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Abstract: A top-down design methodology and implementation of a time domain sensor is presented
in this paper. The acceleration resolution of the time domain sensor is equal to the time-measurement
accuracy divided by the sensor sensitivity. Combined with the sensitivity formula, the acceleration
resolution is proportional to the vibration amplitude, the time-measurement accuracy, and the third
power of the resonant frequency. According to the available time-measurement accuracy and the
desired acceleration resolution, the parameters including the vibration amplitude and the resonant
frequency were theoretically calculated. The geometrical configuration of the time domain sensor
device was designed based on the calculated parameters. Then, the designed device was fabricated
based on a standard silicon-on-insulator process and a matched interface circuit was developed for
the fabricated device. Experimental results demonstrated that the design methodology is effective
and feasible. Moreover, the implemented sensor works well. In addition, the acceleration resolution
can be tuned by adjusting the time-measurement accuracy and the vibration amplitude. All the
reported results of this work can be expanded to other time domain inertial sensors, e.g., a gyroscope
or tilt sensor.

Keywords: MEMS; inertial sensor; accelerometer; time domain measurement; design methodology;
adjustable acceleration resolution

1. Introduction

Microelectromechanical system (MEMS) accelerometers have gained widespread use
in the consumer electronics and automobile industries and geophysical exploration due to
their advantages of low cost, small size, light weight, and low power (CSWaP) [1–5]. The
first MEMS accelerometer, a piezoresistive sensor, was developed by L. M. Roylance and J.
B. Angel at Stanford University in 1979 [6]. Since then, researchers have developed various
types of accelerometers based on different sensing mechanisms, including piezoelectric [7],
resonant [8], mode-localized [9,10], tunneling [11], capacitive [12], etc. Piezoresistive ac-
celerometers offer a measuring technique (widely using piezoresistive bridges) and exhibit
good linearity and a wide dynamic response range. However, these sensors are sensitive to
temperature variations, necessitating the implementation of temperature-compensation
mechanisms [13]. Piezoelectric accelerometers demonstrate good linearity and a wide
dynamic response range, but are not suitable for low-frequency or static measurements [14].
Resonant accelerometers provide excellent stability, high accuracy, and strong resistance
to interference. However, they have a limited frequency response range [15,16]. Mode-
localized accelerometers utilize the energy confinement of mode localization to enhance
accuracy, with relative sensitivity to amplitude ratio 302 times higher than the resonance
frequency shift [17]. Despite this improvement in accuracy, mode-localized accelerometers
suffer from poor stability in amplitude ratio output, limiting their use in high-accuracy
fields. Among these sensing mechanisms, capacitive accelerometers have emerged as a
research hotspot and have gained favor in the commercial industry [18–20]. The state-of-
the-art resolution of capacitive sensors is currently around 0.44 µg [21] according to the
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published literature. However, further improvements in the accuracy of capacitive sensors
are challenging [21,22].

A time domain acceleration-sensing mechanism that converts acceleration perturba-
tion into changes in time intervals was theoretically proposed by Space and Naval Warfare
Systems Center Pacific (SSC Pacific). This sensing mechanism theoretically has the great
potential to achieve a detection limit of ~10−13 g [23,24] because the state-of-the-art time
accuracy arrives at the level of 10−18 s [25]. A theoretical implementation method based on
tunneling electrodes was also presented by SSC Pacific [26]. Based on the implementation
method, some theoretical works have been reported, mainly focusing on the apparatus
and appliance of in-plane inertial devices [27], the intelligent polynomial curve fitting
method for inertial devices [28], modeling gyroscope devices, and the angular random
walk estimation method for gyroscopes [29]. However, none of the time sensors were
developed, due to the methods being hard to implement. As a result, the theoretical results
have not been experimentally verified.

Since then, the literature with respect to time domain sensors has been seldom pub-
lished except by our research group. In our previous works, several novel characteristics of
time domain accelerometers have been identified and verified utilizing a self-developed
sensor based on a standard silicon-on-insulator process. First, a virtual time domain ac-
celerometer array using a single device was built [30]. Multiple acceleration measurements
could be simultaneously performed using the built virtual time domain sensor array. The
accuracy was improved by combining all the measurements. Second, the time domain
sensor has the ability to measure acceleration perturbation during the process of attenua-
tion vibration [24]. Third, two sensitivities exist in the time domain sensors, which can be
enhanced by decreasing the amplitude and frequency [23].

However, the design method of time domain sensors and their new characteristics have
seldom been reported in the published literature to data. In this paper, a top-down design
methodology for a time domain sensor device is proposed. Based on this methodology, the
structural topology of a self-developed sensor device was designed step by step and the
parameters were optimized. In addition, a corresponding detection method was developed.
Finally, utilizing the developed sensor device and the detection method, the time domain
sensor with adjustable resolution was experimentally verified.

The rest of this paper is organized as follows. In Section 2, the adjustable resolution
of the time domain accelerometer is theoretically analyzed. The design and fabrication of
the time domain accelerometer device is presented in Section 3. In Section 4, the detection
method of the developed time domain sensor is described. Measurement results and
discussion are presented in Section 5. The final conclusions are summarized in Section 6.

2. Adjustable Resolution of Time Domain Accelerometer

The acceleration resolution caused by the time-measurement accuracy is equal to the
ratio of the time-measurement accuracy ∆t divided by the sensitivity S of the time domain
sensor. Therefore, the acceleration resolution can be expressed by

∆a =
∆t
S

(1)

where the sensitivity can be expressed by [23]

S ∝
2

Aω3 (2)

where A and ω denote the vibration amplitude and resonant frequency of the time domain
sensor, respectively. Submitting Equation (2) into Equation (1), the acceleration resolution
can be rewritten as:

∆a ∝ Aω3∆t (3)
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It can be seen from Equation (3) that the acceleration resolution is proportional to the
vibration amplitude, the third power of the resonant frequency, and the time-measurement
accuracy. Therefore, Equation (3) is a theoretical foundation for designing a time domain
sensor with adjustable resolution.

3. Design and Fabrication of a Time Domain Accelerometer Device with
Adjustable Resolution
3.1. Design of a Time Domain Accelerometer Device
3.1.1. Overall Design

The model of the time domain accelerometer is equivalent to a forced vibration of a
mass–spring–damper single-freedom system, where the mass denotes inertial proof mass,
the spring denotes elastic beam, and the damper refers to energy loss during the processing
of microstructure motion. In addition, a set of (two) displacement reference points (DRPs) is
necessary for implementing a time domain sensor, where the DRPs are used for generating
the trigger events when the proof mass passes through them. Then, the acceleration is
calculated through measuring the time intervals between the corresponding trigger events.

According to the model of the time domain sensor, the proposed senor device is
shown in Figure 1. The harmonically oscillating proof mass is suspended by the four
symmetrical elastic beams and is driven by an electrostatic force generated via area-varying
drive capacitors. In addition, the amplitude of the proof mass can be adjusted by changing
the drive voltage on the drive capacitors. The gap-varying sense capacitors, combined with
a corresponding capacitance-to-voltage (C–V) interface circuit and a self-developed data
post-processing algorithm, are utilized for defining the DRPs, generating the trigger events,
measuring the time intervals, and further calculating applied acceleration perturbation.
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Figure 1. Schematic diagram of the proposed time domain accelerometer device.

When an inertial acceleration perturbation is applied in the Y-axis positive direction,
the proof mass moves in the negative direction along the Y axis (Figure 1). The oscillation
trajectory of the time domain sensor with acceleration perturbation is shown in Figure 2a.
The data points (represented by the blue dots) on the oscillation trajectory denote the proof
mass displacements relative to the rest position. The position relationships between the
proof mass and the two preset DRPs at different times are illustrated in Figure 2b. The
proof mass starts with the lowest position at time t0 and then moves up to the DRP X1 at
time t1 and the DRP X2 at time t2. It reaches the highest position at time tmax and then
moves down to the DRP X2 at time t3 and the DRP X1 at time t4. The proof mass returns to
its original position at time tmin. After that, it moves to the DRP X1 again at time t5 and
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continues this periodic repetitive motion. In a period, the time intervals ∆T1, ∆T2, and ∆T
can be measured by the obtained five times t1, t2, t3, t4, and t5. Finally, the acceleration can
be calculated from the measured ∆T1, ∆T2, and ∆T via the function a = f (∆T1, ∆T2, ∆T).
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Figure 2. Schematic diagram: (a) time interval measurements, (b) position relationships between the
proof mass and the DRPs at different times.

In this work, for acquiring these five time measurements and finally calculating the
acceleration, the displacement of the proof mass is converted into measurable voltage.
Because the movable electrodes of the sense capacitors are rigidly connected with the proof
mass, they experience the same displacement as the proof mass (Figure 1). Therefore, the
displacement of the proof mass caused by the acceleration perturbation is first converted
into the change in capacitance. Then, the change in capacitance is converted into that in
voltage by the aforementioned C–V interface circuit. As a result, a function relationship
between the displacement and voltage is built. The displacement is represented by the
output voltage. Correspondingly, the DRPs can be represented by the VRPs.

The National Instruments serial data acquisition (DAQ) system [31] is used to sample
voltage signal from the C–V interface circuit. The sampling rate can be up to 2.5 million
samples per second (MSPS). Correspondingly, the highest time-measurement accuracy
(reciprocal of MSPS) is 400 ns. Thereinto, the time-measurement accuracy is adjustable
through varying the sampling rate. Based on our experience from standard silicon-on-
insulator processes, the resonance frequency of the developed sensor device should be
larger than or equal to 1.2 kHz, in case the proof adheres to the handle layer. The desired
acceleration resolution is ~5 mg. According to Equation (3), the maximum vibration
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amplitude of the time domain sensor is ~584 nm. The size of the device was designed to be
3.5 mm × 4 mm and the sensing mass 1.8 × 10−7 kg. The overall parameters are listed in
Table 1. Based on the parameters, the elastic beam, driving structure, and sensor structure
were designed as follows.

Table 1. Overall parameters of the designed time domain accelerometer.

Parameters Value

Desired acceleration resolution ~5 mg
Resonant frequency 1.2 kHz

Maximum vibration amplitude 584 nm
Highest time-measurement accuracy 400 ns

Size 3.5 mm × 4 mm
Sensing mass 1.8 × 10−7 kg

It should be noted that if some parameters of Equation (3) are constrained, the re-
maining ones can be calculated and optimized. Then, the corresponding parameters of the
sensor device and detection circuit can be calculated and designed.

3.1.2. Elastic Beam

According to the resonant frequency f of 1.2 kHz and the sensing mass m of ~1.8 × 10−7 kg
(Table 1), the stiffness coefficient K of the elastic beam is ~10 N/m ( f =

√
K/m/2π). There

are various types of elastic beams, including folded elastic beam, L-shaped elastic beam,
U-shaped elastic beam, serpentine elastic beam, and so on. Among them, the U-shaped
elastic beam (Figure 3) was chosen due to the advantages of low stiffness coefficient in
detection mode and good residual stress release [32].
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Figure 3. U-shaped elastic beam of this work.

The stiffness coefficients of the U-shaped elastic beam in X, Y, and Z direction, i.e., Kx,
Ky, and Kz can be expressed via Equation (4) [32]:

Kx =
EtwW3

2L1W3 + L3
3w

, Ky =
Etw3W

L3w3 + 2L3
1W

, Kz =
Et3wW

2L1
3W + L3

3w
(4)

In Equation (4), w and W denote the width of the beam while L1, L2, and L3 denote
the length of the beam, as shown in Figure 3. t denotes the height of the beam in the Z
direction. Some parameters of the U-shaped elastic beam are constrained: W = 30 µm;
L3 = 30 µm; L1/w = L2/w= 20 ∼ 100. According to Equation (4), the dependence of the
stiffness coefficient in the Y direction on the aspect ratio L1/w is displayed in Figure 4. As
can be seen from Figure 4, the stiffness coefficient is 10 N/m when the aspect ratio is ~65.
In this work, the aspect ratio was taken as 70 for convenient design. For reducing the lateral
interference, the ratio of the stiffness coefficients between the non-sensitive direction and
sensitive direction should be kept to at least 10-fold. According to Equation (4), when the
beam width w is equal to 10 µm, the ratio of the stiffness coefficients of the X direction to
the Y direction is ~5000 and the ratio of the stiffness coefficients of the Z direction to the Y
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direction is ~10. The geometrical parameters of the designed U-shaped elastic beam are
listed in Table 2.
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Table 2. Geometrical parameters of the designed U-shaped elastic beam.

Parameters Value (µm)

L1 700
L2 700
L3 30
w 10
W 30
t 30

3.1.3. Electrostatic Driving Structure

Area-varying capacitors are used as the electrostatic driving structure (Figure 5). When
there is no applied acceleration perturbation, the movable combs, being fixedly connected
to the proof mass, are located in the middle of the fixed combs. When there is an applied
acceleration perturbation, the gap dd0 remains unchanged while the overlapping length
ld changes.
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When the proof mass shifts with a displacement caused by an acceleration pertur-
bation in the sensing direction, the differential of the drive capacitance (Figure 5) to the
displacement can be expressed as:

∂Cd
∂y

= 2ndε
hd
dd0

+ (2n + 1)ε
bdhd

a2
d

(5)
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where nd denotes the number of combs, hd refers to the height of the combs, and bd denotes
the width of the combs. The first term of Equation (5) is a constant while the second term
varies with the changing ad. Thus, the second term brings a nonlinearity to ∂Cd/∂y. The
ratio of the second term to the first term, i.e., the nonlinearity, is given as:

R =
(2n + 1)ε bdhd

a2
d

2nε hd
dd0

≈ bddd0

a2
d

(6)

As can be seen from Equation (6), the ratio is proportional to the comb width bd and
the gap dd0 and inversely proportion to gap a2

d. Some parameters of the drive capacitors
are constrained: bd = 5 µm; ld = 40 µm; dd0 = 2.5 µm. The nonlinearity decreases while
the gap ad increases. However, increasing the gap ad reduces the driving capacitance.
Therefore, in this work, the nonlinearity is limited to less than 2%. The dependence of the
nonlinearity on the gap ad is displayed in Figure 6. When the gap ad is greater than or equal
to 25 µm, the nonlinearity R is less than 2%. As a result, the gap ad of 25 µm was chosen.
The geometrical parameters of the designed driving structure are listed in Table 3.
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Table 3. Geometrical parameters of the designed driving structure.

Parameters Value (µm)

bd 5
ld 40

dd0 2.5
ad 25

3.1.4. Detection Structure of the Oscillation Trajectory of the Proof Mass

Gap-varying capacitors (Figure 7) are used for the detection structure of the oscillation
trajectory of the proof mass. When there is no applied acceleration perturbation, the
movable combs, being fixedly connected to the proof mass, are located in the middle of the
fixed combs. When there is an applied acceleration perturbation, the overlapping length ls
remains unchanged while the gaps d1 and d2 change. The detection structure converts the
proof mass displacement into detectable capacitance, which is necessary for representing
DRPs, measuring time intervals, and further calculating acceleration.
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Figure 7. Schematic diagram of detection structure based on sense capacitors.

The ratio of d1 to d2 is defined as a variable η. Based on the parameters (Figure 7), the
detection capacitance ∆C can be expressed as:

∆C = nεlhs

(
1

d1−∆y + 1
d2+∆y

)
− nεlhs

(
1

d1+∆y + 1
d2−∆y

)
= 2nεlhs

d1

(
1 − 1

η2

)[
∆y
d1

+
(

∆y
d1

)3
+

(
∆y
d1

)5
+ · · ·

] (7)

In the Equation (7), the part containing the first-order term of ∆y/d1 represents the
linear capacitance variation. The other part containing the high-order terms of ∆y/d1
represents nonlinear capacitance variation. In this work, the nonlinearity is limited to less
than 5%. Some parameters of the sense capacitors are constrained: bs= 6 µm; ls = 60 µm;
d1 = 2.5 µm. The dependence of the linear capacitance variation on the ratio η is displayed
in Figure 8. When the ratio η is equal to 3, the linear capacitance variation reaches a
maximum. Moreover, when the displacement ∆y is less than 540 µm, the nonlinearity of the
capacitance variation is less than 5% (Equation (7)). The resulting geometrical parameters
of the designed detection structure are listed in Table 4.
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Table 4. Geometrical parameters of the designed detection structure.

Parameters Value (µm)

d1 2.5
d2 7.5
η 3
l3 60
bs 6

3.2. Fabrication of Time Domain Sensor Device Using One Photomask

Based on the designed geometrical parameters described in Part 3.1, the device was
fabricated using a typical silicon-on-insulator (SOI) process, as illustrated in Figure 9 [23].
The thickness of the device layer, handle layer, and oxide layer was 30, 400, and 4 µm,
respectively (Figure 4a). The fabrication process involved steps such as spin coating of
photoresist (b), patterning (c), deep reactive-ion etching (DRIE) (d), notching (e), removing
the photoresist (f), dicing (g), and releasing the structure using dry HF (h). In the whole
process, only one photomask was used. After the DRIE, the step of notching was employed
for the purpose of rapidly releasing device layer. At the same time, the oxide layer below
the anchors prevented over-etching. The SEM image is shown in Figure 10. The schematic
diagram of wire bonding and the packaged sensor device is shown in Figure 11.
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4. Detection Method of Developed Time Domain Acceleration Sensor

Based on the fabricated sensor device, an acceleration detection method is proposed.
The detection method consists of a push–pull electrostatic drive circuit, detection circuit
for the oscillation trajectory of the proof mass, and time-interval measurement based on
data post-processing. The push–pull electrostatic drive is used to actuate the proof mass
under a resonant state. The detection of the oscillation trajectory converts the displacement
of the proof mass into a voltage. As a result, a functional relationship is built between the
displacement and the voltage. The DRPs are indirectly characterized by the VRPs. The data
post-processing method is used to judge the times when the proof mass passes the DRPs,
extract the corresponding time intervals, and calculate the acceleration perturbation.

4.1. Push–Pull Electrostatic Drive Circuit

As shown in Figure 12, area-varying capacitors serve as differential drive electrodes.
An AC drive voltage with a DC bias voltage is applied to the drive electrodes, where the
DC bias voltages are equal in magnitude but opposite in direction. In addition, a high-
frequency sinusoidal carrier wave is applied to the proof mass. Typically, the frequency of
the carrier wave is about three orders higher than that of the AC drive signal. There is a
potential difference between the movable combs fixed to the proof mass and the fixed combs
connected to the drive electrodes, forming a normal electrostatic force (perpendicular to
the direction of motion) and a tangential electrostatic force (along the direction of motion).
The tangential electrostatic force provides the driving force while the normal electrostatic
forces cancel each other. The tangential electrostatic force is given as:

Fd = 1
2

∂Cd
∂y (Va sin ωdt + Vd − V0 sin ωmt)2 − 1

2
∂Cd
∂y (Va sin ωdt − Vd − V0 sin ωmt)2

= 1
2

∂Cd
∂y

[
(Va sin ωdt + Vd)

2 − (Va sin ωdt − Vd)
2 + 2V0 sin ωmt(−2Vd)

]
= 1

2
∂Cd
∂y (4VaVd sin ωdt − 4V0Vd sin ωmt)

(8)

where Va sin ωdt denotes the AC component of the drive voltage, Vd denotes the DC com-
ponent of the drive voltage, V0 sin ωmt denotes the high-frequency sinusoidal carrier wave.

The frequency of the AC drive voltage is equal to the resonant frequency of the
time domain sensor for the purpose of the device resonance. As mentioned above, the
frequency of the carrier wave is about three orders higher than that of the AC drive voltage,
and the response of the time domain sensor to the carrier wave, i.e., the second term
of Equation (8), is greatly attenuated and can be neglected according to the amplitude-
frequency characteristic of the second-order system. As a result, the effective electrostatic
force is reduced to:

Fde f f =
1
2

∂Cd
∂y

4VdVa sin ωdt (9)
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Figure 12. Push–pull electrostatic drive.

It can be seen from Equation (9) that the magnitude of the effective electrostatic force
is proportional to the differential of the drive capacitance, the DC bias voltage, and the
amplitude of the AC component of the drive voltage. The frequency of the effective
electrostatic force is the same as the frequency of the AC drive voltage. Correspondingly,
the displacement x (i.e., the vibration amplitude A) caused by the electrostatic force is
given as:

x = A =
Fde f f

K
Q (10)

where Q refers to the quality factor of the sensor.
Submitting Equations (4), (5), (9) and (10) into Equation (3), the acceleration resolution

can be rewritten as:

∆a ∝

[
2ndε hd

dd0
+ (2n + 1)ε bdhd

a2
d

]√
Etw3W

L3w3+2L3
1W

4VdVa sin ωdt

2m
3
2

Q∆t (11)

It can be seen from Equation (11) that the resolution can be expressed by the structural
parameters of the designed time domain accelerometer. As a result, a relationship between
the acceleration resolution and the structural parameters can be built, which provides a
theoretical foundation for time domain sensor device design.

4.2. Detection Circuit of the Oscillation Trajectory of the Proof Mass
4.2.1. Representation of DRPs

For a forced vibration of a mass–spring–damper single-freedom system, when an
acceleration perturbation a is applied, the center position of the oscillation trajectory of
the proof mass shifts a displacement d, d = a/ω2

0 [30]. Therefore, when the acceleration
perturbations, −1 g and +1 g, are applied, the shifted displacement of the center position
can be expressed as:

xa =
2g
ω2

0
(12)

The shifted displacement causes a change in the spacing between the movable and
fixed combs of the sense capacitors (Figure 7), which further results in a change in capaci-
tance. Through the displacement extraction circuit based on a charge amplifier (Figure 13),
the change in displacement is reflected by the change in output voltage. Notably, it is
necessary carry out signal modulation and demodulation for the output voltage because
the AC drive voltage is fed through to the output.
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If the extracted DC voltages are V−1g and V+1g when the acceleration perturbations
are −1 g and +1 g, the sensitivity of displacement to voltage is given as:

SxV =
2g/ω2

0
V−1g − V+1g

(13)

Then, the functional relationship between displacement and voltage can be expressed as:

x =

(
V −

V−1g + V1g

2

)
× SxV (14)

Correspondingly, the functional relationship between the DRPs and the VRPs can be
expressed as:

Xi =

(
Vi −

V−1g + V1g

2

)
× SxV (i = 1, 2) (15)

4.2.2. Relationship between Displacement and Capacitance

The proof mass works under a resonant state. Thus, the movable combs of the
sense capacitors fixed to the proof mass also work under a resonant state. As a result,
the varying sense capacitance (Figure 14) consists of three parts: the initial capacitance
Cs0 (Cs0 = ε0lshs/ds0), the capacitance change caused by acceleration perturbation ∆Csd
(∆Csd = Cs0d/ds0), and the capacitance change caused by the simple harmonic oscillation
∆Csv (∆Csv = Cs0 A cos ωdt/ds0).
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The sense capacitances Cs1 and Cs2 (Figure 14) can be expressed as:

Cs1 = Cs0 + ∆Csd + ∆Csv, Cs2 = Cs0 − ∆Csd − ∆Csv (16)

The difference ∆Cs between Cs1 and Cs2 can be expressed as:

∆Cs = Cs1 − Cs1 = 2(∆Csd + ∆Csv) = 2Cs0
d

ds0
+ 2Cs0

A cos ωdt
ds0

(17)

It can be seen from Equation (17) that the change of differential sense capacitance is
caused by the external acceleration perturbation and the harmonically oscillating proof mass.

4.2.3. Differential Capacitance Detection Method of Suppressing the
Same-Frequency Interference

The differential capacitance ∆Cs consists of two terms (Equation (17)). However, only
the first term corresponds to the acceleration perturbation. Consequently, the second term
must be suppressed. First, the differential capacitance ∆Cs is converted into high-frequency
AC voltage by a single-carrier dual-channel integrated amplifier (Figure 15), where the
integrated amplifier consists of two identical charge amplifiers and an instrument amplifier.
The commercial chips AD8065 and AD8221 were chosen to build the two charge amplifiers
and the instrument amplifier, respectively. The designed sensing capacitance Cs1 and Cs2
are both equal to 1.5 pF. The feedback capacitance C f is set as 2.2 pF. The resistor RINA is
set as 51 kΩ. The amplitude and frequency of the sinusoidal carrier wave are 0.5 V and
100 kHz.
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where uhA  denotes the amplification factor of the HPF, mK  refers to the amplification 
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Figure 15. Single-carrier dual-channel integrated amplifier.

The high-frequency voltage can be expressed as:

Uc0 = KINA(U2 − U)1 = KINA
Cs1 − Cs2

C f
Vm = KINAVm

∆Cs

C f
(18)

where Vm denotes carrier voltage (Vm = V0 sin ωmt) and C f denotes feedback capacitance.
The block diagram of suppression of the same-frequency interference is shown in Figure 16.
Demodulation is performed on the high-frequency AC voltage Uc0 for the purpose of
obtaining a voltage. The voltage is proportional to the capacitance or displacement caused
by the acceleration perturbation. In addition, same-frequency interference is prevented
by the high-pass filter (HPF) before the demodulation. After the demodulation, the high-
frequency carrier is isolated through a low-pass filter (LPF).
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The output voltages of the high-pass filter, demodulation, and low-pass filter can be
expressed as:
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where
.
Auh denotes the amplification factor of the HPF, Km refers to the amplification factor

of the demodulation, and
.
Aul denotes the amplification factor of the LPF. The output

voltage Ul0 from the LPF is proportional to the capacitance or displacement caused by the
acceleration perturbation.

The circuits of the HPF, demodulation, and low-pass filter are shown in Figure 17.
Commercial chips from Analog Devices, Inc. were used to implement the circuits. An
operational amplifier AD847 was chosen for the HPF circuit. Therein, the resistors R f , R1,
and R are equal to 1 kΩ. The capacitor C is set as 1.5 pF. As a result, the amplification factor
and cut-off frequency are 2 and 234 kHz in the HPF. A demodulator AD630 was chosen for
the demodulation circuit. An operational amplifier AD847 is also chosen for the LPF circuit.
Therein, the resistors R2, R3, and R4 are equal to 1 kΩ. The capacitor C1 is set as 33 pF. As a
result, the amplification factor and cut-off frequency in the LPF are 2 and 4.8 kHz.
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4.3. Time Intervals Measurement Based on Data Post-Processing

The output voltage signal from LPF is sampled using DAQ [31]. Sampling data are
post-processed using MATLAB 2012b (Figure 18). As depicted in Figure 18, the trajectory
oscillation of the time domain sensor is sampled. Assuming that the sampling rate is SR, the
time-measurement accuracy is ∆t = 1/SR. Thus, the time-measurement accuracy is tunable
through varying the sampling rate. We take time interval ∆T1 as an example for explaining
how the time intervals are measured. When DRP X1 is between two adjacent sampling data,
the first datum is chosen as the trigger event. Thus, the first trigger event tr1 and the second
trigger event tr4 are chosen in an oscillation period. The event tr1 corresponds to sampling
datum numbered Ntr1 while the event tr4 corresponds to sampling datum numbered Ntr4 .
The difference between the two trigger events, tr1 and tr4, is extracted as the measured time
interval ∆T1, i.e., ∆T1 = (Ntr4 − Ntr1)× ∆t. Utilizing the same method, the time intervals
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∆T2 and ∆T are measured. With reference to Figures 2a and 18, submitting the measured
time intervals ∆T1, ∆T2, and ∆T into Equation 19, the acceleration is calculated as [24]:

a =

(
2π

∆T

)2
 (X1 − X2)

cos
(

π ∆T1
∆T

)
− cos

(
π ∆T2

∆T

) cos
(

π
∆T1

∆T

)
− X1

 (20)
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5. Measurement Results and Discussion
5.1. Dependence of Acceleration Resolution on Time-Measurement Accuracy and
Vibration Amplitude
5.1.1. Dependence of the Acceleration Resolution on the Time-Measurement Accuracy

The performance of the time domain accelerometer was evaluated via the standard
deviation (1σ) of the measured acceleration values [30]. Different time-measurement accu-
racies were achieved by sampling rate. When the sampling rates were 2.5 MHz, 1.25 MHz,
0.5 MHz, 0.25 MHz respectively, the corresponding time-measurement accuracies were
4 × 10−7 s, 8 × 10−7 s, 2 × 10−6 s, 4 × 10−6 s. The time domain sensor is mounted on
dividing head to respond to external acceleration of −1 g. When the DC component of
drive voltage, Vd, is 1 V and both the peak–peak amplitude and frequency of the AC
component of drive voltage are 0.3 V and ~1245.88 Hz, the sensor works under resonant
state with a vibration amplitude of ~342 nm and a frequency of ~1245.88 Hz. The ana-
log signal of the sensor was sampled with different sampling rates for 3.2 s. The DRPs
were set as 0 nm and 130 nm. Using the data post-processing method [30], the solved
acceleration is shown in Figure 19. The 1σ noises of the solved acceleration were 6.23 mg,
7.07 mg, 12.07 mg, 24.6 mg at the time-measurement accuracies of 4 × 10−7 s, 8 × 10−7 s,
2 × 10−6 s, 4 × 10−6 s. When the time-measurement accuracies were equal to or lower
than 8 × 10−7 s (≥8 × 10−7 s), the measured 1σ noises were almost proportional to the
time-measurement accuracies (Figure 20). The results are consistent with the theoretical
analysis (Equation (3)), which indicates that the sensor noises were mainly dependent on
time-measurement accuracy. When the time-measurement accuracies were higher than
or equal to 8 × 10−7 s (≤8 × 10−7 s), the measured 1σ noises were not proportional to the
time-measurement accuracies. We can infer that the sensor noise was affected by not only
the time-measurement accuracy but also the C–V interface circuit. Limited by the DAQ,
higher time accuracies (<4 × 10−7 s) could not be obtained and the corresponding 1σ noises
of acceleration were not measured.
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5.1.2. Dependence of the Acceleration Resolution on the Vibration Amplitudes

The DC component of the drive voltage, Vd, remained the same, i.e., Vd = 1 V, while the
peak–peak amplitudes of the AC component of the drive voltage were set as 0.3 V, 0.35 V,
0.40 V, and 0.45 V; the driving forces varied and different vibration amplitudes of ~342 nm,
~399 nm, ~455 nm, and ~512 nm were achieved. The sensor operated in a resonant state
with a frequency of ~1245.88 Hz, responding to external acceleration of −1 g. The sampling
rate was 2.5 MHz and the corresponding time-measurement accuracy was 4 × 10−7 s. The
analog signal of the sensor was sampled with different vibration amplitudes for 3.2 s. Then,
the DRPs were set as 0 nm and 130 nm. The solved acceleration via data post-processing
is shown in Figure 21. The 1σ noises of the solved acceleration were 6.23 mg, 7.02 mg,
7.76 mg, 8.59 mg at vibration amplitudes of ~342 nm, ~399 nm, ~455 nm, and ~512 nm
(Figure 21). The measured 1σ noise was almost proportional to the vibration amplitude
(Figure 22). This result is consistent with the theoretical analysis (Equation (3)).



Micromachines 2024, 15, 635 17 of 19

Micromachines 2024, 15, x FOR PEER REVIEW 17 of 20 
 

 

Figure 20. Dependence of 1σ noise on different time-measurement accuracies. 

5.1.2. Dependence of the Acceleration Resolution on the Vibration Amplitudes 
The DC component of the drive voltage, dV , remained the same, i.e., dV  = 1 V, while 

the peak–peak amplitudes of the AC component of the drive voltage were set as 0.3 V, 0.35 
V, 0.40 V, and 0.45 V; the driving forces varied and different vibration amplitudes of ~342 
nm, ~399 nm, ~455 nm, and ~512 nm were achieved. The sensor operated in a resonant 
state with a frequency of ~1245.88 Hz, responding to external acceleration of −1 g. The 
sampling rate was 2.5 MHz and the corresponding time-measurement accuracy was 4 × 
10−7 s. The analog signal of the sensor was sampled with different vibration amplitudes 
for 3.2 s. Then, the DRPs were set as 0 nm and 130 nm. The solved acceleration via data 
post-processing is shown in Figure 21. The 1σ noises of the solved acceleration were 6.23 
mg, 7.02 mg, 7.76 mg, 8.59 mg at vibration amplitudes of ~342 nm, ~399 nm, ~455 nm, and 
~512 nm (Figure 21). The measured 1σ noise was almost proportional to the vibration am-
plitude (Figure 22). This result is consistent with the theoretical analysis (Equation (3)). 

 
Figure 21. Dependence of the solved acceleration on different vibration amplitudes: (a) 342 nm, (b) 
39 9nm, (c) 455 nm, (d) 512 nm. 

 
Figure 22. Dependence of 1σ noise on different vibration amplitudes. 

It should be noted that the displacement and DRPs are indirectly represented by volt-
age and VRPs. The voltage is obtained from the varying capacitance of the sense capacitors 
in the C–V circuit. If the developed device rotates around the Z axis, the Coriolis force acts 
on the oscillating proof mass and the proof mass moves along the X direction (non-sensing 
direction). Then, an additional capacitance caused by the Coriolis force is coupled to the 
effective capacitance caused by the acceleration perturbation. Therefore, the rotation of 
the developed device around the Z axis affects the measured acceleration. If the displace-
ment and DRPs of the device are physically defined as stacked tunneling electrodes [26], 
the trigger events are not influenced by the certain X-direction displacement caused by 

Figure 21. Dependence of the solved acceleration on different vibration amplitudes: (a) 342 nm,
(b) 399 nm, (c) 455 nm, (d) 512 nm.

Micromachines 2024, 15, x FOR PEER REVIEW 17 of 20 
 

 

Figure 20. Dependence of 1σ noise on different time-measurement accuracies. 

5.1.2. Dependence of the Acceleration Resolution on the Vibration Amplitudes 
The DC component of the drive voltage, dV , remained the same, i.e., dV  = 1 V, while 

the peak–peak amplitudes of the AC component of the drive voltage were set as 0.3 V, 0.35 
V, 0.40 V, and 0.45 V; the driving forces varied and different vibration amplitudes of ~342 
nm, ~399 nm, ~455 nm, and ~512 nm were achieved. The sensor operated in a resonant 
state with a frequency of ~1245.88 Hz, responding to external acceleration of −1 g. The 
sampling rate was 2.5 MHz and the corresponding time-measurement accuracy was 4 × 
10−7 s. The analog signal of the sensor was sampled with different vibration amplitudes 
for 3.2 s. Then, the DRPs were set as 0 nm and 130 nm. The solved acceleration via data 
post-processing is shown in Figure 21. The 1σ noises of the solved acceleration were 6.23 
mg, 7.02 mg, 7.76 mg, 8.59 mg at vibration amplitudes of ~342 nm, ~399 nm, ~455 nm, and 
~512 nm (Figure 21). The measured 1σ noise was almost proportional to the vibration am-
plitude (Figure 22). This result is consistent with the theoretical analysis (Equation (3)). 

 
Figure 21. Dependence of the solved acceleration on different vibration amplitudes: (a) 342 nm, (b) 
39 9nm, (c) 455 nm, (d) 512 nm. 

 
Figure 22. Dependence of 1σ noise on different vibration amplitudes. 

It should be noted that the displacement and DRPs are indirectly represented by volt-
age and VRPs. The voltage is obtained from the varying capacitance of the sense capacitors 
in the C–V circuit. If the developed device rotates around the Z axis, the Coriolis force acts 
on the oscillating proof mass and the proof mass moves along the X direction (non-sensing 
direction). Then, an additional capacitance caused by the Coriolis force is coupled to the 
effective capacitance caused by the acceleration perturbation. Therefore, the rotation of 
the developed device around the Z axis affects the measured acceleration. If the displace-
ment and DRPs of the device are physically defined as stacked tunneling electrodes [26], 
the trigger events are not influenced by the certain X-direction displacement caused by 

Figure 22. Dependence of 1σ noise on different vibration amplitudes.

It should be noted that the displacement and DRPs are indirectly represented by
voltage and VRPs. The voltage is obtained from the varying capacitance of the sense
capacitors in the C–V circuit. If the developed device rotates around the Z axis, the Coriolis
force acts on the oscillating proof mass and the proof mass moves along the X direction
(non-sensing direction). Then, an additional capacitance caused by the Coriolis force is
coupled to the effective capacitance caused by the acceleration perturbation. Therefore,
the rotation of the developed device around the Z axis affects the measured acceleration.
If the displacement and DRPs of the device are physically defined as stacked tunneling
electrodes [26], the trigger events are not influenced by the certain X-direction displacement
caused by the Coriolis force. Therefore, the rotation of the device based on tunneling
electrodes does not affect the measured acceleration. In future work, time domain sensors
based on tunneling electrodes will be developed and new characteristics of the time domain
sensors studied.

For the time domain sensor, the measurement range can be expressed as amax =
ω2(A − d0) [30]. Combining this with the resolution expression ∆a ∝ Aω3∆t (Equation (3)),
we can conclude that when the vibration amplitude and resonant frequency vary, both the
measurement range and resolution vary. Furthermore, when the resolution grows low, the
measurement range grows large. Generally, two or more separate traditional accelerom-
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eters are required for the sensing or measurement of parameter values of significantly
different amplitude, thereby increasing the cost and complexity of systems capable of wide
measurement ranges. On the contrary, if a developed time domain sensor with adjustable
resolution and measurement range could be utilized to sense or measure the significantly
different amplitude, it would be a promising technique because the cost and complexity
would be lowered.

6. Conclusions

A top-down design methodology and the implementation of a time domain accelerom-
eter have been presented in this paper. The acceleration resolution of the time domain
sensor can be tuned by varying the time-measurement accuracy, vibration amplitude, and
resonant frequency. The desired resolution was taken as the design target. Some parameters
were calculated under the constrained parameters. In this work, the time-measurement
accuracy and resonant frequency were constrained, and the vibration amplitude was calcu-
lated. Then, a time domain sensor device including driving and detecting structures was
detailed, designed according to the parameters, and the device was fabricated utilizing a
standard SOI process. In addition, a detection method matched to the fabricated device
was developed. Experimental results show that the developed time domain sensor works
well, verifying the effectiveness and feasibility of the design methodology and the imple-
mentation. The acceleration resolution can be tuned by varying the time-measurement
accuracies and vibration amplitudes. Representing a limitation to the current device and
test platform, the resonant frequency in the acceleration resolution adjustment test cannot
be tuned. In future work, a device with a special port for tuning resonant frequency will
be designed for acceleration resolution enhancement and adjustment tests. The top-down
design methodology can be expanded to other time domain inertial sensors, e.g., a time
domain gyroscope or tilt sensor, and the results of this work can also be applied to other
time domain inertial sensors.
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