Next, X-ray synchrotron irradiation 
is performed to pattern 50 μm × 50 μm squares. The exposed dose to the PCL microstructures is 10 J/cm3. 
For X-ray synchrotron irradiation, the Pohang Accelerator Laboratory (PAL) facility in Korea is used [31]. 
A 45% (w/v) potassium hydroxide (KOH) solution in room temperature is used as the developer to 
separate the microstructures from the substrate and irradiated separation area. After washing with 
deionized water, the 50-μm sized cubic microstructures made of biodegradable PCL polymer are 
fabricated, as shown in Figure 1. 

Figure 1. SEM image of 50-μm sized cubic microstructures made of biodegradable  
poly-capro-lactone (PCL) polymer. 

 

2.2. Preparation of Treated Microstructures 

For evaluating motility, microstructures are prepared with three different bacterial attachment 
methods. Firstly, cubic microstructures with five-sides coated with BSA are prepared. The 50-μm sized 

50 µm
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cubic microstructures made of PCL polymer are prepared on the substrate. A BSA 5% solution is poured 
into the substrate and left for 24 h. After the substrate is dried, the microstructures are extracted from the 
substrate. Therefore, the microstructures have five BSA-coated sides and one-uncoated side. Secondly, 
microstructures are prepared by treating the top side with O2 plasma. Using Laboratory Corona Treater 
(Electro-Technic Products Inc., Chicago, IL USA), only the top side is treated with O2 plasma for 120 s. 
The original surface of the untreated microstructure is shown in Figure 2a, and the O2 plasma roughened 
surface is shown in Figure 2b. Thirdly, the microstructures with different surface morphologies using X-ray 
synchrotron irradiation are also fabricated. After the initial fabrication of cubic microstructures, an 
additional X-ray irradiation step is performed. The total exposed dose is 2400 J/cm3. The roughened 
surface by this method is shown in Figure 2c. 

Figure 2. SEM image of surfaces in three different microstructures. (a) Untreated surface of 
control microstructure. (b) Roughened surface treated by O2 plasma treatment. (c) Roughened 
surface treated by X-ray irradiation of 2400 J/cm3. 

   

2.3. Bacteria Culture and Tethering 

Serratia marcescens is selected in this experiment due to their excellent swimming behavior [12]. 
Serratia marcescens is grown in nutrient agar plate (0.3% Bacto Beef Extract, 0.5% Bacto Peptone, and 
1.5% Bacto Agar) for 12 h. Serratia marcescens is cultivated in the shaking incubator (37 °C, 100 rpm) for 
12 h with liquid media contained nutrient broth (0.3% Bacto Beef Extract and 0.5% Bacto Peptone, 500 mL 
deionized water). The bacterial density of the final harvested bacteria solution is measured using an UV 
spectrophotometer at a wavelength of 600 nm (UV/VIS Spectrophotometer-Optizen 2120 UV, Mechasys, 
Anyang, Korea). At an optical density of 1 (OD600 = 1), S. marcescens is used for bacteria tethering. 

The solution containing S. marcescens is poured to the prepared microstructures. For the control case, 
bacteria attach to random surfaces. In the BSA coating method, bacteria attach only to the BSA-uncoated 
side. In the X-ray irradiation methods, the X-ray irradiation treatment seems to roughen all surfaces, and 
generally more bacteria attach to all surfaces, when compared to the untreated control microstructure. 
This is because X-ray synchrotron irradiation has a high penetration property, and that makes modifying 
only the top side difficult. In the O2 plasma treatment case, only the top side of the microstructure is 
significantly roughened, and more bacteria attach to only the top side. The schematic diagrams of 
bacteria tethering are shown in Figure 3. 

All experiments are performed three times on separate days. In each experiment, one hundred 
microstructures are investigated. The number of bacteria tethering is similar for each surface  
treatment method. Therefore, representative microstructures are chosen for showing the density of 
bacterial attachments. 

(a) (b) (c)
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Figure 4 shows the results of bacterial attachments on PCL microstructure surfaces. In case of the 
untreated control microstructure, the number of attached bacteria to the area of 600 μm2 is 20, as shown 
in Figure 4a. The BSA coating method, which retards bacterial attachments, shows that the number of 
attached bacteria to the same area is 9, as shown in Figure 4b. The number of attached bacteria to the 
same area for the X-ray irradiation treatment in Figure 4c is 35, and that for the plasma treatment in 
Figure 4d is 45, respectively. Because the methods of X-ray irradiation and plasma treatment roughen 
PCL surfaces differently, the number of tethered bacteria is different. 

Figure 3. Schematic diagrams of bacteria-tethering. (a) Untreated control microstructure. 
(b) Microstructure coated on five-sides by bovine serum albumin (BSA). (c) X-ray irradiation 
treated microstructure. (d) Microstructure treated on one side by O2 plasma. 

 

Figure 4. SEM images of bacterial attachment on PCL microstructure surfaces.  
(a) Bacteria-attached polymeric surface of untreated control microstructure. The number of 
bacteria attached to the area of 600 μm2 is 20. (b) Bacteria-attached polymeric surface with BSA 
treatment. The number of bacteria attached to the area of 600 μm2 is 9. (c) Bacteria-attached 
polymeric surface with X-ray irradiation of 2400 J/cm3. The number of bacteria attached to 
the area of 600 μm2 is 35. (d) Bacteria-attached polymeric surface with plasma treatment. 
The number of bacteria attached to the area of 600 μm2 is 45. 

  

  

BSA coated sides Plasma 
treated side(a) (b) (c) (d)

X-ray treated 
sides

Bacterium
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3. Motility Measurements 

Motility measurements of the above-mentioned four types of bacteria-tethered microactuators are 
performed in a 4-inch petri dish without a channel. In the petri dish, 10 mL of a motility medium (0.1 M 
potassium phosphate tribasic, 10−4 M ethylenediaminetetraacetic acid (EDTA), 0.067 M sodium 
chloride, 0.01 M glucose, and 0.002% Tween-20, pH 7.0) is poured, and the motilities of bacteria-tethered 
microactuators are observed. A set of continuous frame images of bacteria-tethered microactuators are 
captured by an inverted microscope (IX 51, Olympus, Tokyo, Japan). The actual moving distances 
between the continuous frame images during 1 min are calculated based on the pixel to pixel distances, 
using the centroid coordinates of the microstructures. Since the centroid pixel values of the 
microstructures and the actual length per pixel are known, the difference of the centroid coordinates 
between the start and the end positions is used to calculate the linear distances and average velocities. 
Note that all microstructures show some rotational movements. Bacteria adhere to sides at random sites 
and random directions, which in turn leads to some random motion. 

As shown in Figure 5a, the average velocity of the untreated control microstructure is 0.31 μm/s with 
a rotational movement. Because of the random attachments, the control case shows motility without a 
preferential direction. In contrast, the three developed bacteria-tethered microactuators show defined 
directional motility. With the BSA coating method, the average velocity of microstructure is 1.40 μm/s, 
as shown in Figure 5b. The average velocities of the microstructures with the X-ray irradiation treatment 
and the plasma treatment are 0. 82 μm/s and 3.89 μm/s, respectively, as shown in Figure 5c,d. The results 
are summarized in Table 1 and Figure 6. 

The microactuator with roughened surfaces treated by X-ray irradiation has 2.64 times higher velocity 
than the control case. This difference comes from the number of bacterial attachments to surfaces. The 
velocity of microactuator with one side treated by O2 plasma shows 12.54 times higher than that of the 
untreated control case and 2.78 times higher than that of the BSA coating case. Therefore, plasma 
treatment is a better method for enhancing the directionality of motion, when compared to the BSA 
coating method or the X-ray irradiation method. Note that if a microstructure is fabricated with one-side 
treated by plasma and the other sides treated by BSA coating, the microactuator will show a faster 
velocity with further improved directionality. 

Figure 5. Images of individual video frames of movement of bacteria-tethered cubic 
microstructures captured by microscope. (a) Untreated control microstructure.  
(b) Microstructure coated on five-sides by BSA. (c) X-ray irradiation treated microstructure. 
(d) Microstructure treated on one side by plasma. 

 
  

(b) (d)
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Table 1. Directional moving distances and average velocities of microactuators. 

Preferential tethering method Total directional moving distance during 1 min (μm) Average velocity (μm/s) 
Untreated 18.6 0.31 

BSA coating 84 1.40 
X-ray irradiation treatment 49.2 0.82 

Plasma treatment 233.4 3.89 

Figure 6. Average velocities of microactuators. 

 

4. Conclusions 

This paper investigated three selective adhesion methods for attaching flagellated bacteria on the preferred 
surfaces of cubic polymeric microactuators to improve the directionality of actuation. Serratia marcescens 
and PCL microstructures were used in this paper. The preferential tethering of bacteria was performed 
using the methods of BSA coating, X-ray irradiation and plasma treatment. Among these methods, the 
plasma treatment showed the most desirable characteristics. We are investigating further uses of the 
developed plasma-treated, biodegradable polymeric microactuators with attenuated bacteria as actuators 
for delivering drugs to tumor sites. It should be noted that this is a long-term project which requires 
substantially more research. 
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