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Abstract: For some so-called computationally difficult problems, using the method of Boolean logic
is fundamentally inefficient. For example, the vertex coloring problem looks very simple, but the
number of possible solutions increases sharply with the increase of graph vertices. This is the difficulty
of the problem. This complexity has been widely studied because of its wide applications in the
fields of data science, life science, social science, and engineering technology. Consequently, it has
inspired the use of alternative and more effective non-Boolean methods for obtaining solutions to
similar problems. In this paper, we explore the research on a new generation of computers that use
local active memristors coupling. First, we study the dynamics of the memristor coupling network.
Then, the simplified system phase model is obtained. This research not only clarifies a physics-
based calculation method but also provides a foundation for the construction of customized analog
computers to effectively solve NP-hard problems.

Keywords: local active memristor; Chua’s unfolding principle; phase model; coupling function;
interaction function; Fourier expansion

1. Introduction

Chua was the first to propose the concept of a memristor [1,2], and it was not until
May and June 2008 that Nature published three consecutive articles, reporting the discovery
of memristors [3–5]. HP Laboratories discovered that a two-layer titanium dioxide film,
sandwiched between two platinum sheets, exhibited the characteristics of a memristor. This
finding was the first to theoretically and experimentally confirm the physical existence of
nano memristors, causing great shock in both the industry and academia. Thus, memristors
have become a new hot research field [6]. Memristors are a type of memory-based nonlinear
resistor with nanoscale dimensions, precisely adjustable resistance, nonvolatility, and low
power consumption characteristics. Their voltage–current pinched hysteresis characteristics
and frequency dependence on periodic excitation signals are the main distinguishing
features of memristors [7]. Current research indicates that memristors have extremely
important application potential in fields such as non-volatile memory, artificial neural
networks, logic circuits, and nonlinear circuits.

The direct application of a binary nonvolatile memristor is to build a new generation of
nonvolatile resistive memory (ReRAM), which has the advantages of scalability, low power
consumption, high density, and compatibility with CMOS. It is the preferred alternative
for future Flash, SRAM, and DRAM. Research indicates that, in the future, ReRAM can be
scaled down to below 10 nm, and the development of a 20 nm 1 Gb 2-layer 3D ReRAM
has already been achieved. The density of 3D ReRAM can exceed that of 2D and 3D flash
memory [8]. The cross-array of 8 nm × 8 nm memristors has been reported [9], and the
development of 1 nm-level memristors is anticipated [10].

The exponential growth in data volume and computing demand has led to the Von
Neumann bottleneck [11] in traditional storage computing architectures, and computing
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technologies driven by transistor density are gradually reaching their physical limits. The
emergence of neural morphology computing, which uses neural morphology devices to
simulate the behavior of neurons and synapses in the human brain to process informa-
tion, has become the best candidate for the new generation of computing architecture
due to its high parallelism, extremely low power consumption, and integrated storage
and computing advantages. The nonvolatile and adjustable resistance characteristics of
memristors can emulate the memory and weight regulation behavior of synapses, while
local active memristors can emulate various firing characteristics of neurons [7–10], and
the nanostructure of memristors can make neural networks highly integrated. Therefore,
memristors can directly emulate the behavior of neurons and synapses from a physical
level [12,13], naturally achieving a computing architecture that integrates memory and
computing, which precisely meets the needs of neural morphology devices and has become
one of the best candidates for current neural morphology devices.

Binary memristors have “0” and “1” logical states, which can be used to implement
logical operations. Memristive logic circuits are the most promising alternative computing
solution for traditional integrated circuits. Using memristors for both memory and process-
ing functions, can break the computational framework of von Neumann’s separation of
memory and computation, thus achieving a new architecture of integrated memory and
computation. This is a more optimized approach for the new generation of computing
machines. Logic circuits based on memristors mainly include memristor/CMOS hybrid
logic circuits, memristor logic circuits, logic operation circuits based on programmable
nanowire technology, embedded logic circuits, etc. [10,11].

In addition to the above applications, memristors can also be applied to amplifiers,
filters, and nonlinear oscillation and chaos circuits [14]. Memristors provide another new
development space for circuit design, especially in the field of memristive chaotic oscilla-
tors. Special phenomena, such as infinite equilibrium points (or line, plane, or even three-
dimensional space equilibrium points), coexisting chaotic attractors (or parameter-free bi-
furcations), hidden chaotic attractors, and excessive stability, have been discovered [15–17].
Memristor chaotic circuits are not only easy to integrate, but also play an extremely impor-
tant role in applications within chaotic neural networks. There is evidence to suggest that
neural networks working under chaotic edge mechanisms can optimize neural computation
and global search [18].

Recently, Nature published a third-order nano integrated circuit component based on
a local active memristor [19]. This component can simulate 15 functions of a single neuron,
and can exhibit complex dynamic characteristics of neurons, such as chaotic oscillation,
unimodal periodic oscillation, and action potential under different DC biases.

After the discovery of memristors, Chua et al. expanded their research to include the
concepts of memcapacitors and inductors [20] and conducted some fundamental theoretical
studies. Although some phenomena with characteristics of memory containers and sensors
have been preliminarily discovered, such as bistable elastic thin films [21] exhibiting chaotic
characteristics under certain excitations, practical and useful artificial physical devices have
not yet been realized.

Although Boolean logic has always been the backbone of digital information process-
ing, there are some so-called NP-hard problems. The logical method is fundamentally
inefficient [22,23], which inspires the use of alternative, more effective non-Boolean meth-
ods to obtain a solution to this problem [24–28]. Based on phase dynamics, it is a good idea
to build an Ising computer to solve NP-hard problems. At present, there are many ways
to implement the oscillator element [29–40]. However, the current oscillator implementa-
tions also have some shortcomings and problems. For example, the operational costs of a
quantum annealer based on qubits are high and become complex due to the requirement
of a low-temperature environment. In addition, although the optical coherent Ising com-
puter has a competitive advantage over the quantum annealing machine, it needs a long
fiber ring cavity for implementing Ising spin through time multiplexing. Additionally, it
relies on an ultra-high-speed and huge-power-consumption field-programmable gate array
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(FPGA) to facilitate coupling in the measurement feedback scheme. The functioning of a
digital CMOS annealing machine depends on random numbers, which are generated to
introduce randomness, but maintaining real randomness is still technically challenging
and requires a lot of post-processing. In our research, we will study and implement a
local active memristor oscillator-based computer. The computer is using the negative
resistance of the local active memristor and a capacitor, together with an external resistor, to
constitute the oscillator, so the oscillator network forms a continuous-time dynamic system.
The bistable of the oscillator phase simulates the Ising spin. The optimization problem is
mapped by carefully selecting the coupling matrix for the memristor oscillatory network.
The dynamic evolution of this physical system has reached the energy minimization point,
which represents the solution of the optimization problem. The dynamics of this physical
system have been explored in a wide range of applications, including understanding neural
activities, realizing robot motion control, and using discrete-time Hopfield networks to
solve optimization problems. Our work will be published in a series of papers.

In order to study the coupling in a local active memristor-based computer, the key is
to study the interaction between oscillators. It is not practical to use the circuit simulation
software SPICE’s (LTspice 24.0.9) transient simulation method because, with the expansion
of the network scale, simulation time also increases significantly. This is because the single
oscillator satisfies M individual differential equations; thus, the oscillator coupling network
will have M×N differential equations to solve. In the past 40 years, the research has shifted
to using the oscillator phase model to study the dynamic characteristics of the network,
which will reduce the number of differential equations to N, saving a lot of simulation
time. Among them, the most representative is the Kuramoto network model [41–46]. The
advantage of this model is that the equation is simple, and it is easy to predict the phase
evolution of the system. However, this model assumes that the oscillators are sinusoidally
coupled, which limits its scope of application and accuracy. It is obvious that the network
with local active memristor oscillators lacks sinusoidal coupling, so it is necessary to find
another way to model them. In this paper, we use the research methods of neuro-dynamics
for reference and introduce the concept of weak coupling [47,48]. We then solve the
adjoint of the differential equations to further calculate the interaction function between
the oscillators, expanding it into a Fourier series, so as to obtain the phase model of the
system. Although our research object is the oscillator pair, the same research method can
be easily extended to the oscillator coupling network, so as to provide a reference for the
research on the memristor oscillatory network computer.

The structure of this paper is organized as follows: In Section 2, we briefly introduce
the Kuramoto model because of its strong relevance to our research. We begin by detailing
Winfree’s method, then Kuramoto’s, and then we proceed by comparing the two. In
Section 3, we describe the analysis of the memristor phase dynamics comprehensively.
Firstly, we give Chua’s unfolding model of the memristor, which is different from the
traditional physical model. However, it has characteristics such as a simple structure, clear
physical image, and ease of analysis. Secondly, as an additional segment, we will introduce
the weak coupling theory because it is fundamentally important to our analysis. Thirdly,
based on the theory and model, we solve the adjoint of the memristor differential equations
so as to determine the interaction function between the oscillators. Subsequently, we
analyze the case of one memristor oscillator. Fourthly, the interaction function of oscillator
pairs is expanded into Fourier series, and then the phase model is obtained. Section 4 is the
summary of our research.

2. The Kuramoto Model

The Kuramoto Model is a classical model of oscillator network. We will briefly
introduce the model because of its strong connection to ours.

Suppose there are N interacting self-sustained limit-cycle oscillators in a network.
The first assumption we make is that they are nearly identical. We expect the intrinsic
frequencies of the oscillators to be sufficiently similar, so that they are represented within
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the same probability distribution, in which we have expected (mean) frequencies. We
also know that the oscillators are affected by one another; they are “coupled” through
metabolic, bioluminescent, electrical, mechanical, or other channels. In the absence of this
coupling, each oscillator is left to operate independently and, therefore, maintains its own
frequency, allowing no synchronization to occur. In modelling the evolution of individual
oscillators within such a system, we start with this intrinsic frequency ωi, and then take
into account the influence of all the other oscillators. We avoid further complication by
ignoring outside interference, that is, anything outside of the network of oscillators, which
may also influence their frequencies. This forms an ODE in an n-dimensional vector space.

Now that we have ensured the oscillators traverse the same limit cycle regardless
of perturbation, albeit at differing frequencies, we have reduced the problem by shifting
our focus away from the consideration of dynamics in an n-dimensional vector field to
describing the pertinent inter-relations among functions of a single scalar variable, namely,
the phase in the cycle. This just means that, as they traverse the same cycle, we will always
know their position, simply by observing a single parameter: the phase.

Winfree derived his model as follows:

dθi
dt

= ωi +

(
∑
j 6=i

X(θj)

)
Z(θi), i, j = 1, · · ·N (1)

where θi (j) is the phase. Winfree defined the concept of an “influence function” X, which
determines the level of influence on an oscillator depending on its phase. He also defined
the concept of a “sensitivity function” Z, which represents the change in frequency of
an oscillator when perturbed by an arbitrarily small stimulus. It is also dependent on
phase, so this tells us that the sensitivity of an oscillator depends on where it is within its
oscillation period.

Whilst Winfree demonstrated synchronization numerically, his model was analyt-
ically difficult to solve. Kuramoto, taking the baton from Winfree’s approach, devel-
oped a solvable model in 1975. To model the phase evolution of the network, Kuramoto
was primarily motivated by a desire to model synchronization behavior within chemical
reaction–diffusion systems, though he reflected on the broader applicability of his model to
other synergetic natural processes. He derived a phase model as follows:

dθi
dt

= ωi +
V
N ∑

j 6=i
sin(θj − θi), i, j = 1, · · ·N (2)

where V
N is the coupling strength. Comparing with (1), we can see that V

N corresponds to X
and Z, which take the form of sin(θj − θi).

In the next section of this paper, we will see that Z does not necessarily take the form
sin(θj − θi). Instead, it will take a form depending on the nature of the oscillator and can
be expanded as a Fourier series.

3. The Dynamical Characteristics of the Memristor
3.1. Chua’s Unfolding Model of the Memristor

According to the literature [49], the physical memristor of Figure 1a can be the equiva-
lent to the structure in Figure 1b. An intrinsic memristor M̃ is connected in parallel with a
nonlinear resistor R and then it is connected in series with the contact resistor RC, where
the intrinsic memristor’s equation is as follows:

dT
dt

= g(T, ṽm) ,
1

Cth
·ĩm·ṽm −

Γth
Cth
·(T − Tamb), (3)
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ĩm = G(T, ṽm) ,
1

R01
· exp(− a01 − a11·|ṽm|

T
)·ṽm, (4)

where Cth is the equivalent heat capacity, and Γth is the equivalent thermal conductivity of
the intrinsic Memristor M̃, respectively; Tamb is the ambient temperature. R01, a01, a11 are
the fitting constants, vm and im are Memristor’s voltage and current, respectively.
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Figure 1. Nbox physical model of memristor. (a) The sign of the memristor; (b) The equivalent circuit
of the memristor.

On the other hand, the constitutive equation of nonlinear resistance is as follows:

vR = R02·iR· exp(
a02 − a12·

√
|vR|

Tamb
). (5)

where R02, a02, a12 are the fitting parameters, vR and iR are the voltage across the ends
of the nonlinear resistor and the current flowing through, respectively. According to
Equations (3)–(5), the equation of the memristor in Figure 1a can be derived by using
Kirchhoff’s law of voltage and current. The corresponding differential algebraic equations
is as follows: 

dT
dt = g(T, ṽm) , 1

Cth
·ĩm·ṽm − Γth

Cth
·(T − Tamb),

ĩm = G(T, ṽm) , 1
R01
· exp(− a01−a11·|ṽm |

T )·ṽm,

vR = R02·iR· exp( a02−a12·
√
|vR |

Tamb
),

ṽm = vR,

vm = vR + RC·(ĩm + iR).

(6)

It can be seen from observation that although this equation is based on physics, it is
complex and difficult to reflect the physical meaning of the memristor, so we find another
way to obtain the mathematical equation of the local active memristor by using Chua’s
unfolding principle [50]. The empirical equations are as follows

:
.
x = g(x, v) , a0 + a1·x + b2·v2 + c21·v2·x + c22·v2·x2 + c23·v2·x3 + c24·v2·x4 + c25·v2·x5, (7)

i = î(x, v) , G(x)·v = (d0 + d1·x + d2·x2 + d3·x3 + d4·x4)·v. (8)

where i, v, and x represent device current, voltage, and state variables, respectively. Ac-
cording to the literature [51], the values of each fitting parameter in the formula are listed
as follows (Table 1):
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Table 1. Fitting parameters of the memristor Equations (7) and (8) [51].

a0 a1 b2 c21

5.19·109 −2.05·107 7.21·109 −0.07·109

c22 c23 c24 c25

2.27·105 −2.4·102 1.25·10−1 −2.69·10−5

d0 d1 d2 d3

6.50·10−3 −6.66·10−5 2.14·10−7 −2.14·10−10

d4

1.19·10−13

3.2. The Weak Coupling Theory

Weakly coupled oscillator theory can be used to quantify any form of coupling in an
oscillator network’s phase-lock phenomena. As the name implies, the coupling between
oscillators must be weak enough to make the quantization accurate. This means that in any
given period, this coupling can only have a small impact on the dynamics of the oscillator.
However, these minor effects may accumulate over many cycles and cause oscillators’
phase lock. The weak coupling theory allows the dynamics of each oscillator (which may
have a high dimension) to be simplified to a single differential equation describing the
phase of the oscillator. The autonomous differential equation considering the dynamics of
the oscillator is: .

X = F(X), (9)

where X is an n-dimensional vector, assuming that the equation has an asymptotically
stable periodic solution X0(t) = X0(t + T), where T is the period. Now couple the two
oscillators defined by this equation, assuming that the variables are X1 and X2:

.
X1 = F(X1) + εG1(X2, X1), (10)

.
X2 = F(X2) + εG2(X1, X2), (11)

where G1 and G2 are coupling functions, and ε is a small positive number, indicating the
coupling strength. The weak coupling theory assumes that when the coupling is small
enough, Equations (10) and (11) can be simplified to the phase equations

Xj = X0(θj) + O(ε), (12)

.
θ1 = 1 + εH1(θ2 − θ1),

.
θ2 = 1 + εH2(θ1 − θ2), (13)

where Hj is the function with period T. This model is called the phase model. A key
question is how to calculate it. The calculation formula is as follows:

Hj(ϕ) =
1
T

∫ T

0
X∗(t)·Gj[X0(t + ϕ), X0(t)]dt (14)

This formula is a weighted average of Gj with X∗ representing the coupling weight
over a period T, where X∗ is a periodic function with period T, called the adjoint, which
satisfies the linear differential equation and normalization conditions:

.
X
∗
(t) = −[DX F(X0(t))]

T ·X∗(t), X∗(t)·
.

X0(t) = 1. (15)

where DX F is the derivative matrix of F with respect to X, i.e., the Jacobian, denoted by
[ ]T , indicating the transpose of the matrix within brackets. Therefore, in order to calculate
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the function Hj, we must first calculate the adjoint solution of Equation (9) and the periodic
integral (14), which can be calculated by numerical simulation software Matlab 2023b.

3.3. Single Memristor Oscillator

Figure 2 depicts a single memristor based oscillator circuit diagram, memristor M,
first in parallel with the capacitor, and then in series with a bias resistor. The purpose
of using the bias resistor is to bias the memristor in the local active region, that is, the
negative resistance region, so as to form autonomous oscillation and show rich dynamic
characteristics. The equations of the oscillator in Figure 2 are as follows:

.
x = f1(x, v) , g(x, v), (16)

.
v = f2(x, v) ,

1
C
·(VS − v

RS
− î(x, v)), (17)

with the parameter list of each element in the figure being as follows (Table 2):
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Table 2. Element parameter values and initial conditions of differential equations [52].

VS RS C Initial Condition

2.5 V 500 Ω 30 nF (215, 0.975 V)

Figure 3 shows the voltage and current waveforms of the oscillator:
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the coupling strength and coupling function are, respectively, listed as follows: 

1 , 1,2j
j C

j
C R

ε = =
⋅

  (22)

1 2 1G v v= −  (23)

2 1 2G v v= −  (24)

Figure 3. (a,b) first figure is the voltage waveform, and the second is the current waveform.

3.4. Phase Model of the Oscillator Pair

Next, we will analyze the coupling pair. Firstly, the resistance coupling is analyzed,
and then the capacitance coupling is analyzed. The circuit of two oscillators coupled by
resistance is shown in Figure 4:
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The parameter values in the figure are shown in Table 2. Taking an appropriate value
and changing within a certain range of RC will not affect the weak coupling dynamic
characteristics of the circuit. The coupled pair in Figure 4 satisfies the following equations:

.
x1 = g(x1, v1), (18)

.
v1 =

1
C1
·[VS1 − v1

RS1
− î1(x1, v1)] +

1
C1·RC

(v2 − v1), (19)

.
x2 = g(x2, v2), (20)

.
v2 =

1
C2
·[VS2 − v2

RS2
− î2(x2, v2)] +

1
C2·RC

(v1 − v2), (21)

Comparing Equations (19) and (21) with Equations (10) and (11), it can be seen that
the coupling strength and coupling function are, respectively, listed as follows:

ε j =
1

Cj·RC
, · · · j = 1, 2 (22)

G1 = v2 − v1 (23)

G2 = v1 − v2 (24)
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Based on the above results, take the current as the object of investigation, and it is
observed that the oscillator has a symmetrical structure. According to (14) and using
Matlab, the interaction function H can be solved as shown in Figure 5:
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Figure 5. Waveform of H function versus time t in the presence of resistance coupling.

This function can also undergo Fourier expansion to obtain the approximate expression:

H(ϕ) = −8.023× 10−8 + 2.134× 10−7· cos(ϕ)− 3.566× 10−8· cos(2ϕ)
−1.235× 10−9· sin(ϕ)+4.126× 10−10· sin(2ϕ)

(25)

Using the H function, we can get the phase model of the pair:

.
θ1 = ω1 + a·H(θ2 − θ1),.
θ2 = ω2 + a·H(θ1 − θ2),

(26)

where θ1 and θ2 are the oscillator’s phases, respectively; ω1 = ω2 is the oscillator frequency,
which can be normalized to 1; a, the coupling coefficient, here can be taken as 0.1. At this
point, we have analyzed the pair of resistance coupling. Next, we will analyze the case
of capacitive coupling. In the context of a capacitive coupling pair, the circuit diagram is
shown in Figure 6.
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The parameter values in the figure are shown in Table 2. Taking an appropriate
value and changing it within a certain range of CC will not affect the weak coupling
dynamic characteristics of the circuit. The coupled pair illustrated in Figure 6 satisfies the
following equations:

.
x1 = g(x1, v1), (27)

.
v1 =

1
C1
·[VS1 − v1

RS1
− î1(x1, v1)]−

CC
C1
· 1
C1 + 2CC

· 1
RS1

[(v2 − v1) + RS1·(î2(x2, v2)− î1(x1, v1))], (28)

.
x2 = g(x2, v2), (29)
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.
v2 =

1
C2
·[VS2 − v2

RS2
− î2(x2, v2)]−

CC
C2
· 1
C2 + 2CC

· 1
RS2

[(v1 − v2) + RS2·(î1(x1, v1)− î2(x2, v2))], (30)

Comparing Equations (28) and (30) with Equations (10) and (11), it can be seen that
the coupling strength and coupling function are, respectively, as follows:

ε j =
CC
Cj
· 1
Cj + 2CC

· 1
RSj

, · · · j = 1, 2 (31)

G1 = −[(v2 − v1) + RS1·(î2(x2, v2)− î1(x1, v1))] (32)

G2 = −[(v1 − v2) + RS2·(î1(x1, v1)− î2(x2, v2))] (33)

Based on the above results, taking the current as the object of investigation, it is
observed that the oscillator has a symmetrical structure. According to (14) and using
Matlab, the interaction function H can be solved as shown in Figure 7.
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This function can also undergo a Fourier expansion to obtain the approximate expression:

H(ϕ) = −1.205× 10−5+4.648× 10−6· cos(ϕ)+4.640× 10−6· cos(2ϕ)

−2.689× 10−8· sin(ϕ)− 5.369× 10−8· sin(2ϕ)
(34)

4. Summary

Based on Chua’s unfolding principle, this paper first provides the simple mathematical
model of the Nb0x local active memristor. Based on this model, the dynamics of a single
oscillator are analyzed. This oscillator uses the bias resistance to establish a bias for the
memristor in the local active region or negative resistance region, thus forming autonomous
oscillation. The voltage waveform and current flow through the device are given in this
paper, respectively. On the basis of the above analysis, we take the memristor current as
the research object. By solving the differential equation’s adjoint under the conditions of
resistance coupling and capacitance coupling, the waveforms of the interaction function
are obtained, respectively. Then, the Fourier expansion of this function is given. It is worth
noting that although we only analyze the coupling of two oscillators, the same research
method can be easily extended to an oscillation network containing multiple oscillators.
This is of great significance for the study of the Ising machine based on the oscillator
and for solving combinatorial optimization problems, including the maximum cut-set. If
the number of original variables of the oscillator is M, the N oscillator coupling network
becomes M × N. Using the transient simulation method in such cases consumes a lot
of simulation time. However, using the phase model method, the free variable of the
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oscillator is reduced to the phase variable, resulting in the whole network having only
N variables, which greatly accelerates the simulation time. When the number of oscillators
is large, the advantage of this method is very obvious. In the subsequent phase, the phase
model method will be used to analyze the dynamics of large-scale local active memristor
oscillatory networks. This analysis aims to understand and construct a new computer
based on memristors to solve NP-hard problems.
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