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Abstract: Real-time DOA (direction of arrival) estimation of surface or underwater targets is of great
significance to the research of marine environment and national security protection. When conducting
real-time DOA estimation of underwater targets, it can be difficult to extract the prior characteristics
of noise due to the complexity and variability of the marine environment. Therefore, the accuracy
of target orientation in the absence of a known noise is significantly reduced, thereby presenting
an additional challenge for the DOA estimation of the marine targets in real-time. Aiming at the
problem of real-time DOA estimation of acoustic targets in complex environments, this paper applies
the MEMS vector hydrophone with a small size and high sensitivity to sense the conditions of the
ocean environment and change the structural parameters in the adaptive adjustments system itself to
obtain the desired target signal, proposes a signal processing method when the prior characteristics
of noise are unknown. Theoretical analysis and experimental verification show that the method
can achieve accurate real-time DOA estimation of the target, achieve an error within 3.1◦ under the
SNR (signal-to-noise ratio) of the X channel of −17 dB, and maintain a stable value when the SNR
continues to decrease. The results show that this method has a very broad application prospect in the
field of ocean monitoring.

Keywords: MEMS vector hydrophone; DOA estimation; adaptive signal processing

1. Introduction

The positioning and identification of various types of undersea craft and underwater
submarines in the ocean is an important task, and a key means for each country to design
anti-submarine, escort, and other defense weapons. The real-time determination of under-
water target orientation is one of the most important fields of marine safety monitoring
and target detection. The precise orientation of underwater targets provides a research
basis for hydrophone-based remote sensing detection by buoys. With few studies on the
real-time determination of target orientation, a large number of studies have focused on
post-processing of signals and adopting algorithms with extremely high computational
complexity to improve the accuracy of target orientation estimation after acquisition. In
DOA estimation, the high-resolution performance is mostly concerned, whereas these
workflows are difficult to execute in hardware systems. Thus, many similar studies are
difficult to be applied in practice [1,2]. In addition, there are studies on underwater high-
resolution visual reconstruction, which can even convey high-definition images of a target,
with the premise of needing to recognize the device and in close proximity to the target to

Micromachines 2024, 15, 514. https://doi.org/10.3390/mi15040514 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi15040514
https://doi.org/10.3390/mi15040514
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-2551-5388
https://orcid.org/0000-0003-1762-9246
https://doi.org/10.3390/mi15040514
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi15040514?type=check_update&version=1


Micromachines 2024, 15, 514 2 of 18

be detected. When the distance is farther away from each other, it is necessary to rely on the
detection device to determine the target’s orientation in advance, and then perform the re-
construction of the image after being close to the target [3,4]. In contrast to electromagnetic
and light waves, sound is the only form of energy found so far in the oceans that can travel
over long distances, so there is still a demand for hydroacoustic technology for long-range
ocean target exploration. The underwater acoustic environment is characterized by strong
noise and interference, rapidly variable signals in the time and frequency domains, and
significant multipath propagation. Therefore, robust target orientation detection underwa-
ter is challenging [5,6]. The cilia MEMS bionic vector hydrophone has features of low cost,
low power consumption, miniaturization, and good low-frequency performance, as well as
higher sensitivity and wider bandwidth with the continuous research and improvement of
the MEMS vector hydrophone, exhibiting excellent performance in the field of hydroacous-
tic detection [7,8]. In 2022, Zhu Shan et al. designed a noise measurement system based on
a MEMS vector hydrophone for the measurement of radiated noise from underwater ships.
The workflow of the system is presented: the raw data of signals were saved by the storage
device during the acquisition process, and the data were read by the upper computer for
the calculation of the ship’s radiated noise after acquisition. However, the main function
of the system was signal storage, rather than the real-time processing of the hardware,
especially the real-time judgment of target orientation [9]. The underwater detection system
designed in this paper is capable of signal storage and real-time processing. On the one
hand, the hardware system is internally integrated with a signal processing and orientation
estimation algorithm to determine target orientation in real time, and on the other hand,
stable and reliable raw data are stored for use in subsequent analysis.

An adaptive linear enhancer mentioned in Ref. [10] is based on the least mean squares
(LMS) algorithm to adaptively update the filter tap coefficients, showing good real-time
performance, which is favored in engineering applications [10]. This type of algorithm
is widely employed in adaptive filtering, as it continuously adjusts the filter weights to
minimize the mean squared error between the filter output and the desired output.

A variety of studies on the LMS algorithm have appeared after years of development,
and have continuously improved the effect of adaptive linear enhancement [11,12]. The
LMS algorithm has advantages of low computational complexity, good convergence in en-
vironments with smooth signals, and good stability when the algorithms are implemented
using finite step size; therefor, the LMS algorithm provides the best stability and has the
most widespread application among adaptive algorithms [13,14].

An adaptive filter applying the optimized LMS algorithm is proposed for the detection
system designed in this paper, and the DOA estimation method of a single MEMS vector
hydrophone is studied based on this adaptive filter. The method firstly performs a Fourier
transform of a section of the input signal received by the MEMS vector hydrophone to
obtain the frequency of the input signal, and then constructs a reference signal by taking the
frequency corresponding to the peak of the spectrum in the input signal as the frequency
of the reference signal. The input signal produces the output signal by the filter, which is
compared to the reference signal to form the error signal. In this paper, the parameters of
the filter are adjusted by the adaptive iterative method with the criterion of minimizing
the mean-square error of the error signal, and the filtered target signal is finally output.
This filtering method allows the filtering of signals when the statistical characteristics of the
original signal are unclear. The method in this paper is particularly applicable in bistatic
active detection, where a different reference signal can be automatically matched at the
receiving terminal when the signal frequency is changed at the transmitting terminal of the
transducer [15]. Figure 1 shows the workflow of the detection system. The red waveform
represents sound waves, the blue waveform represents electromagnetic waves, the green
dashed line represents the direct wave of sound waves, and the gray and purple dashed
lines represent the reflected waves of sound waves.
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Figure 1. Diagram of underwater target orientation detection system in operation.

The novelty and the main task of this paper are to propose the LMS adaptive signal
processing method for the miniature MEMS vector hydrophone detection system designed
in this paper and to achieve this function in a hardware system, which automatically gener-
ates a reference signal and updates the filtering parameters to filter this signal, provided
that the statistical characteristics of the original signal are not clear. In this paper, the
filtering effect under different SNRs and the DOA estimation error are simulated by analog
signal MATLAB to determine appropriate filter parameters. The standing wave tube and
reservoir experiments verify the hardware system angle real-time calculation and system
raw data storage function. The experimental results show that the system designed in
this paper and the adaptive algorithm integrated internally can realize the DOA estima-
tion under different frequencies and different SNRs, and the orientation error is less than
3◦ under the premise of the unknown statistical characteristics of the original signal. The
achievements in this paper are of great reference significance for the design of software and
hardware systems for the underwater target orientation estimation of underwater target
detection equipment, such as sonobuoys, UUVs, and AUVs.

2. Principles and Methods
2.1. Design of MEMS Detection System

The MEMS vector hydrophone target orientation detection system can save the infor-
mation detected by vector hydrophones and attitude sensors, and integrates adaptive filters
and orientation estimation algorithms in the detection system to be capable of real-time
target orientation estimation. Figure 2 shows the general structure of the detection system,
comprising a pressure-resistant compartment, a data transmission interface, and a MEMS
vector hydrophone, wherein the pressure-resistant compartment contains a circuit board, a
lithium battery, and a fixing device. The purple dashed line represents the physical diagram
of the testing system, the red dashed line represents the internal structure of the system,
and the content indicated by the arrows represents the names of the system structures
or enlarged portions of the diagram. The system adopts the low power consumption
design, and the lithium battery in the pressure-resistant chamber can ensure that the system
can operate continuously underwater for more than 20 h. In order to accurately record
underwater sound, the sampling frequency is set to 10 samples/s, and the whole channel
is equipped with a high-precision clock to realize synchronous sampling.

Figure 3 provides the complete workflow of the detection system. The output of the
three signals from the vector hydrophone are amplified and filtered by the front signal
conditioning circuit and then digitally converted by the analog to digital (AD) module. At
the same time, the attitude sensor transmits the attitude information of roll angle, pitch
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angle, and heading angle via the serial port. The data from the two sensors enter the
field-programmable gate array (FPGA) and are written to the SD card for storage via the
first in, first out (FIFO) cache, and finally read to the upper computer via the USB interface.
At the same time, FPGA carries out the online data processing, detects and filters the signals
of the received MEMS vector hydrophone data, calculates the relative angle of the target
using the orientation estimation algorithm, and finally sends the calculation results via
RS485 to complete the real-time estimation of the hardware target orientation.
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2.2. Sensing Principle of MEMS Vector-Sensitive Probe

The MEMS vector hydrophone selected for this system is a sensor that mimics the
movable cilia inside the neural mound of fish to sense the acoustic signals in the water,
which is inspired by the lateral line organs of fish. The principle of acoustic signal perception
in fish is as follows: acoustic waves make the cilia swing via the mucus, and then the sensory
cells convert the acoustic signals into biological ones, which are then transmitted to the
medulla oblongata of the fish via the efferent nerves, and the external acoustic signals can
be ultimately perceived [16]. With the features of small size, high sensitivity, and good
low-frequency response, the MEMS bionic vector hydrophone adopts a bionic column
to simulate the sensory cilia of the lateral line organ and piezoresistor to simulate the
sensory cell.

The sensor mainly consists of a chip and a transmissive cap. The transmissive mate-rial
is butyl rubber or polyurethane, filled with silicone oil. Eight equal-strain piezoresistors
are distributed on the four-beam structure by diffusion technique and connected to two
Wheatstone bridges. The distribution and connection of the piezoresistors are shown in
Figure 4. When there is no acoustic signal, the Wheatstone bridges are in equilibrium; when
there is an acoustic wave, the cilia swing leads to the deformation of the silicon cantilever
beam structure, thereby causing a change in the resistance value of the piezo-resistor,
destroying the equilibrium of the Wheatstone bridges, generating the corresponding voltage
signal, and completing the conversion from acoustic signals to electrical signals via the two
Wheatstone bridges to achieve the detection of hydroacoustic signals [2].
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Using standard MEMS processes to fabricate the hydrophone chip, Figure 5 shows the
complete process flow [17]:

(a) The wafer is subjected to acid and alkaline cleaning to remove surface organic matter,
particulate contaminants, and metal impurities. Subsequently, it is rinsed multiple
times with deionized water and dried with nitrogen to meet the cleanliness require-
ments for thermal oxidation and deposition processes on the wafer.

(b) Plasma-enhanced chemical vapor deposition (PECVD) is used to form a 20 nm thick
oxide layer on the wafer surface, aiming to reduce lattice damage and achieve electrical
isolation of the metal.

(c) The first photolithography is performed on the front side to inject B ions into the
pressure resistance region, with an injection dose of 4.0 × 1014 cm2 and an injection
energy of 80 keV. Subsequently, high-temperature annealing is conducted in a nitrogen
environment at 1050 ◦C for 120 min.

(d) The second photolithography is carried out on the front side to inject B ions into the
heavily doped region, with an injection dose of 3 × 1015 cm2 and an injection energy
of 110 keV. Then, annealing is performed at 1000 ◦C for 30 min.

(e) The third photolithography on the front side utilizes reactive ion etching (RIE) to etch
the oxide layer, exposing the heavily doped silicon region and the center position-
ing hole.

(f) The fourth photolithography on the front side involves depositing aluminum metal on
the surface using sputtering technology. Subsequently, metal patterning is achieved
using a lift-off process. Then, alloy annealing is conducted at 200 ◦C to form ohmic
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contact between the metal and the heavily doped region. At this point, the pressure
resistance structure is formed.

(g) The fifth photolithography on the front side employs RIE technology to etch the
deposited silicon oxide and device layer silicon, forming the four-beam-central
block area.

(h) The sixth photolithography on the back side employs deep reactive ion etching (DRIE)
technology to etch the back chamber. Then, the buried oxide layer is etched using
HF buffer solution (BOE) to release the four-beam-central block structure.
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The sensitivity of the vector channel of the hydrophone in this system is−175.4 dB@1 kHz
(0 dB~1 V/µPa), and the scalar sensitivity is −181 dB (20–1000 Hz) (0 dB~1 V/µPa). The
hydrophone used in this article remains consistent with the current leading level. Table 1 is a
comparison of hydrophone performance. Furthermore, the sensor boasts a gain magnitude
of 54 dB [2,18]. Figure 6 shows the test results of the sensor’s directivity at 315 Hz, and
the calibration results show that the sensor has the directivity of the two vector channels
in the shape of “8”, and the depth of concavity is more than 40 dB, with good directivity
and consistency.

Table 1. Comparison of hydrophone performance.

Designer Concavity
Depth (dB) Vector Channel Sensitivity (dB) Gain

Magnitude (dB)

Zhu et al. (2021 [2]) 30 −182.7 dB@1 kHz (0 dB~1 V/µPa) 49.5

Geng et al. (2023 [18]) 40 −180.9 dB@1 kHz (0 dB~1 V/µPa) 49.5

This Paper 40 −175.4 dB@1 kHz (0 dB~1 V/µPa) 54.0
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The sensitivity of the MEMS sensors constrains the performance of the system, as it
directly influences their capability to detect changes in environmental parameters. Lower
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sensitivity may result in a decrease in SNR, rendering them ineffective in capturing and
distinguishing subtle signal variations, thereby impacting the accuracy and stability of the
sensor. Moreover, inadequate sensitivity may limit the applicability of the testing system in
certain scenarios, particularly those requiring high-precision measurements. The sensitivity
of MEMS sensors also affects the system’s dynamic range. If sensitivity is low, it may hinder
the sensor from accurately detecting or measuring signal changes within a wide range,
thereby restricting the system’s dynamic performance. Hence, when designing testing
systems, it is crucial to consider the limitations in sensitivity to ensure that the system
meets the performance requirements of specific application scenarios.

2.3. LMS Adaptive Signal Processing Method and Improvements

The LMS algorithm is the most widely used adaptive filtering algorithm in practice,
which can be attributed to its simplicity and robustness to signal statistics [19,20].

Figure 7 gives an N-tap transversal adaptive filter. Solid line arrows indicate one-
way associations, arrows containing dashed lines and ellipses indicate omissions, and
Z−1 represents the next input. When there is a single frequency signal input, assume that
the input of the filter is x(n), the weight coefficient is w(n), define x(n) and w(n) as column
vectors, i.e.,

x(n) = [x(n) x(n − 1) · · · x(n − N − 1)]T (1)

w(n) = [w0(n) w1(n) · · ·wN−1(n)]
T (2)

where superscript T stands for transpose. Suppose the desired output of the filter is d(n),
the difference (error) is e(n), and the filter output y(n) is

y(n) =
N−1

∑
i=0

wi(n)x(n − i) (3)
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They are all assumed to be real-valued sequences. The tap weights w0(n), w1(n), . . .,
wN−1(n) are selected, so that the difference (error)

e(n) =d(n) − y(n) (4)

is minimized in some sense. The traditional LMS algorithm is a random implementation of
the steepest descent algorithm, and the iteration of the weight vector can be expressed as

w(n + 1) = w(n)− µ∇e2(n) (5)
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where µ is the algorithm step-size parameter and ∇ is the gradient operator defined as the
column vector.

∇ =

[
∂

∂ω0

∂

∂ω1
· · · ∂

∂ωN−1

]T
(6)

It is noted that the ith element of the gradient vector ∇e2(n) is

∂e2(n)
∂ωi

= 2e(n)
∂e(n)
∂ωi

(7)

Substituting Equation (4) into the last factor on the right side of Equation (7), and it is
noted that d(n) is independent of wi, we obtain

∂e2(n)
∂ωi

= −2e(n)
∂y(n)
∂ωi

(8)

Substituting y(n) in Equation (3), we obtain

∂e2(n)
∂ωi

= −2e(n)x(n − i) (9)

Using Equations (6) and (9), we obtain

∇e2(n) = −2e(n)x(n) (10)

Substituting this result in Equation (5), we obtain

w(n + 1) = w(n) + 2µe(n)x(n) (11)

This is known as LMS recursion. It is a simple procedure for recursively adapting
the filter coefficients after the arrival of each new input sample x(n) and its corresponding
desired output sample d(n). Equations (3), (4) and (11) specify, in sequence, the three steps
required to accomplish each iteration of the LMS algorithm. Equation (3) is known for
filtering to obtain the filter output. Equation (4) is used to calculate the estimation error.
Equation (11) is the tap-weight adaptive recursion [21,22].

The mean square value of the error signal is

ξ(n) = E
[
d2(n)

]
+ wT(n)E

[
x(n)xT(n)

]
w(n)− 2E

[
d(n)xT(n)

]
w(n) (12)

The adaptive linear combiner follows the criterion of minimizing the mean square
value of the error signal.

The autocorrelation matrix Rxx = E[x(n) xT(n)] of the input signal is

Rxx =

 E[x(n)x(n)] E[x(n)x(n − 1)] · · · E[x(n)x(n − L)]
E[x(n − 1)x(n)] E[x(n − 1)x(n − 1)] · · · E[x(n − 1)x(n − L)]
E[x(n − L)x(n)] E[x(n − L)x(n − 1)] · · · E[x(n − L)x(n − L)]

 (13)

The intercorrelation matrix Rxd = E[d(n) x(n)] of the desired and input signals is

Rxd = E[ d(n)x(n) d(n)x(n − 1) · · · d(n)x(n − L)] (14)

Then, the mean square error (MSE) is

ξ(n) = E
[
d2(n)

]
+ wT(n)Rxx

Tw(n)− 2Rxd
Tw(n) (15)

This shows that the MSE is a quadratic function of the weight vector w(n), which is a
parabolic surface concave in the middle, and a function with a unique minimum [23]. The
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best weight vector can be obtained by differentiating the weight coefficient of Equation (14)
through the fastest descent method, thus obtaining the minimum mean square error as
shown in Equation (16), wherein wopt = Rxx

−1 Rxd.

ξ(n)min = E
[
d2(n)

]
− Rxd

Twopt (16)

With the noise reference signal unknown, to effectively handle target frequency signals,
we employed a method called inverse extraction. Specifically, we first performed a Fast
Fourier Transform (FFT) on the input signal. This step allowed us to convert the signal
from the time domain to the frequency domain, enabling us to observe the distribution of
the signal across different frequencies. Upon confirming the signal frequency through FFT,
in the spectrum plot, we selected the frequency with the highest peak, identifying it as the
frequency of the target signal, and retained the main frequency component for Inverse Fast
Fourier Transform (IFFT), thereby generating a reference signal.

Next, we multiplied the constructed reference signal by a specific filter weighting
coefficient (denoted as w(n)), generating an output signal. The disparity between this
output signal and the original input signal still represents the presence of noise, which is
the error signal we aimed to eliminate. To minimize this error as much as possible, we need
to engage in an iterative process, continuously adjusting the filter weighting coefficients to
make the output signal closer to the target signal. This adjustment process is based on the
principle of minimizing error, meaning we strive to make the disparity between the output
signal and the target signal as small as possible.

Through such steps, we ultimately succeeded in extracting the target signal, accom-
plishing the precise extraction and separation task of signals. This process is elaborately
illustrated in Figure 8, enabling readers to gain a clearer understanding of the methodology
we adopted and its specific implementation steps. The symbols in this figure have the same
meanings as those in Figure 7.
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This method is equivalent to considering the target signal at a fixed frequency as the
input signal and the original input signal as the noise reference signal; the output signal
at this point is the product of the weight coefficients and the desired signal after multiple
iterations. This is advantageous since when the target signal is sinusoidal, especially in
bistatic or multi-base active detection, a reference signal can be automatically generated
that is valid for sensors with different frequency responses, without updating the reference
signal each time. The adaptive filter has advantages such as a simple algorithm, easy
implementation, low complexity of the algorithm, and the ability to suppress the side-
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lobe interference. However, there is also the drawback of slow convergence. The filter
coefficients are updated in a point-by-point manner; thus, if the input signals are correlated,
it would lead to the transmission of the gradient noise generated in the previous iteration
to the next iteration, resulting in repeated transmission of the error, slower convergence,
and poorer tracking performance. Moreover, another feature of the algorithm is equally
important from the perspective of implementation, that is, its stable and robust performance
under different signal conditions. In the following section, the simulation is carried out for
input signals with different SNRs for different step sizes and different numbers of snapshots.

The step size µ is a physical quantity characterizing the iteration speed. It can be seen
from the LMS algorithm that the larger the quantity is, the shorter the adaptive duration
is, the faster the adaptive process is, but the greater the misalignment it causes. When
it is larger than 1/λmax, the system disperses, whereas the smaller the value is, the more
stable the system is, and the smaller the misalignment is, but the adaptive process is
also correspondingly prolonged, λmax is the maximum eigenvalue of Rxx. Therefore, the
selection of the step size µ should be based on the requirements of the entire system, and the
adaptive duration should be minimized while meeting the accuracy requirements. In order
to test the filtering performance of the method proposed in this paper under the conditions
of small number of snapshots and low SNR, and to provide some recommendations for
the selection of parameters, the following three simulations were designed to analyze and
visualize the features of the method in this paper. The SNR and the RMSE (root mean
square error) of the filtered signal are used in the simulation as the criteria for the filtering
effect: the higher the SNR and the smaller the RMSE of the output signal are, the higher is
the quality of the recovered signal.

Simulation 1: Gaussian white noise with different power was superimposed on
the original sinusoidal signal x = sin(2 × pi × 300 × t), the noise power was −10 dB,
−5 dB, 0 dB, 5 dB, and 10 dB, and the number of snapshots was N = 3000, SNR, RMSE.
The convergence times of the output signal with the time step µ of 1/64, 1/128, 1/256, and
1/512, respectively, were simulated by MATLAB, and the experimental results are shown
in Figure 9. The results show that the SNR of the output signal is higher and can be stabi-
lized, the RMSE is lower and stabilized, and the convergence time is faster when the time
step µ = 1/256.
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Simulation 2: Gaussian white noise with different power was superimposed on the
original sinusoidal signal x = sin(2 × pi × 300 × t), and the noise power was −10 dB, −5 dB,
0 dB, 5 dB, and 10 dB, respectively, and the time step µ = 1/256, SNR, and RMSE of the output
signal when the number of snapshots was 1000, 2000, 3000, 4000, and 5000, respectively, were
simulated by MATLAB R2018b. The experimental results are shown in Figure 10. The results
show that the larger the number of snapshots, the larger the SNR and the smaller the RMSE
of the output signal, when the number of snapshots, N, is greater than or equal to 3000, the
output signal has a higher SNR and a lower RMSE, and both of them can keep stable with
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the increasing noise power of the input signal.Simulation 3: Gaussian white noise of −10 dB
was superimposed on the original sinusoidal signal x = sin(2 × pi × 300 × t). According to
the simulation results of Simulation 1 and 2 above, the number of snapshots N = 3000 and
the time step µ = 1/256 were selected, and the output results of the input signals after this
paper’s adaptive filter were simulated by MATLAB. Figure 11 shows the time-domain and
spectrograms of the original input signal, output signal, and error signal, respectively. It can be
clearly observed that the original signals have better recovery effect after this paper’s method
at lower noise power. By virtue of the analysis in this section, it can be known that when the
parameters are selected randomly, it may cause low SNR and large RMSE of the output signal,
further reducing the signal recovery effect. Thus, the time step µ = 1/256 and the number of
snapshots N = 3000 were selected in the subsequent data processing and hardware real-time
processing procedures.
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2.4. DOA Estimation and Simulation

The average sound intensity method involves integrating the acoustic pressure after
multiplying it with the vibration velocity, and then calculating the angle according to the
formula. The average sound intensity flow Ix, Iy, respectively, is

Ix = p(t)vx(t) = x2(t) cos θ + np(t)nx(t) + np(t)x(t) cos θ + nx(t)x(t) (17)

Iy = p(t)vy(t) = x2(t) sin θ + np(t)ny(t) + np(t)x(t) sin θ + nx(t)x(t) (18)

np(t), nx(t), ny(t) and x(t) can be neglected at high signal-to-noise ratios since they are
independent of each other. Only the first term in Equations (17) and (18) is dominant and
can be simplified as
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Ix = p(t)vx(t) = x2(t) cos θ + np(t)nx(t) + ∆x (19)

Iy = p(t)vy(t) = x2(t) sin θ + np(t)ny(t) + ∆y (20)

where ∆x and ∆y are extremely small values that can be ignored. Hence, the horizontal
azimuth angle θ of the acoustic source can be estimated using Equation (21).

θ̂ = arctan
p(t)vy(t)

p(t)vx(t)
(21)

Beam forming is a method of determining the spatial directivity by weighting and
processing the signals of each channel using the “8”-shaped dipole directivity of the
vector hydrophone. The three channels of acoustic field information collected by the
hydrophone were weighted and summed, the vibration velocity signals in x and y directions
were multiplied by the weighted amount of cosα and sinα, and the weighted amount of
acoustic pressure signals was 1. It can focus the receiving direction of the hydrophone on a
direction that is equivalent to the beam. Rotating the beam to find the maximum peak is
target orientation [24–26].

The directivity of the combination of physical quantities can be characterized by taking the
vibration velocity and acoustic pressure signals as an example. The acoustic pressure channel is
omnidirectional, and the vibration velocity channel has an “8”-shaped directivity, which causes
two angles of the target with a 180◦ difference in the estimation of the azimuth angle, and the
true orientation of the target cannot be determined. By different weighted combinations of the
acoustic pressure and the vibration velocity, the form of a unipolar directivity can be created.
Two mutually orthogonal vibrational velocity components were weighted to generate a new
form of vibrational velocity combination (Equation (22)). Take the following four representative
combinations as an example: vc(t), vc(t) × vc(t), (p(t) + vc(t))2, p(t) + vc(t) × vc(t), the directivity
is expressed as in Equations (22)–(25):

vc(t) = vx(t) cos φ + vy(t) sin φ = v(t) cos(θ − φ) (22)

vc(t) · vc(t) = v2(t) cos2(θ − φ) (23)

(p(t) + vc(t))
2 = (1 + cos(θ − φ))2x2(t) (24)

(p(t) + vc(t)) · vc(t) = (1 + cos(θ − φ)) · cos(θ − φ) · x2(t) (25)

In the above equations, vc(t) shows “8”-shaped directivity, vc(t) × vc(t) represents narrow
splayed directivity, (p(t) + vc(t))2 represents heart-shaped directivity, and p(t) + vc(t) × vc(t)
represents tadpole-shaped directivity. The first two combinations have bi-lateral directionality,
which can cause blurring in the port and starboard, while the latter two combinations present
unipolar characteristics to suppress the anisotropic noise interference that is opposite to the
target direction. In this paper, the combination of (p(t) + vc(t)) × vc(t) was adopted as the beam
forming algorithm [27–29].

In this paper, the DOA estimation results at different SNRs were simulated. The input
signal frequency was 300 Hz, the original input signal was x = sin(2 × pi × 300 × t), the
input angle was 60◦, the number of samples was 3000, and the DOA estimation simulation
was performed for 100 times after adding the noises with SNRs of 10 dB, 5 dB, 0 dB, −5 dB,
−10 dB. The results of 5000 Monte Carlo simulations are shown in Figure 12. The DOA
estimation results show Gaussian distribution. The estimated mean, standard deviation,
and their respective confidence intervals (CI) are shown in Table 2 where the error in the
mean value of the DOA estimation is less than 1◦, and that in the CI is less than 3◦. The
simulation results show that the method is still effective for DOA estimation at a low SNR.
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Table 2. DOA estimation AVG, Sigma, and CI under different SNR.

SNR/dB AVG/◦ CI/◦ Sigma CI

−10 59.2259 [57.2809 61.1611] 9.7572 [8.5630 11.3295]

−5 60.0736 [59.5117 60.6351] 2.8307 [2.4854 3.7884]

0 59.9980 [59.8002 60.1958] 0.9968 [0.8752 1.1580]

5 60.0667 [59.9689 60.1644] 0.4925 [0.4324 0.5721]

10 59.9851 [59.9356 60.0346] 0.2494 [0.2190 0.2897]

3. Experiment
3.1. Indoor Experiment

After the hardware circuits for the main aspects of acquisition and storage, optimized
LMS adaptive filtering, and real-time computation of target orientation angle are designed,
the system functionality is firstly verified in the laboratory. Figure 13 shows the sensor
calibration and indoor test equipment. The experiments for sensitivity calibration and
angle real-time output of the MEMS vector hydrophone are performed in the standing
wave tube. The main equipment used in the experiments include: standing wave tube,
signal generator, power amplifier, gyroscope, and test system. The standard hydrophone is
used as a reference for sensor calibration, the sensitivity of the hydrophone used in this
experiment is −175 dB@1 kHz measured by the comparative calibration method, and the
vector channel had good directivity, which meets the conditions of the angle real-time test.
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The test procedures are as follows: the hydrophone is suspended on the gyroscope,
the sensor is lowered to the standing wave tube 46 cm from the acoustic source by the
control system, a sinusoidal signal with a signal frequency of 210 Hz is emitted via the
signal generator, and Gaussian white noise with an SNR of −10 dB is added to simulate the
environment with large noise. At the same time, the gyroscope is rotated by a certain angle
to change the angle of the acoustic source relative to the sensor, the angular value of the
acoustic source detected by the sensor is output by the test system, and the rotational speed
of the gyroscope is set to 80◦/min. The sensor receives the acoustic signal at a rate of 10 k/s,
the number of snapshots for the LMS filter as well as the average sound intensity algorithm
to calculate the angle in the FPGA is set to 3000, and the real-time calculation of the angle is
output via the serial assistant after starting the acquisition. After the test, data with a time
length of 83 s are generated. The test results and the real value of the angle are compared
and analyzed. Figure 14 provides the comparison of the angle output results, where the
blue trajectory shows the angle real-time output result after the designed method in this
paper, the red trajectory shows real change range of the angle of the acoustic source relative
to the sensor, which is −63 to −178◦. The two angle change trajectories are close to each
other. The indoor test results show that the detection system has the function of real-time
angle output, and the angle estimation error is less than 3◦ when the noise is large.
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3.2. Field Experiment

The functions of the detection system are verified at a reservoir. Figure 15 shows the
reservoir as the experimental site, the red annotations denote the names of the devices,
with arrows indicating the magnified images of the equipment, while the purple boxes
highlight the zoomed-in sections. The moving trajectory of the acoustic source vessel in the
reservoir is detected by an underwater target orientation estimation MEMS hydroacoustic
detection system. The system is suspended from the perimeter of the survey vessel, and
the acoustic source vessel carries a fish-lip sounding transducer as a moving target. The
experimental process is as follows: The target orientation estimation detection system is
activated by the upper computer, and descends at a depth of 5 m underwater. When the
acoustic source vessel arrives at a position about 70 m away from the receiving equipment,
it gradually moves away from the detection system until the relative distance is 375 m, and
transmits a 315 Hz sinusoidal signal while moving. The position of the survey vessel and
the movement trajectory of the sound source vessel are recorded separately by a GPS logger,
and the precise distance between the acoustic source vessel and the detection system is
obtained by converting the position information of the two GPS locators.
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Figure 16a shows the satellite map of the experimental site, where A representing the
initial position of the trajectory, B representing the final position of the trajectory, and star
symbol indicating the positions of the test system. The target ship travels from point A to
point B, and at the same time, the trajectory of the acoustic source movement is derived by
the GPS locator installed on the target ship (as in Figure 16b) and the angular change curve
of the target ship relative to the detection system is calculated and shown in Figure 16c.
The GPS recording results show that the acoustic source vessel moves from the position
26 m away from the detection system to the position 86 m away, the average speed of the
acoustic source ship is about 3 km/h, and the faster speed in the first 20 s is about 4 km/h.
The angle changes within the range of 180.7–159.4◦, and the angle span is 21.3◦.
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trajectory; (c) angle change curve.

The target orientation information collected by the detection system is analyzed and
processed to generate a data segment with a length of 74 s during the movement of the target
ship. Firstly, the angle calculation results are analyzed by MATLAB, and the beamforming
algorithm is used to calculate the moving trajectory of the acoustic source. Figure 17a
shows the trajectory calculation results. It can be seen that the angle estimation error is
large. The raw data are first calculated by the adaptive LMS filtering algorithm designed
in this paper which then calculates the acoustic source moving trajectory by using the
beamforming algorithm. Figure 17b shows the angle calculation results after filtering. It
is clear that the angle estimation error is reduced, and there is a tremendous reduction in
RMSE from 6.3890 to 2.4387 when compared to the angle obtained from the conversion of
the GPS locator. In addition, the raw data recorded according to the system were input into
Vivado 2018.3 for the optimized LMS adaptive filtering method as well as the simulation of
the target orientation estimation algorithm, and the angular change is obtained as shown in
Figure 18. The change interval is 181.6–161.4◦, the angular change range is 20.2◦, and RMSE
is 2.6418 when compared to the actual angle. The results show that the MEMS underwater
target orientation detection system can stably record the original signals for a long time
and the recording results are reliable. In addition, the simulation of real-time hardware
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processing of raw data shows that the system is capable of real-time angle processing, and
the output results are accurate and reliable.
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Currently, Zhu Shan et al. have devised and executed a MEMS-based vector hy-
drophone system for underwater acoustic signal acquisition and storage, achieving a
commendable standard [30]. They demonstrate the capability of precisely determining
target orientations based on gathered signals. Through experimentation on DOA estimation
at five distinct fixed locations, they have validated the DOA estimation proficiency of the
self-contained acquisition system’s data collection and the amalgamated beamforming
algorithm utilized. The maximum estimation discrepancy across different positions is de-
lineated at 4.23◦. Our equipment, compared to that of Zhu Shan et al., exhibits a maximum
target estimation error of 3.1◦, representing a reduction in estimation error of 1.13◦. Notably,
by embedding angle estimation and the improved LMS filtering method into the hardware
system, obviating the need for post-processing raw data through a host computer, we not
only enhance the directional precision but also eliminate the necessity for traditional host
computer calculations, thus streamlining the data processing workflow. Additionally, the
method of real-time outputting target angles instead of raw data significantly simplifies
the demand for real-time data processing in subsequent applications, providing a basis for
the precise real-time monitoring of the testing system. This innovation not only saves time
and resources but also enhances system responsiveness, enabling users to swiftly acquire
required information and make corresponding decisions.
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4. Conclusions

A detection system for real-time estimation of underwater target orientation is pre-
sented in this paper. The MEMS vector sensors are applied to miniaturized marine target
detection system for the first time, which greatly reduces the cost, power consumption, and
volume of the detection system. The detection system can reliably store the original signal
of the MEMS vector hydrophone in the internal SD card, such that the system is equipped
with the monitoring and detection functions. Moreover, the adaptive signal processing and
DOA estimation algorithm are integrated into the system, the simulation and experimental
results in both indoor and reservoir show that this method can realize the real-time estima-
tion of target orientation, and the estimation error is less than 3◦. In this way, the method
in this paper and the test results are of great significance for the estimation of marine target
orientation. In conclusion, the MEMS marine target detection system proposed in this
paper has unique features of low cost, small size, and high detection accuracy, becoming a
miniaturized underwater target orientation estimation system representing good value for
money. It has broad application prospects in the field of marine detection. Although the
detection system is equipped with the functions of storage and real-time calculation, it is
still necessary to transmit the real-time processing results to the upper computer via data
lines. Therefore, integrating a wireless module into the system to communicate with the
upper computer will be the focus of our future work.
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