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Abstract: In this article, a novel Pyrex reflow bonding technology is introduced which 
bonds two functional units made of silicon via a Pyrex reflow bonding process. The 
practical application demonstrated here is a precision dosing system that uses a 
mechanically actuated membrane micropump which includes passive membranes for fluid 
metering. To enable proper functioning after full integration, a technique for device 
assembly must be established which does not introduce additional stress into the system, 
but fulfills all other requirements, like pressure tolerance and chemical stability. This is 
achieved with a stress-free thermal bonding principle to bond Pyrex to silicon in a five-layer 
stack: after alignment, the silicon-Pyrex-silicon stack is heated to 730 °C. Above the glass 
transition temperature of 525 °C Pyrex exhibits viscoelastic behavior. This allows the glass 
layer to come into close mechanical contact with the upper and lower silicon layers. The 
high temperature and the close contact promotes the formation of a stable and reliable  
Si-O-Si bond, without introducing mechanical stress into the system, and without 
deformation upon cooling due to thermal mismatch. 
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1. Introduction 

Fluidic microsystems such as micropumps, microreactors or micromixers are designed to allow either 
chemical or biological reactions at the microscale under variable pressure, flow rate or temperature [1,2]. 
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In a lab-on-chip system, these reactions happen in a sequence of different process stages, e.g., by 
sequential mixing, measuring and dispensing, which are performed by different functional units 
integrated into the microreactor system. One of these functional units may be a micropump, which itself 
includes several integrated components such as active or passive valves, actuated membranes, or pump 
chambers. Therefore, the need for an integration of different functional units is evident for many types of 
complex microfluidic systems. In order to obtain highly integrated systems with different requirements 
for mechanical stability, functionality, chemical resistance, and biological compatibility, new 3D fluidic 
assembly techniques for functional units made from different materials must be developed. Key 
requirements are the use of chemically and mechanically stable materials at interfaces [3]. 

In this work, a silicon micropump and a silicon dosing unit are bonded together onto a common 
Pyrex wafer carrying fluidic vias which connect both units. In the same bonding step, Pyrex tubes, 
which can be used as a fluidic connection to external fluid handling equipment, are also bonded to the 
system. The silicon-based systems consist of two bonded wafers each and include thin membranes. 
After assembly, a five-layer stack is formed, whose functionality is demonstrated as a proof-of-concept 
for this bonding technology. 

2. Fundamentals of the Reflow Fusion Bond 

In this section the physical and chemical basics of reflow fusion bonding will be described. A 
reflow fusion bond of two silicon-based fluidic systems using a structured borosilicate glass chip will 
be shown. In addition, tubes made of borosilicate glass used as fluidic interconnects to external fluid 
handling equipment are bonded to this fluidic system in the same bonding step. 

2.1. Fluidic System 

The fluidic system consists of two primary parts. The first is a piezoelectrically driven silicon 
micropump [4], which consists of two structured silicon chips, see Figure 1. The second part is a 
dosing control unit, which also consists of two structured silicon wafers. Both functional units include 
thin silicon membranes, which are highly vulnerable to mechanical stress. The whole system is bonded 
together using a structured borosilicate glass (Pyrex, Corning, NY, USA) chip, and connected to 
external equipment via borosilicate glass tubes, as seen in Figure 1. The bonding of the two functional 
units as well as that of the fluidic interconnects, can be performed in one process step, which is a 
significant advantage over alternative common bonding techniques like silicon-fusion or anodic 
bonding. In addition, this integration process overcomes several problems related to establishing 
fluidic interconnections via techniques such as soldering or gluing; these methods can produce clogged 
channels and may lack the necessary chemical resistivity [5]. In addition to the advantages of the 
single step process, this bonding technique is designed so that no external bonding pressure is needed. 
The absence of bonding forces differentiates this method differs from others such as anodic bonding 
and silicon fusion bonding. During anodic bonding, for example, strong electrostatic attraction 
generates an applied bonding force [6,7], while a silicon fusion bond is initiated by an external 
pressure applied directly by the bonding chucks [8]. These induced stresses can be a problem for 
multilayer stacks. The bow and the warp of the different layers may vary widely, which leads to 
additional stresses, when the surfaces of the layers are forced into close contact [8]. 

http://en.wikipedia.org/wiki/Corning_(city),_New_York
http://en.wikipedia.org/wiki/New_York
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Figure 1. Schematic drawing of the 3D fluidic system described in this work. To present the 
potential of the presented reflow bonding technology, we used a complex 3D fluidic system 
with channels, vias, membranes, and fluidic connections to external fluid handling equipment. 

 

2.2. Fundamentals of the Pyrex Bonding Technology 

2.2.1. Components of Borosilicate Glass 

Borosilicate glass is a very useful material for microfluidic system because of its chemical 
resistance. Moreover, it is approved for pharmaceutical applications, like packaging or transport [9]. 

These characteristics are not important for the performance of the bonding process that we present, 
but do demonstrate a wide variety of applications. The chemical composition of the glass can be seen 
in Table 1 [9]. 

Table 1. Chemical composition of Borosilicate glass (Pyrex) [9]. 

Weight % Compound 
81 SiO2 

13 Bi2O3 

4 Na2O + K2O 
2 Al2O3 

2.2.2. Physical and Chemical Principles of the Bond 

Pyrex-silicon bonds fundamentally on the Si-O-Si covalent bonds at the interface between the two 
substrates. This bond is described in several scientific reviews, including [8,10]. The new idea of a 
reflow bond process with Pyrex is described by Fazal et al. in [11]. By heating up Pyrex above the 
glass transition temperature, it becomes viscoelastic and is able to flow. For that reason, Pyrex can fill 
any irregularities on the silicon substrate and generate Si-O-Si bonds over the entire surface. 

An example of a temperature profile for the bonding process can be seen in Figure 2. Four critical 
steps are emphasized. In the first step, the assembly is heated to a temperature of 200 °C to evaporate 
residual moisture on the substrate surfaces. Afterwards, the Pyrex is heated up to the bonding 
temperature, which is 150–250 °C above the glass transition temperature. This temperature is held for 
several hours, during which Si-O-Si crosslinking takes place. In this temperature range, an unwanted 
effect called devitrification of the Pyrex occurs. Studies of heat-treated borosilicate glass at and above 
660 °C show that crystal growth occurs. This is connected to the diffusion of boron and sodium within 
the borosilicate framework [12,13]. During cooling, a certain wait time slightly above the glass 



Micromachines 2014, 5 786 
 
transition temperature is necessary before cooling further. This wait time guarantees as state where no 
mechanical stress is present in the borosilicate glass [9,14]. After achieving the stress-free-state, almost 
no additional stress will be transmitted to the bonded substrates. 

The stress relaxation in the Pyrex occurs due to the viscoelastic flow. After the cool-down pause 
indicated in Figure 2, the assembly is further cooled down to room temperature at a certain rate which 
is dependent on the thickness of the glass and is given by the data sheet of the supplier [9]. During this 
cooling step, virtually no stress is built up, because the coefficient of thermal expansion of both 
materials is almost identical, see Figure 3. 

Figure 2. Temperature profile of the reflow bond. Step 1 is a baking step to evaporate  
moisture from the silicon and glass substrates. Step 2 is the bonding step at a temperature 
above the glass-transition of the borosilicate glass and Step 3 is a pause slightly above the 
glass transition temperature to release stress in the borosilicate glass chip. Step 4 is the 
cool-down to room temperature at a defined rate given by the supplier of the glass [9]. 

 

Figure 3. Coefficient of thermal expansion of borosilicate glass and silicon. Below the 
glass transition temperature they are almost identical [12]. 

 

2.3. Simulation of the Bonded Assembly 

To measure the stress in a bonded assembly, the curvature of the bonded assembly has to be 
measured. This technique can be used for asymmetric assemblies. For symmetric or almost symmetric 
assemblies, the curvature is too small to serve as a measure for stress. The presented system, see 
Figure 1, is almost symmetric and therefore the stress cannot be measured by curvature. For this 
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reason, we performed an FEM-simulation to simulate the induced shear stress and the total 
deformation during the heating, bonding and cooling steps. Therefore, a model was set up which 
includes the membranes and the fluidic channels. The start of the cool down of the simulation is 
considered as stress free with bonded contacts between the different layers [9]. The boundary 
conditions were considered as weak springs to model the free motion of the assembly. As expected, the 
total deformation of the system is almost zero. This relates to the symmetric assembly of the system. 
The simulated shear stress in the system is concentrated in the glass with a maximum of only 0.37 MPa. 
Almost no stress is observed in the membrane which is one of the major goals for this bonding technique 
(Figure 4). The model contains all channels and membranes. After the cooling-process, however, the 
deformations are small, approximating the behavior of a stress-balanced trimorph structure.  

Figure 4. Coupled thermal-mechanical FEM-simulation for calculating the shear stress 
and the total deformation of the bonded system. As can be seen, no stress occurs in the 
fragile membranes. 

 

3. Preliminary Tests 

In this section, the preliminary tests of the two bonding processes, the trimorph Si-Pyrex-Si bond 
and the borosilicate tube bond, on silicon will be shown. The aim of this test was to find parameters 
which enable the bonding of the functional units together while simultaneously bonding the Pyrex 
interconnect tubes. 

3.1. Fabrication and Experiments 

Because we wish in this work to perform bonding of silicon and Pyrex substrates as well as of 
Pyrex interconnect tubes simultaneously, the more commonly used anodic bonding is not possible. 
Anodic bonding of the two functional units with a Pyrex interlayer is possible but will not allow an 
integration of the Pyrex glass tubes in the same step. Additionally, anodic bonding for silicon-Pyrex-silicon 
stacks requires special techniques that cannot be implemented simply. Bow and warp of the silicon 
generate additional stresses in such stacks, which is compounded the more layers there are. Structured 
wafers also yield additional stresses caused by the inhomogeneity of the temperature and the 
electrostatic fields during the anodic bonding process [14]. In the procedure that we present, the 
borosilicate-glass is softened and is thus able to overcome the bow and the warp via viscoelestic flow. 
In order to minimize residual stress in anodically bonded structures, an annealing step at temperatures 
above 500 °C is recommended [14]. The principles of the Pyrex-tube-to-silicon bond are presented by 
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the group of Fazal et al. [11]. Before the whole system was bonded, preliminary tests of the shear 
strength of the fusion bonding technique and an optimization of the trimorph Si-Pyrex-Si bond are 
performed which we now present. 

Preparation of the Bonded Components 

Both functional units are made of two fusion bonded, structured silicon wafers, see Figure 1. All 
surfaces of these units contain a thin thermally grown SiO2 layer. Both have a length of 30.2 mm and a 
width of 16 mm. The Pyrex tubes where supplied by Schott AG. The tubes, that were bonded to the 
system, were diced to a length of 5 mm, and had an outer diameter of 6 mm (wall thickness 1.5 mm). 
Because the tubes were diced, the top and bottom surfaces were rough. In order to obtain a fluidic 
interconnection between the micropump and the dosing unit, the Pyrex wafer must be structured and 
diced to the same size as the functional units. First, photolithography is performed on a Pyrex wafer to 
define saw marks and the locations of the feedthrough vias. A special drilling process for glass is 
performed. After drilling, the feedthroughs successively undergo dicing and cleaning steps with aceton 
iso-propanol, and finally, a di-water rinse under ultrasonic power to acquire the final structured Pyrex 
bonding layer. After these preparation steps, the pre-bonding treatment is performed which consists of 
a cleaning step with a subsequent baking process to evaporate the moisture. The cleaning step will be 
explained later. 

3.2. Preliminary Experiments: Tube on Silicon 

To find the best bonding parameters for both reflow bond processes, the trimorph Si-Pyrex-Si bond 
and the borosilicate tube bond on silicon were analyzed separately. The bonding was performed in a 
Carbolite GHA 12/750 quartz tube furnace. 

3.2.1. Design of Experiments 

In order to find the best possible bonding conditions, we set up a design of experiments with the 
following parameters (Table 2). 

Table 2. Parameters for the design of experience. 

Factor Unit Condition 1 Condition 2 
Cleaning step before bond N/A Piranha etch Piranha etch and HF 
Heating rate (Step 1 to 2) °C/min 7 15 
Bonding temperature °C 730 770 
Cool-down wait-time (Step 3) h 6 12 

Cleaning is considered to be a critical parameter for almost every bonding process. As described in 
the literature, organic particles must be removed from the bonding surfaces, which we achieved with 
the Piranha etch. Treatment with 5% hydrofluoric acid (HF) furthermore aids in the removal of 
undesired oxide layers. The heating rate was varied in order to identify a minimum necessary heating 
time, beyond which no further gains are attained, while not impacting the bonding process itself. The 
cool-down rate was determined by the guidelines of the Schott AG (Mainz, Germany) for stress free 
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cooling of Borosilicate glass. The bonding temperature is considered to be the most important factor, 
in order to reduce unwanted side effects, like devitrification. In order to minimize these, Pyrex is 
exposed as short as possible to this temperature. Based on the parameters in Table 2, we prepared a 24-1 

fractional experimental design with statistical software JMP from SAS (Böblingen, Germany). 

3.2.2. Test Setup 

For the characterization of the bond strength, a shear test was performed. After bonding to a dummy 
substrate, five tubes where sheared with a Dage Series 4000 from Dage Semiconductor GmbH [15]. 
The setup for the shear experiments was as follows: 

• Speed of the axes is 100 µm/s; 
• Shear height is 100 µm; 
• Load cell is DS 100 Kg. 

3.2.3. Results for Tube Bonding 

For each test in the fractional design of experiments, seven tubes were bonded. Five bonded tubes 
were used for the shear test and the other two were used for micrograph analyses. It was seen, that the 
shear strength in all cases increased with bonding temperature. It was also observed that the heating 
rate and the additional HF cleaning step before the bond did not significantly affect the bonding 
strength. The experiment shows that a causal relation between bonding time and bonding temperature 
with the bonding strength exists, as shown in Table 3. The evaluation of the shear test shows that the 
highest mean shear strength was 13.5 N/mm2 and the lowest 4.68 N/mm2. Some of the results of the 
shear test are presented in Table 3. As can be seen, bonding strength is highly dependent on the 
bonding time and temperature. While the bonding shear strength of the tubes, bonded at 730 °C 
increased with the bonding time, the shear strength decreased with the bonding time at a bonding 
temperature of 770 °C. This can be explained by two primary effects. Higher temperature improves the 
flow characteristics of the glass, which enables a better coverage of the glass on the silicon. At the 
same time, however, the occurrence of devitrification is significantly increased at the higher 
temperature, which weakens the structure of the glass (Figure 5). 

In addition to the shear test, an optical inspection of the cross section was performed. The devitrification 
can be seen in Figure 5. The depth and the density of the cracks increase with time and temperature. 

Table 3. Results of the shear test with variable bonding parameters. 

Experiment 
Conditions Mean shear force Std. dev. Mean shear strength 

Bonding Temperature\ 
Bonding Time\Cleaning 

(N) (N) (N/mm2) 

1 730 °C\6 h\Piranha 140.6 70.7 6.6 
2 770 °C\12 h\Piranha + HF 203.3 27.6 9.6 
3 730 °C\12 h\Piranha 163.9 32.7 7.7 
4 770 °C\6 h \Piranha + HF 282.9 31.6 13.3 
5 770 °C\6 h\Piranha 287.0 54.9 13.5 
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Figure 5. Bonded glass tube on silicon. Devitrification can be seen on the surface. In this 
region, crack propagation starts during the shear strength test. 

 

3.3. Preliminary Experiments: Silicon Chips Bonded to a Pyrex Chip 

In this section, preliminary tests for the bonding of a silicon-Pyrex-silicon stack are described. In 
contrast to the bonding of a Pyrex tube on silicon, most of the Pyrex surface here is covered by the 
silicon chips. This decreases the effect of devitrification [15], but includes the possibility of trapped 
gases which may form bubbles in the Pyrex. In this section, we describe preliminary tests for finding 
the best process parameters for bonding without bubbles. The comparison of the different bonding 
temperatures shows a clear result, see Figures 6–8. Both the bubble size and the number of bubbles 
decrease with temperature. 

Figure 6. Bonded silicon-glass-silicon stack. The sequence of the images shows a cross 
section of a 10 × 10 mm2 chip. Each image shows 2 mm-long segment of the cross section. 
The bubbles are the result of devitrification and trapped gases. The bonding temperature 
was set to 770 °C. 
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Figure 7. Bonded silicon-glass-silicon stack. The sequence of the images shows a cross 
section of a 10 × 10 mm2 chip. The bonding temperature was set to 730 °C. 

 

Figure 8. Bonded silicon-glass-silicon stack. The sequence of the images shows a cross 
section of a 10 × 10 mm2 chip. The bonding temperature was set to 680 °C. 

 

3.4. Discussion of the Preliminary Test 

In the preliminary test, we observed that temperature and time are the critical parameters for the 
quality of the reflow bond. The lowest temperature which allows proper bonding conditions differs for 
both experiments. This can be explained by the different surface topologies. Compared to the surface 
roughness of the Pyrex wafer, the surface roughness of the diced tubes is significantly higher. 
Therefore, more softening of the diced surface of the Pyrex tube is required via higher temperatures or 
increased time to achieve the close contact with the silicon surface necessary to form a stable bond. 
The occurrence of devitrification, however, increases with time and temperature and contributes 
negatively to the bond strength [13]. Cristobalite structures promote cracking and weaken the glass 
structure along the boundaries of the crystals. It was observed that the growth of bubbles induced by 
trapped gasses or shrinking due to devitrification is enhanced by increased temperatures. This effect 
was investigated by Moğulkoç et al. [15]. Fazal et al. performed a Pyrex-tube-to-silicon bond similar 
to that which we present at temperatures around 680 °C. To achieve proper bonding at this 
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temperature, the rough surface of the diced tube was polished prior to bonding [11]. The objective of 
our approach was to avoid additional process steps such as polishing, which meant that a higher 
temperature (730 °C) was required for proper bonding. 

4. Experimental Result of the System 

In order to develop a bonding process with minimal process steps, the bonding temperature for the 
bond of the functional units was set to 730 °C. In this temperature region, both bonds showed good 
shear strength and acceptable minimization of the bubbles. With these conditions, a polishing step for 
the tubes can be skipped. Taking into account that additional HF cleaning had little effect on the 
bonding strength (Table 3), only a Piranha etch cleaning was performed. 

4.1. Preparation of the Fluidic System 

For proper bonding results, a piranha etch step of all involved parts, as described in Section 2, has 
to be done. After that, a baking step, to evaporate moisture, takes place (see Figure 2). A structured 
Pyrex chip with through-holes was placed between the micropump and dosing unit. The glass tubes 
were then placed on the inlet and outlet. The goal of the experiment is to achieve a tight fluidic 
connection between the micropump and the dosing unit without blocking the fluidic channels. This is 
an obvious requirement, but not guaranteed due to the viscoelasticity of the Pyrex. 

4.2. Integration of Micropump and Dosing Unit 

Cross-sectional images were taken to analyze the bonding of the micropump and the dosing unit. 
The schematic drawing in Figure 9 shows the inspected cross sections. Figure 10 shows the inlet of the 
system after bonding using parameters of Experiment 3, see Table 3, where proper bonding was 
achieved. This correlates well with the results shown in the initial test in Figure 8. It can also be seen 
that no fluidic channel or via is closed by melting of the glass, which can be seen in Figure 10. The 
rounded corners seen in the figure are due to the minimization of surface energy of the glass during the 
viscoelastic softening. Furthermore, it can be seen that the bonding process does not block the fluidic 
channels, see Figures 11 and 12. 

Figure 9. Schematic 3D drawing of the fluidic system. 
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Figure 10. Cross section view of the fluid inlet. The through-hole in the Pyrex is not closed 
by melting of the Pyrex. 

 

Figure 11. Cross section view of integrated system and dosing device. Cross section of 
Sections II and 2 in Figure 9. 

 

Figure 12. Cross section view of the marked position. Cross section of Sections I and 2, 
see Figure 9. 
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4.3. Fluidic Measurement 

In order to proof the functionality of the system, a fluidic measurement is set up, where the pump 
generates a fluidic flow and the outlet valve of the dosing unit was closed in discrete steps. In order to 
show that the fluid traverses the entire desired fluidic path, the outlet valve of the dosing unit was closed. 
Preliminary data on the flow rate generated by the micro-pump are depicted in Figure 13. As can be 
seen, the flow rate, generated by the pump, decreases with the applied voltage on the piezo-actuator of 
the outlet valve. This voltage gradually closed the outlet valve in order to increase the fluidic resistance 
of the system. With this experiment, it can be shown that the flow generated by the pump passes the 
entire fluidic path and that no blockages or leaks are present. The tested fluidic system can be seen in 
Figure 14. 

Figure 13. Correlation between the fluidic flow, generated by the pump, and the outlet 
valve position. 

 

Figure 14. Bonded fluidic system which is used for the fluidic test. In this picture the 
piezo-ceramics are not included. 
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5. Conclusions 

As can be seen in Figures 10 and 12, the bonding of the silicon to Pyrex shows good results. The 
bond between silicon and Pyrex is almost free of defects and the microfluidic channels and vias are not 
blocked by the viscoelastic Pyrex during the bonding process. Furthermore, damage to the thin 
membranes was never observed after completing the bonding process using these optimized parameters. 
This observation is a good indicator of a stress-free bonding technique, which correlates well with the 
thermomechanical stress calculated in the finite element simulation shown in Figure 4. Initial pumping 
tests were performed with piezoceramic actuators mounted to the thin silicon membranes, which 
demonstrated the functionality of the fully integrated system without leakage or channel blockage. On 
the basis of this result, we can conclude that the presented bonding technique is suitable for 
manufacturing highly integrated and chemically resistant 3D microfluidic systems. 
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