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Abstract: To obtain precise positional information, in this study, we propose an adaptive expectation–
maximization (EM)-based Kalman filter (KF)/finite impulse response (FIR) integrated filter for inertial
navigation system (INS)-based posture capture of human upper limbs. Initially, a data fusion model
for wrist and elbow position is developed. Subsequently, the Mahalanobis distance is utilized to
evaluate the performance of the filter. The integrated filter employs the EM-based KF to enhance
noise estimation accuracy when the performance of KF declines. Conversely, upon deterioration
in the performance of the EM-based KF, which is evaluated using the Mahalanobis distance, the FIR
filter is employed to maintain the effectiveness of the data fusion filter. This research utilizes the
proposed EM-based KF/FIR integrated filter to ascertain wrist and elbow positions. The empirical
results demonstrate the proficiency of the proposed approach in estimating these positions, thereby
overcoming the challenge and highlighting its inherent effectiveness.

Keywords: INS; FIR; human upper limbs motion capture

1. Introduction

Recently, the number of patients with motor function injuries has been increasing
every year, posing significant challenges to their lives and their families [1,2]. Rehabilitation
training is crucial for these patients to help them overcome these challenges as soon as
possible. The accurate implementation of rehabilitation training has emerged as a focal
research area in medical rehabilitation and training equipment domains. In the equipment
domain and with advancements in science and technology, the precise acquisition of human
joint positions has gradually become a new research hotspot. In particular, visual posture
capture and inertial navigation system (INS)-based posture capture are the prevalent exam-
ples. For instance, ref. [3] detailed the use of motion capture sensors for acquiring human
motion data, which are subsequently processed in accordance with relevant data formats.
Ref. [4] reported a 3-D tracking of upper limb movement by using two inertial sensor
systems. Additionally, the scheme for upper limb motion monitoring in neurorehabilitation
utilizing low-cost inertial sensors such as those found in Sony Move, Nintendo Wii (Wii
Remote with Wii MotionPlus), and smartphones has been developed [5]. Ref. [6] employed
two wearable inertial sensors that are placed near the wrist and elbow joints to measure the
human motion of the upper limbs. Research on video-recognition-based virtual reality for
three-dimensional human motion pose capture, as discussed in [7,8], reported favorable
results in accurately capturing and recognizing dual-category human motion gestures.
Ref. [9] presented a refined technique for reconstructing accurate motion from partially
captured and noisy postures using Kinect, with experiments demonstrating significant
accuracy of posture recognition under severe occlusion conditions. Ref. [10] proposed a
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computer vision algorithm for automatic construction of a human body skeleton model,
employing a method that segments the body into primary components by calculating the
curvature of a B-spline parameterized human contour. This approach effectively addressed
the complex issue of initialization in a vision-based markerless motion capture system
for the human body. Investigations into wearable sensor methodologies for assessing
lower limb motion are reported in [11,12], guiding a novel, self-contained, and universally
adaptable system capable of consistent tracking of human lower limbs without substantial
differences. Ref. [13] reported an innovative wearable sensor system developed utilizing
a commercial system-in-package with inertial and magnetic sensors. Further, Ref. [14]
reported a new algorithm for filtering foot motion and estimating foot kinematics during
normal walking using inertial and magnetic sensors in relation to an earth-fixed reference
frame. Lastly, Refs. [15,16] discussed a monitoring system based on inertial sensors for
measuring and tracking upper limb movement in humans utilizing two wearable inertial
sensors positioned close to the wrist and elbow joints.

Employing the Kalman filter (KF) effectively mitigates measurement drift, demon-
strating commendable accuracy and reliability. A novel algorithm for motion tracking
has been developed by fusing data from two wearable inertial sensors positioned near
the wrist and elbow joints. Empirical findings showcased that the algorithm exhibited
proficiency in achieving unwavering motion tracking of human arms over a 45 s duration
being devoid of any perceptible measurement drifts [17]. Despite the capabilities of the
aforementioned measurement methods for human motion capture, they suffer from many
limitations. The INS-based method is also prone to error accumulation, and visual solutions
encounter recognition challenges in scenarios in which limbs intersect. Employed with the
equipment, data fusion filters have shown potential in improving localization precision [18].
A prominent example of such filters is the KF, which has been the subject of numerous
fusion efforts [19]. In [20], a novel approach involving the utilization of a predictive quater-
nion KF is reported for continuous wireless tracking of lower limb posture of humans,
effectively overcoming wireless communication outages. In addition, Ref. [21] reported a
robust KF by deriving robust estimators for Kalman filtering that incorporate constraints
on state parameters by leveraging the principles of the generalized maximum likelihood
Lagrangian condition. Simulation results and semiphysical trials revealed the efficacy of an
adaptive KF in improving in the accuracy of state variable estimation. Ref. [22] introduced
a novel expectation–maximization (EM) algorithm with guaranteed convergence to derive
the maximum likelihood estimator (MLE) solution. Furthermore, Ref. [23] discussed the
sigma-point update of a cubature KF of the Global Navigation Satellite System (GNSS)/INS
integrated environment. Notably, the discussed KF-based methods require an accurate
data fusion model and a comprehensive noise description, which is hard to achieve in
practice [24].

To surmount this obstacle, the implementation of a finite impulse response (FIR) filter
is proposed. In [25], an improved FIR filter was proposed for ultrawide-band (UWB) local-
ization, integrating the FIR filter with a predictive model and extreme learning machine
(ELM) to enhance the accuracy of UWB-based localization. Ref. [26] introduced an im-
proved iterative FIR state estimator. Although the FIR filter showed increased robustness,
its localization accuracy may not surpass that of KF when the KF model is precise. The
increasing prevalence of motor function injuries significantly impacts the lives of patients
and their families. Thus, accurate implementation of rehabilitation training for patients
has become increasingly central in research in this field. This study introduces an adaptive
EM-based KF/FIR integrated filter for INS-based posture capture of human upper limbs.
Initially, a data fusion model for the wrist and elbow positions is developed. The Maha-
lanobis distance is then employed to assess the performance of the filter. In the integrated
filter, when the performance of KF deteriorates, the EM-based KF is utilized to improve the
noise estimation accuracy. Subsequently, the Mahalanobis distance is used to evaluate the
performance of the EM-based KF. Upon further decline in the performance of the EM-based
KF, the FIR filter is employed to maintain the effectiveness of the data fusion filter. This
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research employs the proposed EM-based KF/FIR integrated filter for measuring the wrist
and elbow positions. Empirical results demonstrate the effectiveness of the method in
providing accurate position estimations of its capacity to overcome the challenge. This
study contributes significantly in the following areas:

• An INS-based motion model for human upper limbs is formulated, focusing on the
wrist and elbow positions. The state vector comprises their position and velocity in
the East–North–Up frame. Further, IMU-measured positions are employed as the
input. The output of the two data fusion filters are used to determine the posture of
human upper limbs.

• A EM-based KF/FIR integrated filtering method is designed. It leverages the INS-
based motion model of human upper limbs, using KF to estimate wrist and elbow
positions from INS-based measurements. The Mahalanobis distance is used to evaluate
the performance of the filter, employing the EM-based method and subsequently the
FIR filter as the performance of KF deteriorates.

• Experimental results affirm the superior performance of the proposed algorithms
compared to traditional counterparts. A real-world test using two IMUs for INS-based
wrist and elbow position measurements and Kinect 2.0 used to provide reference
values demonstrate the effectiveness of the proposed EM-based KF/FIR integrated
filter over traditional KF and FIR filters.

The remaining sections of this paper are organized as follows: Section 2 delves into
posture capture of human upper limbs based on INS. Section 3 details the design of the
EM-based KF/FIR filter used for capturing motion of human upper limbs. Section 4
summarizes experimental tests, and conclusions are presented in Section 5.

2. INS-Based Posture Capture of Human Upper Limbs

This section outlines the model design for capturing human upper limb motion using
an INS-based posture capture scheme, as depicted in Figure 1. As seen in the figure, two
IMUs are affixed between the joints to measure the attitudes of the humerus and radius
using accelerometer and gyroscope data from the devices. Initially, the shoulder’s position
P0,k at the time index k is obtained. The IMU then computes the attitude transfer matrix
T 1

0,k from P0,k to the elbow position P1,k, which is calculated using the following equation:

k

k

k

l

l

Figure 1. INS-based posture capture of human upper limbs using the EM-based KF/FIR filter.

Po1,k = Po0,k + l1T 1
0,k , (1)

where T 1
0,k = T 1

n,kT
n

0,k. Employing Po1,k and T 2
1,k measured by IMU 2, the wrist position

Po2,k is computed as follows:
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Po2,k = Po1,k + l2T 2
1,k , (2)

where T 2
1,k = T 2

n,kT
n

1,k. In this study, the measurements P̂o1,k and P̂o2,k were utilized by
the EM-based KF/FIR filters 1 and 2, respectively, the design of which is elucidated in
the subsequent section. The outputs from these filters are input to the motion capture
calculations for upper limbs.

3. EM-Based KF/FIR Filter for Position Estimation

In this section, we articulate the method for position estimation based on the EM-based
KF/FIR filter, as illustrated in Figure 1. Initially, the data fusion model is discussed. This is
followed by a brief introduction of the EM-based KF and FIR filters. Finally, the principle
of the EM-based KF/FIR filter is expounded for INS-based posture capture.

3.1. Data Fusion Model

Based on the scheme shown in Figure 1, a dual-data-fusion model is requisite for the
dual-data-fusion filter. The state equation for the ith EM-based KF/FIR filter is expressed
as follows: 

xi−
k

vxi−
k

yi−
k

vyi−
k

zi−
k

vzi−
k


︸ ︷︷ ︸

Li−
k

=



1 ∆k 0 0 0 0
0 1 0 0 0 0
0 0 1 ∆k 0 0
0 0 0 1 0 0
0 0 0 0 1 ∆k
0 0 0 0 0 1


︸ ︷︷ ︸

T



xi
k

vxi
k

yi
k

vyi
k

zi
k

vzi
k


︸ ︷︷ ︸

Li
k

+wi
k , (3)

where i denotes the elbow (i = 1) and wrist (i = 2), Poi,k =
(
xi

k, yi
k, zi

k
)T is the elbow’s

or wrist’s position, Veli,k =
(
vxi

k, vyi
k, vzi

k
)T is the elbow’s or wrist’s velocity, ∆k is the

sampling time, and wi
k ∼ N (0, Q) is the system noise.

Poi,k =

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0


︸ ︷︷ ︸

H

Li−
k + vi

k , (4)

where vi
k ∼ N (0, R) is the measurement noise.

3.2. EM-Based KF

Based on the model (1) and (2), the kF can be calculated using the following equations:
First, one-step prediction is performed.

Li−
k = TLi

k + wi
k , (5)

Pi−
k = TPi

kTT + Q , (6)

Then, with the measurement Pi,k, KF employs the following equations:

Ki
k = Pi−

k HT
(

HPi−
k HT + R

)−1
, (7)

Li
k = Li−

k + Ki
k

(
Poi,k − HLi−

k

)
, (8)

Pi
k =

(
I − Ki

kH
)

Pi−
k

(
I − Ki

kH
)T

+Ki
kR

(
Ki

k

)T
, (9)
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The KF algorithm based on the model (1) and (2) is can be found in Algorithm 1 below:

Algorithm 1: KF method for the model (1) and (2)

Data: Pi,k, Li
0, Pi

0, Q, R
Result: Li

k, Pi
k

1 begin
2 for k = 1 : ∞ do
3 Li−

k = TLi
k + wi

k;
4 P−

k = TPkTT + Q;

5 Ki
k = Pi−

k HT
(

HPi−
k HT + R

)−1
;

6 Li
k = Li−

k + Ki
k

(
Poi,k − HLi−

k

)
;

7 Pi
k =

(
I − Ki

kH
)
Pi−

k ;
8 end for
9 end

Note that the KF method depends on the accuracy of the model, which is hard to achieve
in practice. To enhance the robustness of data fusion methods, the EM-based KF has been

proposed [27]. This method employs the joint log-likelihood function gαk

(
Li

k, Poi,1:k−1
) ∆
=

logpαk

(
Li

k, Poi,1:k−1
)

as the minimum variance estimate f
(

αk, α
(l)
k

)
:

gαk

(
Li

k, Poi,1:k−1
)
≈ f

(
αk, α

(l)
k

)
∆
= E

(
gαk

(
Li

k, Poi,1:k−1
)
|α(l)k , Poi,1:k

)
=

∫
logpαk

(
Li

k, Poi,1:k
)

p
α
(l)
k

(
Li

k|Poi,1:k
)
dLi

k
, (10)

This EM-based KF method involves an expectation step (E-step) and a maximization
step (M-step). For the E-step, we can obtain the following equation:

pαk

(
Li

k, Poi,1:k
)
= pαk

(
Poi,k|Li

k, Poi,1:k
)

pαk

(
Li

k|Poi,1:k−1
)

p(Poi,1:k−1)
= pαk

(
Poi,k|Li

k
)

pαk

(
Li

k|Poi,1:k−1
)

p(Poi,1:k−1)
, (11)

Based on the KF method presented as Algorithm 1, we can obtain

pαk

(
Li

k|Poi,1:k−1

)
= N

(
Li−

k , Pi−
k

)
, (12)

pαk (Poi,k|Poi,1:k−1) = N
(

HLi−
k , Rk

)
, (13)

Employing Equations (11)–(13), we obtain the joint log-likelihood function as follows:

log pαk

(
Li

k, Poi,1:k−1
)
= − 1

2 log|Rk| − 1
2

(
Poi,k − HLi−

k

)
R−1

k

(
Poi,k − HLi−

k

)T

− 1
2

(
Li

k − Li−
k

)T(
Pi−

k

)−1(
Li

k − Li−
k

)
+ Oαk

, (14)

where the Oαk denotes a constant. Here, we can compute the posterior probability density

function (PDF) p
α
(l)
k

(
Li

k|Poi,1:k
)

via a small lth step iteration of Li(l)
k and Pi(l)

k . Thus, we can

determine that

p
α
(l)
k

(
Li

k|Poi,1:k

)
= N

(
Li(l)

k , Pi(l)
k

)
, (15)

Finally, substituting (15) in (10), we obtain:

f
(

αk, α
(l)
k

)
= −1

2
log|Rk| −

1
2

tr
(

Ω1,kR−1
k

)
− 1

2
log

∣∣∣Pi−
k

∣∣∣− 1
2

tr
(

Ω2,k

(
Pi−

k

)−1
)
+ Oαk , (16)

Here,
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Ω1,k =
∫ (

Poi,k − HLi(l)
k

)(
Poi,k − HLi(l)

k

)T
N

(
Li(l)

k , Pi(l)
k

)
dLi

k

=
(

Poi,k − HLi−(l+1)
k

)(
Poi,k − HLi−(l+1)

k

)T
+ HPi(l+1)

k HT
, (17)

Ω2,k =
∫ (

Li
k − Li−

k

)(
Li

k − Li−
k

)T
N
(

Li(l)
k , Pi(l)

k

)
dLi

k = Pi(l)
k +

(
Li(l)

k − Li−
k

)(
Li(l)

k − Li−
k

)T
, (18)

To the M-step, we can compute the following equation.

∂ f
(

αk, α
(l)
k

)
∂Pi−

k

= 0,
∂ f

(
αk, α

(l)
k

)
∂Ri

k
= 0 , (19)

From (19), we obtain

∂ f
(

αk, α
(l)
k

)
∂Pi−

k

= −1
2

(
Pi−(l+1)

k

)−1
+

1
2

(
Pi−(l+1)

k

)−1
Ω1,k

(
Pi−(l+1)

k

)−1
=0 , (20)

∂ f
(

αk, α
(l)
k

)
∂Ri

k
= −1

2

(
Ri(l+1)

k

)−1
+

1
2

(
Ri(l+1)

k

)−1
Ω2,k

(
Ri(l+1)

k

)−1
=0 , (21)

Thus, we obtain

Ω1,k=Pi−(l+1)
k , (22)

Ω2,k=Ri(l+1)
k , (23)

Thus, we obtain Algorithm 2:

Algorithm 2: EM-based KF method for the model (1) and (2)

Data: Pi,k, Li
0, Pi

0, Q, R, NEM
Result: Li

k, Pi
k

1 begin
2 for k = 1 : ∞ do
3 Li−

k = TLi
k + wi

k;
4 P−

k = TPkTT + Q;

5 L̄i−(0)
k = Li−

k ;

6 P̄i−(0)
k = P−

k ;
7 for j = 0 : NEM − 1 do

8 Ki(j+1)
k = P̄i−(j)

k HT
(

HP̄i−(j)
k HT + Ri(j))

)−1
;

9 L̄i(j+1)
k = L̄i−(j)

k + Ki(j)
k

(
Poi,k − HL̄i−(j)

k

)
;

10 P̄i(j+1)
k =

(
I − Ki(j)

k H
)

P̄i−(j)
k ;

11 Ri(j+1)
k =

(
Poi,k − HL̄i−(l+1)

k

)(
Poi,k − HL̄i−(l+1)

k

)T
+ HP̄i(l+1)

k HT ;

12 P̄i−(j+1)
k =

(
Poi,k − HL̄i−(l+1)

k

)(
Poi,k − HL̄i−(l+1)

k

)T
+ HP̄i(l+1)

k HT ;

13 end for

14 Li
k = L̄i(NEM)

k ;

15 Pi
k = P̄i(NEM)

k ;

16 Pi−
k = P̄i−(NEM))

k ;

17 Ri
k = Ri(NEM)

k ;
18 end for
19 end
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3.3. FIR Filter

From Algorithm 1, we see that the capability of KF to provide estimations is contingent
upon the accuracy of the underlying model, which is often difficult to achieve. To this end,
a solution involving the FIR filter has been proposed in [28]. In this study, based on the
models (1) and (2), we perform data fusion using the FIR filter and recent measurements
from the time index k − NFIR + 1 to k. Here, NFIR denotes the filtering window size, and j
indicates the iteration number of the FIR filter. This one-step prediction of the FIR filter can
be computed by the following equation:

Li−
j = TLi

j , (24)

Pi−
j = TPi

jT
T + Q , (25)

Thereafter, the measurement update can be performed as follows:

Ki
j =

(
HHT +

(
THTT

)−1
)−1

H , (26)

Li
j = Li−

j + Ki
j

(
Poi,j − HLi−

j

)
, (27)

Pi
j =

(
I − Ki

jH
)

Pi−
j

(
I − Ki

jH
)T

+Ki
jR

(
Ki

j

)T
, (28)

Thus, we obtain the FIR method for the models (1) and (2) presented as Algorithm 3.

Algorithm 3: FIR method for the model (1) and (2)

Data: Poi,k, Li
0, Pi

0, Q, R, NFIR, MFIR
Result: Li

k, Pi
k

1 begin
2 for k = NFIR − 1 : ∞ do
3 m1 = k − NFIR + 1;
4 m2 = MFIR + NFIR − 1;
5 for j = m2 + 1 : k do
6 Li−

j = TLi
j;

7 Pi−
j = TPi

jT
T + Q;

8 Ki
j =

(
HHT +

(
THTT)−1

)−1
H;

9 Li
j = Li−

j + Ki
j

(
Poi,j − HLi−

j

)
;

10 Pi
j =

(
I − Ki

jH
)

Pi−
j ;

11 end for
12 end for
13 end
14 † MFIR is Li

j ’s size
15 † NFIR is filtering size

3.4. EM-Based Kf/FIR Integrated Filter

This section outlines the design of the EM-based KF/FIR integrated filter, incorporating
the previously mentioned EM-based KF and FIR filters. The performance of the subfilters
in this study is evaluated using the Mahalanobis distance. In the operation of the proposed
EM-based KF/FIR integrated filter, the initial step involves one-step prediction by KF,
as expressed in Equations (5) and (6). Subsequently, the Mahalanobis distance is computed
as per the following equation:
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Dk =
(

Poi,k − HLi−
k

)T
R−1

k

(
Poi,k − HLi−

k

)
, (29)

If Dk < threshold1, the measurement is updated via Equations (7)–(9). Otherwise, we
first set L̄i−(0)

k = Li−
k and P̄i−(0)

k = Pi−
k and then perform the iterations listed in lines 8–12

in Algorithm 2. The second Mahalanobis distance is then computed using Equation (29).
If Dk < threshold2, the EM-based KF operates normally; if Dk > threshold2, the FIR filter
is directly used. The structure of the EM-based KF/FIR integrated filter is depicted in
Figure 2.

i

k k

k

kD

i

k k i k

k k

i i

k k

i j i j T i j T i j

k k k

i j i j i j i j

k k k i k k

i j i j i j

k k k

i

k k
EM EMi N i Ni i

k k k k

i

k k

k

i

k k

k

i

k k

Figure 2. The structure of the EM-based Kf/FIR integrated filter.

4. Discussion

In this section, a real test conducted to verify the performance of the proposed method
is discussed. The setting of the real test is introduced as follows.

4.1. Setting of the Real Test

In this study, focusing on human upper limbs, only two IMUs are used, which are
fixed on a human upper limb. Kinect 2.0 is used to provide the reference value for vision
measurement. Figure 3 illustrates the configuration of the testbed employed in this study.
Practical tests were conducted in the No. 1 teaching building of the University of Jinan,
with experimental scenarios displayed in Figure 4. The IMUs are affixed to the human sub-
ject and their data are transmitted wirelessly, with parameters listed in Table 1, as utilized
in [29]. Unlike [29], Kinect 2.0 is used to obtain reference values, with parameters listed
in Table 2 also referenced in [29]. Data acquisition from all active sensors is systematically
performed using a Lenovo Legion Y9000K2020H computer, with the specifications shown
in Table 3. The INS calculates the navigation results by integrating the measurement values
of the inertial sensor. Therefore, the accuracy of initial alignment has a significant impact
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on the accuracy of INS solution. To the initial position of the shoulder, in this test, we firstly
measure the position of the target human’s shoulder.

Table 1. Parameters of the IMUs involved in the test [29].

Parameter Value

Max sampling frequency 100 Hz
Data transmission distance 100 m

Working voltage 4.2 V

Table 2. Kinect parameters set in the test [29].

Parameter Value

Resolution of color image frames 1920 × 1080
Resolution of deep frames 512 × 424

Detectable range 0.5–4.5 m
Resolution of infrared image frames 512 × 484

Table 3. Parameters of the computer used in the test.

Parameter Value

Processor Intel(R) Core(TM) i7-10875H
Frequency 2.3 GHz

RAM 16 G

Figure 3. Structure of testbed used in the test.
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Figure 4. Actual experimental scenario.

4.2. Positioning of the Elbow

The performance of the proposed EM-based KF/FIR integrated filter is discussed in
this section. For elbow localization, we employed two real-world tests, the filter settings
for the first test were as follows:

Q =



∆k2

4
∆k
2 0 0 0 0

∆k
2 1 0 0 0 0
0 0 ∆k2

4
∆k
2 0 0

0 0 ∆k
2 1 0 0

0 0 0 0 ∆k2

4
∆k
2

0 0 0 0 ∆k
2 1


, (30)

R =

 0.01 0 0
0 0.01 0
0 0 0.01

 , (31)

We set ∆k = 1/30 s, threshold 1 = 2. Based on the models (1) and (2),we obtained
MFIR = 6 in this test. The elbow positions measured by the KF, FIR filter, and EM-based
KF/FIR filter are depicted in Figure 5. In this figure, the KF solution is represented by a
green line, the FIR solution by a blue line, the proposed EM-based KF/FIR integrated filter
solution by a red line, and the reference values by a red line. All solutions are close to the
reference values. Notably, the FIR solution is markedly higher than the reference value in
the east direction. Meanwhile, the KF solution is close to the reference values. Compared to
the KF and FIR filter solutions, the EM-based KF/FIR filter solution demonstrates consistent
convergence toward the benchmark value.
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Figure 5. Elbow positions measured by the KF, FIR filter, and EM-based KF/FIR filter in test 1.

The position-error cumulative distribution function (CDF) of the elbow measured by
the KF, FIR filter, and EM-based KF/FIR filter in test 1 are shown in Figure 6. In this figure,
the KF solution has the biggest position error at 0.9; the FIR and the proposed method’s
solutions are similar.
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Figure 6. The position-error CDFs of the elbow measured by the KF, FIR filter, and EM-based KF/FIR
filter in test 1.

The RMSEs of the KF, FIR filter, and EM-based KF/FIR filter concerning elbow posi-
tions in test 1 are listed in Table 4. We see that the mean position error is close to the KF,
which has a small localization error.

Table 4. RMSEs of the KF, FIR filter, and EM-based KF/FIR filter concerning elbow positions in test 1.

Methods East Direction (m) North Direction (m) Up Direction (m) Mean (m)

KF 0.178 0.011 0.010 0.066
FIR 0.086 0.014 0.014 0.038

EM-based KF/FIR 0.086 0.013 0.013 0.037

The filter settings for the second test were changed as follows:

Q =



∆k2

4
∆k
2 0 0 0 0

∆k
2 1 0 0 0 0
0 0 ∆k2

4
∆k
2 0 0

0 0 ∆k
2 1 0 0

0 0 0 0 ∆k2

4
∆k
2

0 0 0 0 ∆k
2 1


× (0.6 × 0.3) , (32)

R =

 0.02 0 0
0 0.02 0
0 0 0.02

 , (33)

The elbow positions in test 2 measured by the KF, FIR filter, and EM-based KF/FIR
filter are illustrated in Figure 7. All solutions are close to the reference values. From the
time index 1000 to 1300, the FIR solution is noticeably higher than the reference values. The
solution provided by the proposed EM-based KF/FIR filter consistently falls between the
KF and FIR solutions.
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Figure 7. Elbow positions measured by the KF, FIR filter, and EM-based KF/FIR filter in test 2.

Figure 8 illustrates the position-error CDFs of the elbow measured by the KF, FIR filter,
EM-based KF/FIR filter in test 2. From the figure, the KF solution get the smallest position
error, the FIR solution has the biggest position error. In this test, the solution provided by
the proposed EM-based KF/FIR filter consistently falls between the KF and FIR solutions.
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Figure 8. The position-error CDFs of the elbow measured by the KF, FIR filter, and EM-based KF/FIR
filter in test 2.

4.3. Wrist Positioning

This section focuses on the performance of the proposed EM-based KF/FIR integrated
filter concerning wrist positioning. In this subsection, we also employed two tests. The
filter settings for wrist localization in test 1 are as follows:

Q =



∆k2

4
∆k
2 0 0 0 0

∆k
2 1 0 0 0 0
0 0 ∆k2

4
∆k
2 0 0

0 0 ∆k
2 1 0 0

0 0 0 0 ∆k2

4
∆k
2

0 0 0 0 ∆k
2 1


× 10−1 , (34)

R =

 0.1 0 0
0 0.1 0
0 0 0.1

 , (35)

We set ∆k = 1/30 s, threshold 1 = 2. Based on the models (1) and (2), we obtained
MFIR = 6 in this test. The wrist positions measured by the KF, FIR filter, and EM-based
KF/FIR filter in test 1 are displayed in Figure 9. The KF solution is represented by a
green line, the FIR solution by a blue line, the proposed EM-based KF/FIR integrated filter
solution by a black line, and the reference values by a red line. In the east direction, the FIR
filter has biggest error from the time index 600 to 1000. During this period, the proposed
EM-based KF/FIR filter and the KF filter show better performance. All solutions are
close to the reference values in the north and up directions. However, the performance
of KF is subpar from the time index 1100 to 1400 in these directions, while the solution
provided by the proposed EM-based KF/FIR filter more consistently converges toward the
reference values.
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Figure 9. Wrist positions measured by the KF, FIR filter, and EM-based KF/FIR filter in test 1.

The position-error CDF of the wrist measured by the KF, FIR filter, and EM-based
KF/FIR filter in test 1 are shown in Figure 10. In this figure, the KF outperforms FIR filter.
Further, the proposed EM-based KF/FIR filter solution more closely approximates the KF
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solution. Table 5 tabulates the RMSEs of the KF, FIR filter, and EM-based KF/FIR filter
concerning wrist positions in test 1. The table reveals that the method proposed in this
study achieves the smallest localization error compared to the KF and FIR filter, with its
localization error value being marginally lower than that of the FIR filter.
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Figure 10. The position-error CDFs of the wrist measured by the KF, FIR filter, and EM-based KF/FIR
filter in test 1.

Table 5. RMSEs of the KF, FIR filter, and EM-based KF/FIR filter concerning wrist positions in test 1.

Methods East Direction (m) North Direction (m) Up Direction (m) Mean (m)

KF 0.036 0.020 0.020 0.025
FIR 0.069 0.014 0.014 0.032

EM-based KF/FIR 0.040 0.018 0.018 0.025

Then, we performed the test 2 with the following settings:

Q =



∆k2

4
∆k
2 0 0 0 0

∆k
2 1 0 0 0 0
0 0 ∆k2

4
∆k
2 0 0

0 0 ∆k
2 1 0 0

0 0 0 0 ∆k2

4
∆k
2

0 0 0 0 ∆k
2 1


× 10−4 , (36)

R =

 0.02 0 0
0 0.02 0
0 0 0.02

 , (37)

The wrist positions as measured by the KF, FIR filter, and EM-based KF/FIR filter in
test 2 are depicted in Figure 11. In this figure, it can be seen that the KF has biggest position
error in the east direction when compared with the KF and FIR filter from the time index
500 to 1000. The proposed method’s solution are closer to the reference value. In the north
and up directions, the KF and the proposed method’s performances are similar.
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Figure 11. Wrist positions measured by the KF, FIR filter, and EM-based KF/FIR filter in test 2.

Figure 12 illustrates the position-error CDF for the KF, FIR filter, and EM-based KF/FIR
filter concerning wrist positions in test 2. The figure shows that at a probability of 0.9,
the positioning error of KF is the largest and that of FIR is smaller than that of the KF; in
addition, the proposed method aligns more closely with the KF solution.
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Figure 12. The position-error CDFs of the wrist measured by the KF, FIR filter, and EM-based KF/FIR
filter in test 2.

This section substantiates the effectiveness of the proposed EM-based KF/FIR inte-
grated filter in providing superior performance than the KF and FIR filters independently,
successfully addressing the limitations inherent to both filters. It should be pointed out
that the setting of the Q and R used in this work depend on all the sensors’ data in the
test. Thus, we can obtain the accurate setting of the Q and R by using the sensor’s data.
However, it should be pointed out that it is not easy to obtain in practice. Moreover,
from the results mentioned above, we can see that not all Q and R are suitable for the KF
algorithm, especially for the east direction.

4.4. Operation Time

In this section, the operation time of the filters used in the test will be compared. In this
work, we employed the Lenovo Legion computer; its CPU is Intel(R) Core(TM) i7-10875H
CPU @ 2.30 GHz, the RAM of the computer is 16 GB, and all the filters were run on Matlab
R2017a. The running time of the KF, FIR filter, and EM-based KF/FIR filter in tests are listed
in Table 6. From the table, we can see that the KF has the shortest running time, with a mean
running time of 0.037 ms, and the proposed EM-based KF/FIR has the longest running
time, with a mean running time of 7.954 ms. It should be pointed out that the sampling
time is 33.33 ms, thus, although the running time of the proposed EM-based KF/FIR is
longest when compared with the other filters, its value is smaller than the sampling time.

Table 6. The running time of the KF, FIR filter, and EM-based KF/FIR filter in tests.

Methods Wrist (ms) Elbow (ms) Mean (m)

Sampling time 33.33 33.33 33.33
KF 0.035 0.038 0.037
FIR 0.124 0.350 0.237

EM-based KF/FIR 5.629 10.279 7.954
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5. Conclusions

The increasing prevalence of motor function injuries presents substantial challenges
for patients and their families. Consequently, the accurate execution of rehabilitation
training has emerged as a critical research area. This study introduces an EM-based KF/FIR
integrated filter for posture capture of human upper limbs, focusing on precise wrist
and elbow position information. In this work, the wrist and elbow’s position have been
considered. Thus, we employ their position and the velocity in East–North–Up frame as
the state vector, and their positions measured by the IMUs are used as the measurements.
The outputs from the two data fusion filters are then used to determine the posture of
human upper limbs. In the proposed method, the filter performance is assessed using
the Mahalanobis distance. When the performance of the KF is suboptimal, the EM-based
KF is utilized to enhance performance. Subsequently, if the performance of the EM-based
KF declines, the FIR filter is employed to increase localization accuracy. An EM-based
KF/FIR integrated filter is used for the posture capture of human upper limbs. A real-
world test was conducted to demonstrate the effectiveness of this approach. In the test,
two IMUs provided INS-based wrist and elbow positions, while Kinect 2.0 was used to
obtain reference values. The proposed EM-based KF/FIR integrated filter was compared
with the traditional KF and FIR filter. The results indicated that the proposed EM-based
KF/FIR integrated filter outperforms the conventional KF and FIR filter in localizing wrist
and elbow positions.
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CDF cumulative distribution function
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MLE maximum likelihood estimator
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