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Abstract: In order to expand the range of motion performance of the 3-PSS-compliant parallel
micro-motion platform, a variable inclination angle of the mechanism’s guide rails was introduced
to construct a category of generalized 3-PSS compliant parallel micro-motion platforms with dis-
tinct configurations (exhibiting different motion performances) but identical motion patterns (three
translational degrees of freedom). The compliance and kinetostatics of such micro-motion platform
are modeled and analyzed. Firstly, the compliance model is established based on the coordinate
transformation method. Then, simplifying the micro-motion platform into a spring system, the kine-
tostatic model in terms of input force–output displacement is established based on the compliance
model using the compliance matrix method. For practical application considerations, the kinetostatic
model in terms of input displacement–output displacement is further derived based on the input
force–output displacement model. Then, the correctness of the established compliance model and
kinetostatic model is successively verified through finite element simulation. Finally, using two
specified motion trajectories (spatial spiral trajectory and planar circular trajectory) as examples, an
analysis is conducted on the influence of guide rail inclination angle variations on the kinetostatic
performance of the micro-motion platform. This analysis serves as guidance for the rational design of
such micro-motion platforms.

Keywords: generalized 3-PSS; coordinate transform method; compliance matrix; kinetostatic perfor-
mance analysis

1. Introduction

The rapid development of micro-operation or micro-positioning fields has led to
increasingly high requirements for mechanism accuracy. Traditional rigid and series mecha-
nisms are no longer able or find it difficult to meet their accuracy requirements [1,2]. On the
other hand, compliant parallel mechanisms take into account the advantages of the friction-
free, gap-free, assembly-free, and high-precision nature of the compliant mechanism, as
well as the advantages of the high stiffness and high load of the parallel mechanism [3–6].
Compliant parallel mechanisms have been widely used in precision fields such as aerospace,
pointing mechanisms, precision manufacturing, fiber optic docking, biomedicine, and other
fields [7–11]. Among the emerging compliant parallel mechanisms, low-degree-of-freedom
(especially three-degree-of-freedom) mechanisms are favored by many scholars due to their
advantages of fewer driving components, more compact structure, and relatively low cost.

Ammar Al-Jodah et al. [12] devised a three-degree-of-freedom XYθ-type large-scale
micro-positioning platform with large workspace and high motion accuracy and conducted
kinetostatic and kinematic analyses on it. In the context of precision operational environ-
ments, Jinhai Gao et al. [13] introduced a low-coupling three-degree-of-freedom-compliant
hybrid micromechanical arm for precision operating environments, with a motion range
of up to 100 µm in each dimension. Guilian Wang et al. [14] designed a three-degree-of-
freedom micro-positioning platform with high positioning accuracy, strong load-bearing
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capacity, and large motion range, and analyzed its kinematic, kinetostatic, and frequency
characteristics. Ning Chen et al. [15] devised a three-degree-of-freedom-compliant nano-
displacement mechanism and established its kinetostatic model using the compliance ma-
trix method. Ren and Cao [16] proposed a 3-PSS compliant parallel micro-motion platform
with three spatial translational degrees of freedom and conducted dynamic modeling and
frequency characteristic analysis on it. However, the three-degree-of-freedom-compliant
parallel mechanisms designed in the aforementioned literature often encounter limitations
in their motion performance when confronted with more complex working conditions due
to their predetermined structural configurations.

The analysis of kinetostatics plays an indispensable role in the study of compliant
parallel mechanisms, and it serves as the foundational basis for subsequent dynamic analy-
ses. Due to the coupling between the motion process and the elastic mechanics behavior
of the compliant hinges, the kinetostatics of compliant parallel mechanisms cannot be
analyzed solely through kinematics or statics, which poses certain challenges. In recent
years, scholars have presented various methods for the kinetostatic modeling of compliant
mechanisms [17], including the pseudo-rigid body model method [18], Castigliano’s the-
orems [19], and the compliance matrix method [20]. VenKiteswaran et al. [21] conducted
a study on the pseudo-rigid body model of a compliant beam with three rotations and
derived its kinematic and static equations based on this model. Guimin Chen et al. [22],
combining Castigliano’s first theorem with the Crotti–Engesser theorem, established an
energy-based kinetostatic modeling framework suitable for compliant mechanisms. Ren J
and Wu [23] proposed a three-degree-of-freedom 3-PSS/S flexible parallel micro-turntable
and modeled its kinetostatics using both the pseudo-rigid body model approach and the
compliance matrix method. They also compared and analyzed the differences in accuracy
between the two kinematic models. Ren J and Li [24] proposed a class of n-4R-compliant
parallel pointing mechanisms. They modeled and analyzed the compliance and kinetostat-
ics of this mechanism based on the compliance matrix method. Arredondo-Soto et al. [25]
introduced a unified systematic approach based on the compliance matrix method for the
kinetostatic modeling of compliant parallel mechanisms. From these references, it can be
seen that the compliance matrix method is widely employed in the kinetostatic modeling
of compliant parallel mechanisms due to its features such as low computational complexity
and the ability to fully consider the deformation of flexible elements in various directions.

This paper takes the 3-PSS compliant parallel mechanism proposed in reference [16]
as the prototype and constructs a class of different configurations of the 3-PSS compliant
parallel micro-motion platforms with the same motion mode (three translational degrees
of freedom) but different motion performances (workspace, motion precision, etc.) by
adjusting the guide rail inclination angle of the mechanism. We refer to it as the general-
ized 3-PSS compliant parallel micro-motion platform in the subsequent text and analyze
the compliance and kinetostatics of this generalized micro-motion platform. Due to the
established structure of the original 3-PSS compliant parallel micro-motion platform, its
motion range and the required input stroke are fixed, and it will be limited to a certain
extent in the face of a more complex working environment. At this time, the appropriate
guide rail inclination angle can be selected according to the analysis results to improve
some specific performances of the original 3-PSS compliant parallel micro-motion platform
(such as workspace, motion precision, etc.) to meet specific performance requirements. The
rest of the paper is organized as follows: In Section 2, the structural composition of the
generalized 3-PSS compliant parallel micro-motion platform is introduced. In Section 3,
the compliance of this generalized 3-PSS compliant parallel micro-motion platform is
modeled, and the kinetostatic model is subsequently established based on it. The map-
ping relationship between input displacement and output displacement is further derived
based on the relationship between input force and output displacement in the kinetostatic
model. In Section 4, the correctness of the compliance model and kinetostatic model is
validated through finite element analysis with a set of given parameters. Subsequently, the
influence of changes in guide rail inclination angle on the kinetostatic performance of the
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micro-motion platform is analyzed, providing reference for the design of this type of 3-PSS
compliant parallel micro-motion platform to meet specific performance requirements. The
conclusions are summarized in Section 5.

2. Structure of Micro-Motion Platform

The generalized 3-PSS compliant parallel micro-motion platform consists of a mobile
platform, a fixed platform, guide rails, piezoelectric stages, and three PSS (P for the moving
slider, driven by the piezoelectric stage; S for compliant spherical hinges) branch chains
connecting the mobile and fixed platforms. These three branch chains are circularly evenly
distributed, and each branch chain has two identical parallel links, and the two ends are
connected to the slider and the mobile platform, respectively, through two uniformly sized
compliant spherical hinges. According to the Kutzbach–Grübler formula and the screw
theory, it is known that the micro-motion platform possesses three translational degrees
of freedom. As shown in Figure 1, points Ai and Bi (i = 1, 2, 3) represent the midpoint
of the center line of the compliant spherical hinge at both ends of the links, respectively.
The radius of the circle formed by point Ai (i = 1, 2, 3) is denoted as r, while the radius
of the circle formed by point Bi (i = 1, 2, 3) is denoted as R. The distance between Ai and
Bi is denoted as l. Then, the initial angle between the link and the fixed platform can be
determined, as denoted as α. The angle between the axis of the guide rail and the fixed
platform is denoted as θ (referred to as the guide rail inclination angle throughout the text).
Assuming that the guide rail is always located below the link, it follows that 0◦ ≤ θ ≤ α.
Figure 1a,b illustrates the configurations of the mechanism corresponding to the critical
cases of θ = 0◦ and θ = α.
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Figure 1. Configurations of the generalized 3-PSS compliant parallel micro-motion platform for
different guide rail inclination angles: (a) θ = 0◦; (b) θ = α.

3. The Compliance and Kinetostatic Model of the Micro-Motion Platform
3.1. Compliance Modeling

Compliance serves as a crucial performance indicator that reflects the ability of a mech-
anism to resist external loads, and the compliance modeling is the basis for analyzing
the kinetostatics. When conducting compliance analysis on the micro-motion platform,
it is assumed that all three sliders are fixed. Therefore, while keeping other parameters
unchanged, variations in the inclination angle of the guide rail do not affect the compliance
of the micro-motion platform. The primary factors affecting the compliance are the struc-
tural parameters of the compliant spherical hinges and the dimensional parameters of the
micro-motion platform.

As shown in Figure 2, the right-circular compliant spherical hinge with a minimum
thickness of t0 and a cutting radius of r0 is applied to the micro-motion platform. The
coordinate system p − xyz is established at the free end face of the compliant spherical
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hinge. It is assumed that the load vector acting on the free end face of the right-circular
compliant spherical hinge is F =

[
mx, my, mz, fx, fy, fz

]T and the resulting displacement

vector is ∆ =
[
θx, θy, θz, δx, δy, δz

]T. Based on linear elasticity and small deformation
assumptions, neglecting the small interference generated by deformations in each direction,
the displacement–force equation can be obtained according to reference [26] as follows:

∆ =



θx
θy
θz
δx
δy
δz

 =



Cθx ,mx 0 0 0 0 0
0 Cθy ,my 0 0 0 Cθy , fz

0 0 Cθz ,mz 0 Cθz , fy 0
0 0 0 Cδx , fx 0 0
0 0 Cδy ,mz 0 Cδy , fy 0
0 Cδz ,my 0 0 0 Cδz , fz





mx
my
mz
fx
fy
fz

 = CF (1)

where C represents the compliance matrix of the right-circular compliant spherical hinge.
It is important to note that the composition of C depends on the arrangement of the load
vector F and the displacement vector ∆. The calculation of C can be found in Appendix A.
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When calculating compliance in various coordinate systems, it is essential to trans-
form the compliance matrix of the compliant element into the corresponding reference
coordinate system through coordinate transformations. From Equation (1), it is known
that the compliance matrix of the compliant spherical hinge in its local coordinate system

p − xyz is C. Let Cp′
p be the compliance matrix of the compliant spherical hinge in another

reference coordinate system p′ − x′y′z′. The relationship for the compliance transformation
from its local coordinate system {p} to the reference coordinate system {p′} is given by
the following:

Cp′
p = [T]p

′
p C
(
[T]p

′
p

)T
(2)

where [T]p
′

p is a 6 × 6 coordinate transformation matrix, which is represented as follows:

[T]p
′

p =

[
[R]p

′
p 03×3

[D]p
′

p [R]p
′

p [R]p
′

p

]
(3)

where [R]p
′

p represents the rotation matrix of the local coordinate system {p} with respect

to the reference coordinate system {p′}, and [D]p
′

p is the antisymmetric matrix of the

position vector dp′
p =

[
x y z

]T in the local coordinate system {p} relative to the reference
coordinate system {p′}, defined as follows:

[D]p
′

p =

 0 −z y
z 0 −x
−y x 0

 (4)
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The establishment of coordinate systems for compliance analysis in the micro-motion
platform is illustrated in Figure 3a. The global coordinate system O − xyz (denoted as
{O}) is established at the center of upper surface of the mobile platform, and the local
coordinate systems Gi − xyz for each branch chain are established at the midpoint of the
line connecting the centers of the end faces of two compliant spherical hinges connected
to the mobile platform. First, the compliance of a single branch chain of the micro-motion
platform needs to be calculated. As depicted in Figure 3b, PSS branch chain 1 is formed
by the parallel connection of two identical PSS links, I and II. Local coordinate systems
S1 − xyz, S2 − xyz, S3 − xyz, and S4 − xyz (hereinafter referred to as {S1}, {S2}, {S3}, {S4})
are individually established at the centers of end surfaces of the four compliant spherical
hinge surfaces. The orientations of these four coordinate systems are aligned with the
directions of the G1 − xyz coordinate system. The horizontal distance between the origins
of the local coordinate system Si − xyz and the local coordinate system G1 − xyz is denoted
as d.
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According to Equation (2), the compliance matrices of the compliant spherical hinges
S1 and S3 in the local coordinate systems {S2} and {S4}, respectively, are denoted as CS2

S1

and CS4
S3

. The computational outcomes are expressed as expressed in Equation (5). CS2
S1

= [T]S2
S1

C
(
[T]S2

S1

)T

CS4
S3

= [T]S4
S3

C
(
[T]S4

S3

)T (5)

where matrix C is given in Equation (1). [T]S2
S1

and [T]S4
S3

can be computed using Equations (3)
and (4), with the results as follows:

[T]S2
S1

=

[
[R]S2

S1
03×3

[D]S2
S1
[R]S2

S1
[R]S2

S1

]
, [R]S2

S1
= I3×3, [D]S2

S1
=

 0 0 0
0 0 l
0 −l 0


[T]S4

S3
=

[
[R]S4

S3
03×3

[D]S4
S3
[R]S4

S3
[R]S4

S3

]
, [R]S4

S3
= I3×3, [D]S4

S3
=

 0 0 0
0 0 l
0 −l 0


Applying the principle of compliance superposition for series-connected compliant

modules [25], the overall compliance matrices of PSS links I and II in the local coordinate
systems {S2} and {S4}, respectively, are represented as CS2 and CS4 .
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{
CS2 = CS2

S1
+ C

CS4 = CS4
S3
+ C

(6)

Similarly, the compliance matrices of PSS links I and II in the local coordinate systems
{S2} and {S4} can be transformed to the local coordinate system {G1} through coordinate
transformations. Applying the stiffness superposition principle for parallel-connected
compliant modules [25], the overall compliance matrix of PSS branch chain 1 in the local
coordinate system {G1} is represented as CG1 .

CG1 =

((
[T]G1

S2
CS2
(
[T]G1

S2

)T
)−1

+

(
[T]G1

S4
CS4
(
[T]G1

S4

)T
)−1

)−1

(7)

where 
[T]G1

S2
=

[
[R]G1

S2
03×3

[D]G1
S2
[R]G1

S2
[R]G1

S2

]
, [R]G1

S2
=I3×3, [D]G1

S2
=

 0 d 0
−d 0 0
0 0 0


[T]G1

S4
=

[
[R]G1

S4
03×3

[D]G1
S4
[R]G1

S4
[R]G1

S4

]
, [R]G1

S4
=I3×3, [D]G1

S4
=

0 −d 0
d 0 0
0 0 0


By further coordinate transformation, the compliance matrix of PSS branch chain 1 in

the global coordinate system {O} can be obtained as Cpss1.

Cpss1 = [T]OG1
CG1

(
[T]OG1

)T
(8)

where

[T]OG1
=

[
[R]OG1

03×3

[D]OG1
[R]OG1

[R]OG1

]
, [R]OG1

=
[
Rx,((π/2)−α)

][
Ry,−π/2

]
, [D]OG1

=

 0 −∆d2 ∆d1
∆d2 0 0
−∆d1 0 0


∆d1 and ∆d2, respectively, represent the position vectors of the local coordinate system
{G1} relative to the global coordinate system {O} in the y and z directions, as shown
in Figure 3a.

Due to the fact that the three PSS branch chains of the micro-motion platform have
identical structures and are evenly distributed in the circumferential direction, it is suffi-
cient to rotate the compliance matrix of PSS branch chain 1 about the z-axis of the global
coordinate system {O} by 120◦ and 240◦ to obtain the compliance matrices Cpss2 and Cpss3
for PSS branch chains 2 and 3 in the global coordinate system {O}.{

Cpss2 = [TR,2π/3]Cpss1([TR,2π/3])
T

Cpss3 = [TR,4π/3]Cpss1([TR,4π/3])
T (9)

where

[TR,2π/3] =

[
Rz,2π/3 03×3

03×3 Rz,2π/3

]
[TR,4π/3] =

[
Rz,4π/3 03×3

03×3 Rz,4π/3

]
Applying the stiffness superposition principle for parallel-connected compliant mod-

ules, the overall compliance matrix of the generalized 3-PSS compliant parallel micro-
motion platform can be then obtained as follows:

Ctotal =
((

Cpss1
)−1

+
(
Cpss2

)−1
+
(
Cpss3

)−1
)−1

(10)
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3.2. Kinetostatic Modeling

Based on the compliance of each PSS branch chain in the global coordinate system
{O} established in Section 3.1, the kinetostatic model of the generalized 3-PSS compliant
parallel micro-motion platform is further investigated through the compliance matrix
method. As depicted in Figure 4, we establish force coordinate systems Fi − xFi yFi zFi (i = 1,
2, 3) at the center of the bottom surfaces of three sliders. We designate the input forces as
F̂i =

[
mx, my, mz, fx, fy, fz

]T (i = 1, 2, 3) and denote the resulting displacement of the mobile

platform in the global coordinate system {O} as ÛO =
[
θx, θy, θz, δx, δy, δz

]T. Assuming
deformation within the linear range, the output displacement ÛO of the mobile platform
can be obtained by superimposing the displacements Ûi (i = 1, 2, 3) individually generated
by the three input forces F̂i (i = 1, 2, 3).
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Figure 4. Kinetostatic model of the generalized 3-PSS micro-motion platform.

We assume that the micro-motion platform is only subjected to the action of F̂1, as
shown in Figure 5a. Introducing the concept of equivalent stiffness, we establish the same
local coordinate systems G1 − x1y1z1 as in Section 3.1, as depicted in Figure 5b. For the
convenience of analysis, the micro-motion platform is simplified as a spring system, as
shown in Figure 5c. The equivalent stiffness matrices of the three PSS branch chains in the
local coordinate system Gi − xiyizi are denoted as KG1

E1
, KG2

E2
, and KG3

E3
, respectively.
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According to Hooke’s law, the governing equation for the elastic deformation of the
spring system can be expressed as follows:[

(KOO)F1
KOF1

KF1O KF1F1

][
Û1
ÛF1

]
=

[
F̂O
F̂1

]
(11)

where Û1 represents the displacement of the center point O of the mobile platform in the
coordinate system {O} when force F̂1 acts alone. ÛF1 represents the displacement of slider
1 in the coordinate system {F1} . F̂O represents the force applied at point O. The stiffness
matrices (KOO)F1

, KOF1 , KF1O, and KF1F1 are calculated as follows:
(KOO)F1

= KO
E1

+ KO
E2

+ KO
E3

KF1F1 = KF1
E1

KOF1 = −KO,F1
E1

KF1O = −KF1,O
E1

(12)

where the superscripts F1 and O indicate that the stiffness matrix is relative to the coordinate
systems {F1} and {O} , respectively. The double superscripts in the stiffness matrix KO,F1

E1

indicate that the forces F̂ and displacements Û are located in the coordinate systems
{O} and {F1} , respectively. The same principle applies to the representation of the
stiffness matrix KF1,O

E1
. KO

E1
, KO

E2
, and KO

E3
represent the equivalent stiffness of the three PSS

branch chains relative to the global coordinate system {O} and can be calculated using
Equations (8) and (9) as follows: 

KO
E1

=
(
Cpss1

)−1

KO
E2

=
(
Cpss2

)−1

KO
E3

=
(
Cpss3

)−1
(13)

The stiffness matrices KF1
E1, KOF1 , and KF1O can be obtained through matrix transfor-

mation using the equivalent stiffness matrix KG1
E1

, and the calculation is as follows:
KF1

E1
=
(
[T]F1

G1

)−T[
KG1

E1

](
[T]F1

G1

)−1

KOF1 = −
(
[T]OG1

)−T[
KG1

E1

](
[T]F1

G1

)−1

KF1O = −
(
[T]F1

G1

)−T[
KG1

E1

](
[T]OG1

)−1

(14)

where

[T]F1
G1

=

[
[R]F1

G1
03×3

[D]F1
G1
[R]F1

G1
[R]F1

G1

]
, [D]F1

G1
=

 0 0 ∆l2
0 0 −∆l1

−∆l2 ∆l1 0

, [R]F1
G1

=
[
Rz,−((π/2)−α+θ)

]
,

∆l1 and ∆l2, respectively, represent the position vectors of the local coordinate system
{G1} relative to the force coordinate system {F1} in the x and y directions, as shown in
Figure 5b. The matrix [T]OG1

is given by Equation (8), and the stiffness matrix KG1
E1

can be
obtained from Equation (7).

KG1
E1

= (CG1)
−1

(15)

When the mobile platform is not subjected to external forces (F̂O = 0), the following
can be extracted from Equation (11):

Û1 = −
(
(KOO)F1

− KOF1K−1
F1F1

KF1O

)−1(
KOF1K−1

F1F1

)
· F̂1 (16)
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Similarly, when the input forces F̂i (i = 1, 2, 3) act alone, analogous conclusions can
be derived.

Ûi = JO
Fi
· F̂i (i = 1, 2, 3) (17)

where
JO

Fi
= −

(
(KOO)Fi

− KOFi K
−1
FiFi

KFiO

)−1(
KOFi K

−1
FiFi

)
(i = 1, 2, 3) (18)

Due to the circularly even distribution of the three PSS branch chains, the stiffness
matrices in Equation (18) can be easily obtained by rotating the stiffness matrices in Equa-
tion (12) around the global coordinate system {O}’s z-axis by 120◦ and 240◦. The computa-
tional formulas are as follows:

(KOO)F2
= [TR,2π/3]

[
(KOO)F1

]
([TR,2π/3])

T

(KOO)F3
= [TR,4π/3]

[
(KOO)F1

]
([TR,4π/3])

T

KF2F2 = KF3F3 = KF1F1

KOF2 = [TR,2π/3]
[
KOF1

]
KOF3 = [TR,4π/3]

[
KOF1

]
KF2O =

[
KF1O

]
([TR,2π/3])

T

KF3O =
[
KF1O

]
([TR,4π/3])

T

(19)

In accordance with the principle of superposition, the displacement of the mobile
platform ÛO can be obtained through the summation of Û1, Û2, and Û3.

ÛO =
3

∑
i=1

Ûi =
[
JO

F1
JO

F2
JO

F3

]
·

F̂1
F̂2
F̂3

 (20)

Equation (20) establishes the mapping relationship between the input forces and the
output displacement of the generalized 3-PSS compliant parallel micro-motion platform. In
a practical situation, the three sliders are driven by piezoelectric stages, and the forces acting
on the sliders are difficult to determine (especially the five forces or moments in non-motion
directions), while the input displacements of the sliders are readily obtainable. Hence, it is
necessary to further derive the kinetostatic model in terms of input displacement–output
displacement based on the foundation of the input force–output displacement model.

Assuming the mobile platform is free from external forces (F̂O = 0), we can extract the
relationship between the input force F̂1 and output displacement ÛF1 from the governing
Equation (11) as follows:

F̂1 =
(

KF1F1 − KF1O(KOO)
−1
F1

KOF1

)
· ÛF1 (21)

Similarly, when F̂i (for i = 1, 2, 3) acts independently, one can obtain the following:

F̂i =
(

KFiFi − KFiO(KOO)
−1
Fi

KOFi

)
· ÛFi (i = 1, 2, 3) (22)

Thus, substituting Equation (22) into Equation (20) yields the kinetostatic model of the
micro-motion platform in terms of input displacement–output displacement.

ÛO =
3

∑
i=1

Ûi =
[
JO

U1
JO

U2
JO

U3

]
·

ÛF1

ÛF2

ÛF3

 (23)

where

JO
Ui

= −
(
(KOO)Fi

− KOFi K
−1
FiFi

KFiO

)−1(
KOFi K

−1
FiFi

)(
KFiFi − KFiO(KOO)

−1
Fi

KOFi

)
(i = 1, 2, 3) (24)



Micromachines 2024, 15, 354 10 of 17

Due to the absence of displacement in the non-motion directions of the sliders driven
by the piezoelectric stage, ÛFi =

[
0, 0, 0, 0, δyi , 0

]T. Therefore, Equation (23) can be further
simplified to the following:δX

δY
δZ

 =

[(
JO

U1

)
[rows4...6,col5]

(
JO

U2

)
[rows4...6,col5]

(
JO

U3

)
[rows4...6,col5]

]
·

δy1

δy2

δy3

 (25)

where
(

JO
Ui

)
[rows4...6,col5]

(i = 1, 2, 3) represents the last three elements of the fifth column of

the mapping matrix JO
Ui

(i = 1, 2, 3).

4. Finite Element Verification and Analysis

In this section, the compliance model and kinetostatic model of the generalized 3-
PSS compliant parallel micro-motion platform established in Section 3 are verified firstly
through finite element simulation. Then, a further analysis is conducted on the impact of the
variation in guide rail inclination angle on the kinetostatic performance of the micro-motion
platform.

4.1. Compliance Verification

The provided structural parameters for the generalized 3-PSS compliant parallel micro-
motion platform model are presented in Table 1. According to these parameters, the angle
α between the link and the fixed platform can be computed to be approximately 72◦. In
accordance with the structural design feature, the guide rail inclination angle θ should
satisfy 0◦ ≤ θ ≤ α. In this simulation case, the guide rail inclination angle is chosen to be 45◦.
The position vectors ∆d1 and ∆d2 can be directly measured in the 3D model constructed,
yielding values of 24.23 mm and −8.12 mm, respectively. The material utilized for the
compliant spherical hinge is beryllium bronze (CuBe2), and its material properties and
dimensional parameters are presented in Table 2.

Table 1. The fundamental parameters of the generalized 3-PSS compliant parallel micro-motion platform.

Parameter Value (mm) Parameter Value (mm)

r 25 l 65
R 45 d 3.5

Table 2. The material characteristics and dimensional parameters of the compliant spherical hinge.

Density
ρ/(kg/m3)

Elastic Modulus
E/(Gpa)

Poisson’s Ratio
ν

Minimum
Thickness (mm)

Cutting Radius
(mm)

8000 128 0.3 1 2.5

By substituting the parameters from Tables 1 and 2 into Equation (10), the overall
compliance matrix for the micro-motion platform can be calculated as follows:

CAN
total =



1.0912 × 10−3 0 0 0 7.2685 × 10−5 0
0 1.0912 × 10−3 0 −7.2685 × 10−5 0 0
0 0 5.4606 × 10−3 0 0 0
0 −7.2685 × 10−5 0 4.9958 × 10−6 0 0

7.2685 × 10−5 0 0 0 4.9958 × 10−6 0
0 0 0 0 0 8.0793 × 10−9


The 3 × 3 sub-matrix in the upper-left corner of CAN

total represents the rotational com-
pliance matrix, measured in rad/(N·m). The 3 × 3 sub-matrix in the lower-right corner
represents the translational compliance matrix, measured in m/N. The 3 × 3 sub-matrices



Micromachines 2024, 15, 354 11 of 17

in the lower-left and upper-right corners represent the coupling compliance matrices, mea-
sured in m/(N·m) and rad/N, respectively. It is evident that the micro-motion platform
exhibits identical angular and linear compliance in the x and y directions, while it possesses
the maximum angular compliance and the minimum linear compliance in the z direction.

The physical model of the generalized 3-PSS compliant parallel micro-motion platform
is constructed based on the parameters in Tables 1 and 2, and then, the model is imported
into ANSYS Workbench 19.2 software for finite element simulation. The mesh partition
is depicted in Figure 6. The compliant spherical hinges are meshed using hexahedral
structures with the element size of 1 mm and concentrated deformation areas with a size
of 0.3 mm. For other components with high stiffness, such as the links and the mobile
platform, mesh partition is conducted with an element size of 3 mm. The coordinate system
setting in the finite element model remains consistent with that depicted in Figure 3a.
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In the finite element simulation, the degrees of freedom for all three input sliders are
constrained. Then, unit force or moment is applied at the center of the upper surface of
the mobile platform along each coordinate axis direction to obtain the linear or angular
compliance of the micro-motion platform in each coordinate axis direction. The simulation
results are as follows:

CFE
total =



1.1747 × 10−3 0 0 0 7.8248 × 10−5 0
0 1.1747 × 10−3 0 −7.8248 × 10−5 0 0
0 0 5.8785 × 10−3 0 0 0
0 −7.8248 × 10−5 0 5.3785 × 10−6 0 0

7.8248 × 10−5 0 0 0 5.3785 × 10−6 0
0 0 0 0 0 8.7215 × 10−9


The comparison of the theoretical analysis results (AN) and the finite element simula-

tion results (FE) in the main diagonal elements is presented in Table 3. The results indicate
that the theoretical calculations are in good agreement with the simulation results, with a
relative error of less than 8%. This validates the correctness of the micro-motion platform’s
compliance model. Theoretical calculated values are slightly lower than simulation values
because rigid components in the theoretical model are treated as deformable (despite their
high stiffness) in the finite element simulation process.
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Table 3. Analysis results of compliance of the generalized 3-PSS compliant parallel micro-motion platform.

Compliance AN FE Relative Error (%)

Cθx ,mx (rad/(N·m)) 1.0912 × 10−3 1.1747 × 10−3 7.108
Cθy ,my (rad/(N·m)) 1.0912 × 10−3 1.1747 × 10−3 7.108
Cθz ,mz (rad/(N·m)) 5.4606 × 10−3 5.8785 × 10−3 7.109

Cδx , fx (m/N) 4.9958 × 10−6 5.3785 × 10−6 7.115
Cδy , fy (m/N) 4.9958 × 10−6 5.3785 × 10−6 7.115
Cδz , fz (m/N) 8.0793 × 10−9 8.7215 × 10−9 7.363

4.2. Kinetostatic Verification

To validate the correctness of the kinetostatic model, a predefined set of trajectories
defined by Equation (26) is initially input into the theoretical model using Equation (25) to
obtain the corresponding input displacements. Subsequently, these input displacements
are applied to the finite element model to obtain the simulated trajectory of the mobile
platform. Finally, the simulated trajectory is compared with the predefined trajectory to
validate the correctness of the kinetostatic model. In this simulation case, the structural
parameters of the micro-motion platform remain consistent with those given in Section 4.1.
The position vectors for the transformations between different coordinate systems can be
measured in the 3D model, as presented in Table 4.

x = L1 sin γ cos pγ
y = L1 sin γ sin pγ
z = L1 cos γ
L1 = 1E − 4 (m), 0 ≤ γ ≤ π, p = 10

(26)

Table 4. The measured position vector parameters.

Parameter Value (mm) Parameter Value (mm)

∆d1 24.23 ∆d2 −8.12
∆l1 37.55 ∆l2 −69.6

Substituting Equation (26) into Equation (25) yields input displacements, as illustrated
in Figure 7. Then, the input displacements are applied to the finite element model, resulting
in the simulated output trajectory. Finally, the given trajectory (AN) is compared with
the simulation trajectory (FE), as shown in Figure 8. The relative errors in displacement
along the x, y, and z directions are illustrated in Figure 9. The results indicate good
alignment between the provided trajectory and the simulated trajectory. The relative errors
in displacement along the x and y directions are within 0.16%, while the relative error in
the z direction is only approximately 0.0004%.

Micromachines 2024, 15, x FOR PEER REVIEW 14 of 19 
 

 

Table 4. The measured position vector parameters. 

Parameter Value (mm) Parameter Value (mm) 

1Δd  24.23 2Δd  −8.12 

1Δl  37.55 2Δl  −69.6 

Substituting Equation (26) into Equation (25) yields input displacements, as illus-
trated in Figure 7. Then, the input displacements are applied to the finite element model, 
resulting in the simulated output trajectory. Finally, the given trajectory (AN) is compared 
with the simulation trajectory (FE), as shown in Figure 8. The relative errors in displace-
ment along the x, y, and z directions are illustrated in Figure 9. The results indicate good 
alignment between the provided trajectory and the simulated trajectory. The relative er-
rors in displacement along the x and y directions are within 0.16%, while the relative error 
in the z direction is only approximately 0.0004%. 

 
Figure 7. The input displacements for each slider obtained from the spiral trajectory. 

 
Figure 8. Comparison of the given trajectory (AN) and the simulation trajectory (FE). 

Figure 7. The input displacements for each slider obtained from the spiral trajectory.



Micromachines 2024, 15, 354 13 of 17

Micromachines 2024, 15, x FOR PEER REVIEW 14 of 19 
 

 

Table 4. The measured position vector parameters. 

Parameter Value (mm) Parameter Value (mm) 

1Δd  24.23 2Δd  −8.12 

1Δl  37.55 2Δl  −69.6 

Substituting Equation (26) into Equation (25) yields input displacements, as illus-
trated in Figure 7. Then, the input displacements are applied to the finite element model, 
resulting in the simulated output trajectory. Finally, the given trajectory (AN) is compared 
with the simulation trajectory (FE), as shown in Figure 8. The relative errors in displace-
ment along the x, y, and z directions are illustrated in Figure 9. The results indicate good 
alignment between the provided trajectory and the simulated trajectory. The relative er-
rors in displacement along the x and y directions are within 0.16%, while the relative error 
in the z direction is only approximately 0.0004%. 

 
Figure 7. The input displacements for each slider obtained from the spiral trajectory. 

 
Figure 8. Comparison of the given trajectory (AN) and the simulation trajectory (FE). Figure 8. Comparison of the given trajectory (AN) and the simulation trajectory (FE).

Micromachines 2024, 15, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 9. Relative error of displacements between the given trajectory (AN) and the simulation tra-
jectory (FE). 

4.3. Performance Analysis of Kinetostatic 
An important characteristic in the design of the generalized 3-PSS compliant parallel 

micro-motion platform is the variability in its guide rail inclination angle. This feature 
expands the range of motion performance for such micro-motion platforms. Hence, this 
section will further explore the impact of the variation in guide rail inclination angle on 
the kinetostatic performance of the micro-motion platform. The main focus is on two as-
pects: (1) the variation in the maximum input displacements required for different guide 
rail inclination angles under the same output displacement and (2) the variation in the 
micro-motion platform’s output displacements for different guide rail inclination angles 
under the same input displacement. The spatial spiral trajectory corresponding to Equa-
tion (26) in Section 4.2, along with an additional set of planar circular trajectories corre-
sponding to Equation (27), are taken as examples for separate analyses. 

( )
( )

( )

 =


=


=
 = − =

2

2

2

2

sin

sin

1 4 m , / 4

x L ωt

y L ωt
z L
L E ω π

 (27)

We substitute the spatial spiral trajectory corresponding to Equation (26) and the pla-
nar circular trajectory corresponding to Equation (27) into Equation (25), respectively, and 
continue to analyze the input displacements obtained under different guide rail inclina-
tion angles. The required maximum input displacement variation curves of the sliders for 
each guide rail inclination angle corresponding to the two trajectories are depicted in Fig-
ure 10. It can be seen from Figure 10 that under the condition of achieving the same output 
displacement, when the guide rail inclination angle θ increases from 0° to the angle α 
between the PSS link and the fixed platform (approximately 72°), the required maximum 
input displacement for the sliders gradually decreases. As is well known, a significant 
drawback of piezoelectric-driven systems is its limited stroke, and the selection of a large 
stroke needs to be at the expense of larger structural dimensions and higher costs. Thus, 
it can be seen that for the same output displacement requirements of the platform, if the 
guide rail inclination angel is designed to be large, just selecting a piezoelectric stage with 
a smaller stroke (corresponding to a smaller size and lower cost) can meet the require-
ments. Therefore, in practice, if the travel of the piezoelectric stage is limited and insuffi-
cient to achieve the required maximum output displacement, it is suggested to appropri-
ately increase the inclination angle of the guide rail to meet the requirements. 

Figure 9. Relative error of displacements between the given trajectory (AN) and the simulation
trajectory (FE).

4.3. Performance Analysis of Kinetostatic

An important characteristic in the design of the generalized 3-PSS compliant parallel
micro-motion platform is the variability in its guide rail inclination angle. This feature
expands the range of motion performance for such micro-motion platforms. Hence, this
section will further explore the impact of the variation in guide rail inclination angle on the
kinetostatic performance of the micro-motion platform. The main focus is on two aspects:
(1) the variation in the maximum input displacements required for different guide rail
inclination angles under the same output displacement and (2) the variation in the micro-
motion platform’s output displacements for different guide rail inclination angles under
the same input displacement. The spatial spiral trajectory corresponding to Equation (26)
in Section 4.2, along with an additional set of planar circular trajectories corresponding to
Equation (27), are taken as examples for separate analyses.

x = L2 sin(ωt)
y = L2 sin(ωt)
z = L2
L2 = 1E − 4 (m), ω = π/4

(27)

We substitute the spatial spiral trajectory corresponding to Equation (26) and the planar
circular trajectory corresponding to Equation (27) into Equation (25), respectively, and
continue to analyze the input displacements obtained under different guide rail inclination
angles. The required maximum input displacement variation curves of the sliders for
each guide rail inclination angle corresponding to the two trajectories are depicted in
Figure 10. It can be seen from Figure 10 that under the condition of achieving the same
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output displacement, when the guide rail inclination angle θ increases from 0◦ to the angle
α between the PSS link and the fixed platform (approximately 72◦), the required maximum
input displacement for the sliders gradually decreases. As is well known, a significant
drawback of piezoelectric-driven systems is its limited stroke, and the selection of a large
stroke needs to be at the expense of larger structural dimensions and higher costs. Thus,
it can be seen that for the same output displacement requirements of the platform, if the
guide rail inclination angel is designed to be large, just selecting a piezoelectric stage with a
smaller stroke (corresponding to a smaller size and lower cost) can meet the requirements.
Therefore, in practice, if the travel of the piezoelectric stage is limited and insufficient
to achieve the required maximum output displacement, it is suggested to appropriately
increase the inclination angle of the guide rail to meet the requirements.
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Furtherly, we analyze the variation in platform output displacement resulting from
different guide rail inclination angles under the same slider input displacement. For
simplicity, only five sets of guide rail inclination angles are selected: 0◦, 15◦, 30◦, 45◦, and α
(72◦). Here, spatial spiral trajectory and planar circular trajectory are used again for analysis.
The input displacements of the slider corresponding to the spiral trajectory are chosen from
Figure 7 in Section 4.2, while those corresponding to the planar trajectory are obtained by
substituting Equation (27) into Equation (25) (with a guide rail inclination angle of 45◦),
as illustrated in Figure 11. The output trajectories of the mobile platform for different
guide rail inclination angles corresponding to the two input displacements are illustrated
in Figure 12a,b. It can be seen from Figure 12 that under the condition of the same input
displacement, as the guide rail inclination angle increases gradually from 0◦ to α, the output
displacements of the mobile platform in the x, y, and z directions all increase. Therefore, it
can be inferred that, under the condition of the same input displacement, increasing the
guide rail inclination angle can expand the workspace of the mechanism. However, it is
essential to note that the guide rail inclination angle is not necessarily the greater the better.
This is because under the same input displacement, increasing the output displacement
will lead to a higher output resolution of the mechanism, thereby reducing the output
motion precision of the mechanism. Therefore, in practical applications, if the stroke of
the piezoelectric stage is predetermined, it is recommended to choose a smaller guide rail
inclination angle on the premise of meeting the platform’s output range, to achieve higher
precision in the motion of the mechanism. Taking the spatial spiral trajectory in Figure 8 as
an example, it can be seen from Figure 10 that if the motion stroke of the piezoelectric stage
is 200 µm, a choice of 10◦ of the guide rail inclination angle may be appropriate.
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5. Conclusions

This paper introduced a generalized 3-PSS compliant parallel micro-motion platform
and investigated its compliance and kinetostatic models. The conclusions are as follows:

1. The compliance model of the micro-motion platform was established using the co-
ordinate transformation method. The compliance model was verified through finite
element simulation with an example. The results showed the relative error between
theoretical calculation results and the simulation values on the main diagonal elements
was less than 8%, indicating the correctness of the compliance model.

2. The governing equation of the equivalent spring system for the micro-motion platform
was established based on Hooke’s Law. Then, the kinetostatic model of the generalized
3-PSS compliant parallel micro-motion platform was established using the compliance
matrix method. Based on this model, the mapping relationship between the input
and output displacements of the micro-motion platform was further derived. Finite
element simulation results demonstrated that the relative errors of displacement in
the x and y directions were within 0.16%, while the relative error in the z direction
was merely about 0.0004%. This strong consistency validated the correctness of the
kinetostatic model of the micro-motion platform.

3. The results on the influence of guide rail inclination angel variation on the kinetostatic
performance of the micro-motion platform indicate that (1) for the same output
trajectory, as the guide rail inclination angel θ increases from 0◦ to α (the angle between
the PSS link and the fixed platform), the required maximum input displacement for the
sliders gradually decreases. It can be inferred that when meeting the same platform
output displacement requirements, designing a larger guide rail inclination angle
allows for the use of a piezoelectric stage with a smaller stroke range (corresponding
to smaller dimensions and lower costs) to fulfill the specifications. (2) Under the same
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input displacement, as the guide rail inclination angle gradually increases from 0◦

to α, the output displacements of the mobile platform in the x, y, and z directions
all increase. Therefore, it can be inferred that, under the same input displacement,
increasing the guide rail inclination angle can expand the workspace of the mechanism.
However, this comes at the cost of sacrificing some output motion precision. This
analysis provides guidance for the rational design of such micro-motion platforms.
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Appendix A

The calculation formula for a right-circular compliant spherical hinge in its own
coordinate system is as follows:

Cθx ,mx = 64(1+ν)
πE

∫ 2r0
0

1
t(x)4 dx

Cθy ,my = 64
πE

∫ 2r0
0

1
t(x)4 dx, Cθy , fz = − 64r0

πE

∫ 2r0
0

1
t(x)4 dx

Cθz ,mz = Cθy ,my , Cθz , fy = −Cθy , fz

Cδx , fx = 4
πE

∫ 2r0
0

1
t(x)2 dx

Cδy ,mz = Cθz , fy , Cδy , fy = 64
πE

∫ 2r0
0

x2

t(x)4 dx + k(1+ν)
πE

∫ 2r0
0

1
t(x)2 dx

Cδz ,my = Cθy , fz , Cδz , fz = Cδy , fy

where E represents the elastic modulus of the material, ν is the Poisson’s ratio of the material,
k is the shear shape factor (taking k = 10/9), r0 is the cutting radius of the straight cylindrical
compliant spherical hinge. t(x) is the thickness function describing the compliance of the
spherical hinge along the x-axis, and its expression is as follows:

t(x) = tmin + 2(r0 −
√

x(2r0 − x))(x ∈ [0, 2r0])
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