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Abstract: Detecting environmental contaminants is crucial for protecting ecosystems and human
health. While traditional carbon dot (CD) fluorescent probes are versatile, they may suffer from limi-
tations like fluctuations in signal intensity, leading to detection inaccuracies. In contrast, ratiometric
fluorescent probes, designed with internal self-calibration mechanisms, offer enhanced sensitivity and
reliability. This review focuses on the design and applications of ratiometric fluorescent probes based
on CDs for environmental monitoring. Our discussion covers construction strategies, ratiometric
fluorescence principles, and applications in detecting various environmental contaminants, including
organic pollutants, heavy metal ions, and other substances. We also explore associated advantages
and challenges and provide insights into potential solutions and future research directions.
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1. Introduction

Environmental contamination, arising from a multitude of sources such as industrial
processes, urbanization, and agricultural activities, poses a significant concern for the
planet’s well-being [1]. This contamination includes a broad range of hazardous substances,
such as organic pollutants, heavy metal ions, and biological species, each presenting unique
challenges and threats to ecosystems and public health. Efforts to address environmental
contamination hinge on the crucial necessity for precise and efficient detection and monitor-
ing methods. Existing approaches, such as inductively coupled plasma mass spectrometry
(ICP-MS) [2–4], atomic absorption spectrometry (AAS) [5–8], high-performance liquid
chromatography (HPLC) [9–11], and surface-enhanced Raman spectroscopy (SERS) [12,13],
have limitations including variable selectivity, sensitivity, and, in some cases, cumbersome
analytical procedures. These conventional techniques often require complex sample prepa-
ration, time-consuming procedures, and expensive instrumentation, making them less
suitable for real-time monitoring and in situ applications. The demand for more advanced
and reliable techniques has never been more urgent, especially given the growing global
environmental challenges. This urgency necessitates innovative solutions that can address
the limitations of existing methods and provide accurate, sensitive, and practical means of
environmental monitoring.

Ratiometric fluorescent probes play a crucial role in environmental monitoring, offer-
ing precise and reliable detection of various contaminants. Several ratiometric technologies
are available, including Fluorescence Resonance Energy Transfer (FRET) [14], Chemilumi-
nescence (CL) [15], Photoacoustic (PA) [16], Bioluminescence (BL) [17], and Afterglow [18],
each with its own set of advantages and limitations. For example, FRET provides high
sensitivity and resolution but requires matching fluorescent moieties and operates within
limited distance ranges. CL, on the other hand, offers high sensitivity and rapid detection
but may suffer from background signals and limited specificity. PA imaging offers deep
tissue penetration and high resolution but may be hindered by slow imaging speeds and
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signal attenuation. BL is advantageous for its label-free detection and suitability for in vivo
imaging but faces challenges with background noise and tissue penetration depth. After-
glow technology provides long-lasting signals for prolonged tracking and in vivo imaging
but may lack sensitivity and resolution.

In contrast, carbon dot (CD)-based ratiometric fluorescent probes offer a promising
alternative. Their dual emission peaks enable inherent self-calibration, ensuring precise and
selective detection of environmental contaminants [19–24]. This property stems from the
unique structural and surface characteristics of carbon dots, which facilitate efficient photon
emission through mechanisms like quantum confinement and surface passivation [25]. The
broad emission spectrum of CDs allows for fluorescence emission across various wave-
lengths, enhancing their versatility in detecting different analytes with diverse fluorescence
properties [26,27]. Furthermore, CDs demonstrate remarkable fluorescence stability under
diverse environmental conditions, such as exposure to light, temperature changes, and
chemical environments. This stability ensures reliable and consistent fluorescence signals
during environmental monitoring applications. The multiple emissive centers on the sur-
face of CDs contribute to their unique emission peaks, providing a foundation for precise
and selective detection of various contaminants [28,29]. Additionally, factors like pH [30],
solvent polarity [31], and surface functionalization [32] can modulate the fluorescence
intensity of CDs, further expanding their applicability in environmental sensing. CDs’
dual emission peaks serve as an intrinsic self-calibration mechanism, offering precise and
selective detection of various contaminants [33–43]. This unique feature positions CDs
as promising candidates for advanced environmental contaminant detection, offering a
solution to the limitations of traditional fluorescent probes. However, CD-based ratiometric
fluorescent probes, while promising, also have limitations. These may include issues related
to photobleaching, signal stability, and potential interference from background fluorescence,
necessitating further investigation and optimization.

Despite numerous studies [7,44–56] and reviews [57–63] on CD-based ratiometric
fluorescent probes, a comprehensive review dedicated to their role in environmental con-
taminant detection is notably absent. In this review, we highlight the unique potential of
ratiometric fluorescent probes based on CDs for environmental monitoring. We first explore
their construction strategies and the underlying principles of ratiometric fluorescence. Our
discussion encompasses their diverse applications in detecting various environmental
contaminants, including organic pollutants, heavy metal ions, and other contaminants.
We also delve into the associated benefits and challenges, emphasizing the need for im-
proved selectivity, sensitivity, and real-time monitoring. Additionally, we offer insights
into potential solutions and future research directions, considering aspects such as probe
stability and expanding analyte detection capabilities. Through this comprehensive review,
we aim to contribute to the promotion of environmental safety and the advancement of
sensing technology.

2. Construction Strategies of CDs in Detecting Environmental Contaminants

The construction of ratiometric fluorescent probes based on CDs can be categorized
into various strategies, including surface modification, integration of composite materials,
simple mixing strategy, and dual emission techniques. This section provides a comprehen-
sive overview of how each strategy contributes to enhancing the performance of CDs in
detecting environmental contaminants.

2.1. Surface Modification Strategy

Surface modification is a fundamental approach to enhance the properties of CDs to
meet the specific requirements of environmental contaminant detection. By strategically
altering CD surfaces, such as optimizing surface charge to enhance aqueous dispersibility or
attaching specific ligands to target particular contaminants, surface modification provides a
versatile means to fine-tune CDs for optimal performance. This adaptability makes surface



Micromachines 2024, 15, 331 3 of 21

modification a cornerstone strategy, enabling researchers to effectively address solubility,
selectivity, and stability issues.

Chemical surface modification introduces various functional groups onto CD surfaces
to enhance solubility, reactivity, and specific ligand conjugation [64–73] (Figure 1a). For
instance, Xu et al. [74] reported a ratiometric CD pH sensor enriched with amino groups,
enabling them to specifically target lysosomes within living cells. The CDs were func-
tionalized with abundant amino groups during their synthesis, exhibiting dual emission
bands at 439 and 550 nm under single-wavelength excitation without the need for addi-
tional labeling. This sensor demonstrates robust lysosomal targeting, as evidenced by high
Pearson’s colocalization coefficients (0.935 and 0.924), which indicate the degree of spatial
overlap between the fluorescent signals emitted by the CDs and the lysosomal markers.
Wang et al. [75] developed a novel ratiometric fluorescent probe for dipicolinic acid (DPA)
point-of-care testing (POCT) by functionalizing CDs containing carboxyl and amino groups
with Eu(III) ions (CDs-Eu) (Figure 1b). This approach features an exceptional detection
limit of 0.8 nM.
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Biological surface modification utilizes biomolecules like proteins, DNA, and enzymes
to modify CDs, enabling the creation of highly selective probes for specific environmental
pollutants or biological markers. Bu et al. [76] combined red-emitting DNA-templated
copper nanoclusters (CuNCs) with blue-emitting CDs, forming a self-assembled complex
known as DNA-CuNC/CDs through electrostatic forces. This complex serves as a dually
emitting ratiometric probe for simultaneously detecting arginine and acetaminophen, with
detection limits of 0.35 µM and 0.26 µM, respectively. Hu et al. [77] introduced a straightfor-
ward technique for fabricating vesicle-like CDs (VCDs) by dry heating surfactant solutions.
Similar to many previously reported CDs, these VCDs display intriguing fluorescence
properties. The incorporation of enzymes and gold nanoclusters (AuNCs) within the VCDs
enables the development of fluorescent probes for quantifying diverse substrates, offering
significant advantages in sensitivity and selectivity.

2.2. Composite Strategy

The composite strategy involves integrating CDs with other nanomaterials like metal
nanoparticles, quantum dots, or other nanomaterials, to enhance their performance as fluo-
rescent probes. This integration occurs through chemical bonding or interactions, resulting
in a new composite material. Consequently, these composite probes display improved
fluorescence characteristics, greater stability, and heightened sensitivity, making them
valuable tools for environmental contaminant detection and other analytical applications.

A commonly employed strategy involves amalgamating CDs with other optical ma-
terials featuring unsaturated sites [78,79]. For instance, Zhou et al. [79] synthesized the
CDs-PCN-224 (porphyrin-based metal-organic framework nanoparticles) fluorescent probe
by post-synthetically modifying luminescent metal-organic frameworks and CDs. They
combined the abundant groups on the surface of CDs with the unsaturated sites provided
by the activated PCN-224 (Figure 2a). In this probe, the fluorescence of CDs served as a ref-
erence signal, while the fluorescence of PCN-224 acted as a highly sensitive response signal
with active sites designed for detecting copper ions. The CDs-PCN probe exhibited rapid,
sensitive, and selective response to copper ions, boasting an impressively low detection
limit of 44 nM.

A core-shell structure is also a frequently adopted approach to protect the sensing
capabilities of CDs fluorescent probes [80–85]. For example, Gong et al. [80] reported a
novel and stable ratiometric fluorescent probe (B-CDs@SiO2@GSH-AuNCs/Ag+) designed
for the sensitive detection of uranyl in water (Figure 2b). This probe exhibited exceptional
stability, with the F/F440 ratio decreasing by merely 4.73% even after three months in a
chloroacetic acid-sodium acetate buffer solution (pH 3.0).
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2.3. Simple Mixing Strategy

The simple mixing strategy involves the direct physical combination of CDs with
other components without covalent bonding or strong interactions between them. This
method offers a rapid and convenient approach to creating ratiometric fluorescent probes
for environmental contaminant detection. CDs are physically mixed with other reference
luminescent materials, such as polymers, nanoparticles, or other fluorophores, to establish
a dual-emission system [67,86–97] (Figure 3a).

The adaptability of the simple mixing strategy facilitates the creation of ratiometric
fluorescent probes tailored for various environmental contaminant detection scenarios.
Through the selection of suitable companion materials and precise adjustment of mixing
ratios, this method can be personalized to target specific analytes or adapt to a broad
spectrum of environmental conditions. Additionally, the resulting probes can often be
produced rapidly, making them attractive for applications requiring rapid response times,
such as on-site monitoring and point-of-care testing. Ghasemi et al. [86] devised a ratio-
metric fluorescent probe composed of blue-emissive CDs (BCDs) in combination with
thioglycolic acid (TGA)-capped yellow-emissive cadmium telluride (CdTe) quantum dots
(YQDs). This probe demonstrates dual emissions, peaking at 443 and 560 nm, with a
single excitation wavelength of 360 nm. Upon exposure to Hg(II) ions, as a representative
example, the fluorescence of the YQDs undergoes selective quenching and redshift, leading
to a continuous change in the probe’s emission color. This transition ranges from vibrant
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green to lighter shades of green, yellow-green, and yellow, eventually shifting towards
warmer tones such as orange, pink, purple, weak blue, and even dark blue. The fluorescent
ratiometric probe exhibits an impressively low detection limit of 4.6 nM. Qin et al. [88]
developed a ratiometric fluorescence probe that combines green CDs with CdTe QDs,
enabling highly selective and quantitative detection of methyl parathion (MP) (Figure 3b,c).
Under alkaline conditions, MP undergoes rapid hydrolysis, yielding p-nitrophenol (p-NP).
This immediate chemical transformation triggers the reinforcement of hydrogen bonds,
creating an internal filter effect between the CDs and p-NP. Consequently, this interaction
quenches the green fluorescence, resulting in a vivid and instant transition from green to
red emission. The probe demonstrates an impressive level of sensitivity, with a detection
limit as low as 8.9 nM.
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Cu2+ [92]; (b) integration of green CDs and CdTe quantum dots for highly selective quantitative
detection of MP [88]; (c) sensing mechanism of internal filtration effect (IFE) of p-NP to green CDs
(* represents the excited state) [88].
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2.4. Dual Emission Strategy

The dual emission strategy is a versatile and effective approach that capitalizes on
the intrinsic fluorescence properties of CDs. In this method, CDs are engineered or mod-
ified to emit light at two distinct wavelengths under the excitation of a single wave-
length [64,66,67,74,98–107] (Figure 4). These dual-emitting CDs offer a built-in reference
signal, enhancing the accuracy and reliability of ratiometric measurements. The concept
behind dual-emitting CDs involves generating two distinct fluorescence signals within a
single nanomaterial. One of these emissions typically serves as the analyte-specific response
signal, while the other serves as a constant reference signal. The reference signal remains
unaffected by environmental changes, making it an ideal internal standard for calibration
and quality control [64,67,103–107].
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Figure 4. (a) Gallic acid and o-phenylenediamine were used as raw materials to prepare dual-emission
CDs exhibiting two fluorescent emission peaks at 470 and 570 nm, respectively [104]; (b) the CDs,
synthesized using tartaric acid (TA) and m-phenylenediamine (mPD) through a straightforward
one-step hydrothermal method, display two fluorescence emission peaks at 499 nm and 439 nm when
excited at 380 nm [105].

This built-in reference signal significantly enhances the accuracy and reliability of
ratiometric measurements in detecting environmental contaminants. It helps alleviate
potential sources of error, such as fluctuations in excitation intensity or variations in
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sample matrix composition. Furthermore, the dual emission strategy allows for real-time
monitoring of changes in analyte concentration or environmental conditions, making it
particularly advantageous for on-site and in situ applications. Paydar et al. [98] modified
CDs through a simple chemical surface modification using glutathione. The modified
CDs displayed a unique spectral profile characterized by two distinctive emission peaks,
separated by 170 nm, ranging from 522 to 692 nm. This probe not only enabled precise
quantification of Pb2+ but also exhibited remarkable sensitivity, with a detection limit of
Pb2+ as low as 2.7 nM. Chen et al. [99] introduced a near-infrared ratiometric fluorescent
probe based on nitrogen and sulfur co-doped CDs (N, S-CDs). This probe was synthesized
using a hydrothermal approach, employing glutathione and formamide as precursors. The
N, S-CDs, due to their nitrogen and sulfur atom doping, readily form complexes with Zn2+.
Under excitation at 415 nm, the ratio (I650/I680) of fluorescence intensity at 650 nm to 680 nm
exhibited a direct correlation with the concentrations of Zn2+. The probe demonstrated a
remarkable detection limit of 5.0 nM for Zn2+.

3. Application in Environmental Monitoring

Detecting environmental contaminants presents unique challenges due to the diverse
nature of pollutants and their potential harm to ecosystems and human health. Tradi-
tional analytical methods often lack the sensitivity, selectivity, and real-time monitoring
capabilities needed for effective environmental assessment. The application of ratiometric
fluorescence principles in contaminant detection using CDs has emerged as a powerful
analytical approach. CDs’ ratiometric fluorescence offers a compelling solution by leverag-
ing the inherent optical properties of CDs to address these challenges. In this approach,
CDs are strategically modified or functionalized to interact specifically with target pollu-
tants. The presence of environmental contaminants triggers changes in the CD emission
properties, leading to alterations in dual-emission characteristics. These changes form the
basis for ratiometric measurements, enabling the quantification of contaminant levels and
differentiation of target pollutants from potential interferents. This method has practical
applications in various environmental monitoring scenarios, including the detection of
organic pollutants, heavy metals, and other harmful substances.

3.1. Heavy Metal Ion Sensing

The detection and quantification of heavy metal ions in the environment are crucial
due to their high toxicity and potential adverse effects on ecosystems and human health.
Heavy metal ions, such as mercury (Hg2+) [86,101,108–115], lead (Pb2+) [67,98,106,116–119],
chromium (Cr6+) [120–123], copper (Cu2+) [67,79,92,109,119,124–130], and silver (Ag+) [78,
117,131–133], can contaminate water, soil, and air through various industrial processes and
human activities. Table 1 summarizes sensing of some heavy metal ions using CD-based
ratiometric fluorescence probes. CDs have proven to be versatile tools for the sensitive
and selective detection of heavy metal ions. The application of CD-based ratiometric
fluorescence probes in heavy metal ion sensing relies on specific interactions between CDs
and metal ions, resulting in changes in the CD emission properties.

The mechanisms underlying the detection of heavy metal ions using CD-based ra-
tiometric fluorescence probes vary depending on the specific interactions between CDs
and the metal ions. These interactions can be broadly categorized into four mechanisms:
chelation, surface modification, quenching, and aggregation-induced changes.

Functionalized CDs with specific ligands or receptors have the unique ability to form
stable complexes with heavy metal ions through chelation. This involves binding metal ions
to functional groups on the CD surface, creating enduring chemical bonds (Figure 5a). As a
result, this chelation process induces significant alterations in the CDs’ emission properties,
allowing for precise detection of metal ions such as Hg2+ [112], Pb2+ [106], and Cu2+ [124].
This mechanism is widely used in environmental monitoring, especially in assessing water
and soil quality due to its high sensitivity and selectivity.
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Table 1. A summary of CD-based ratiometric fluorescence probes for the detection of heavy metal ions.

Ratiometric FL Probes Construction Strategy Analyte LOD Ref.

ZIF-8@g-CNQD/CdTe Quench of CdTe Hg2+ ~46 nM [111]
Ag/Au@CDs nanohybrids Ligand effect Hg2+ 7 nM [109]

YQDs + BCDs Quench of CdTe Hg2+ 4.6 nM [86]
Dual-emissive CDs Ligand effect Hg2+ 0.27 µM [101]
(NCDs-RhB@COF Ligand effect Hg2+ 15.9 nM [108]

CDs and CdSe@ZnS QDs Quench of CdSe@ZnS QDs Hg2+ 0.1 µM [112]
CDs and Si NCs Quench of Si NCs Hg2+ 7.63 nM [110]
CuNCs-CNQDs Aggregation of CuNCs Pb2+ 0.0031 mg L−1 [116]
N-CDs/AuNCs Aggregation of AuNCs Pb2+ 0.5 µM [67]

GSH-modified CDs Aggregation of CDs Pb2+ 2.7 nM [98]
Label-free CDs Ligand effect Pb2+ 0.055 µM [106]

Y-CDs IFE Cr6+ 2.3 nM [121]
Dual-emissive CDs IFE Cr6+ 0.4 µM [120]

N-doped Dual-emissive CDs IFE Cr6+ 3.2 µM [122]
Ag/Au@CDs nanohybrids Aggregation of CDs Cu2+ 5 nM [109]

N-CDs/AuNCs Quench of AuNCs Cu2+ 0.15 µM [67]
N-CDs/AgNCs Aggregation of N-CDs/AgNCs Cu2+ 0.13 µM [124]

r-CDs and b-CDs (1:7) Quench of b-CDs Cu2+ 8.82 nM [92]
Dual-emissive CQDs Ligand effect Cu2+ - [130]
Dual-emissive N-CDs Ligand effect Cu2+ 17.7 nM [126]

GCDs@RSPN Quench of GCDs Cu2+ 0.58 µM [127]
Dual-mode SQD–CQD probe IFE Cu2+ 31 nM and 47 nM [128]

MPA-CdTe and CDs Quench of MPA-CdTe Cu2+ 0.36 nM [125]
CDs-PCN Ligand effect Cu2+ 44 nM [79]

NCCOFTAPT-TT Photoinduced electron transfer Cu2+ 17.3 nM [129]
P-CDs/R-CDs Quench of P-CDs Ag+ 32 nM [132]

NALC-CdTe QDs and N,Si-CQDs Quench of NALC-CdTe QDs Ag+ 1.7 nM [131]
CSs-AuNCs Increased FL of AuNCs Ag+ 1.6 nM [78]

Surface modification techniques serve as a versatile approach to engineer CDs for
the selective adsorption of heavy metal ions. By leveraging various methods, including
electrostatic interactions, ion exchange, or chemical binding, CDs can be tailored to adsorb
specific metal ions (Figure 5b). This surface modification technique results in the absorption
of metal ions onto the CD surface, thereby altering the CD’s photophysical properties.
These changes enable ratiometric measurements for the detection of metal ions such as
Pb2+ [98] and Cu2+ [109,127], which are frequently detected using this mechanism.

In certain situations, heavy metal ions directly quench the fluorescence of CDs. This
quenching phenomenon arises from the binding of metal ions to CDs, causing a non-
radiative energy transfer that reduces the fluorescence intensity of the CDs (Figure 5c).
As a result, this quenching mechanism is employed for the detection of a wide range
of metal ions, including Hg2+ [86,101,108,109,112], Ag+ [131,132], Cr6+ [120–122], and
Cu2+ [67,92,126]. Its applicability extends to various fields, including clinical diagnostics
and environmental monitoring, due to its simplicity and ability to yield real-time results.

The presence of heavy metal ions can induce the aggregation of CDs through interac-
tions with the metal ions, a phenomenon often described as aggregation-induced changes.
This process leads to noticeable alterations in the photophysical properties of CDs (Fig-
ure 5d). Specifically, it results in changes in the dual-emission characteristics that are used
for ratiometric measurements. As such, this mechanism has found significant application
in the detection of metal ions such as Cu2+ [67,109,124,129] and Pb2+ [67,98,116]. Its unique
sensitivity to changes in the aggregation state of CDs has made it a valuable tool in the
study of complex environmental samples and biological systems.
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Figure 5. (a) Upon the introduction of Cu2+, the red fluorescence of AgNCs diminishes due to the
robust chelating interaction between L-glutathione and Cu2+, while the blue fluorescence undergoes
a resurgence, leading to a notable shift in fluorescence color from pink to blue under UV light [124];
(b) a dual-emissive fluorescent ratiometric probe for Cu2+ was developed by loading amine-coated
CDs onto red emission semiconducting polymer nanoparticles (RSPN) through electrostatic ad-
sorption [127]; (c) schematic illustration of Y-CDs preparation and the quenching process upon the
addition of Cr(VI) to the system [121]; (d) the average dynamic size of m-AP-GSH CDs transformed
from 1.67 nm without Pb2+ to 289.3 nm after Pb2+ addition, indicating significant aggregation of the
CDs with Pb2+ [98].
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3.2. Detection of Organic Pollutants

Detecting organic pollutants accurately and precisely is crucial for environmental
monitoring because these contaminants consist of various compounds, each with distinct
chemical properties and potential environmental and health impacts. Organic pollutants
encompass polycyclic aromatic hydrocarbons (PAHs), pesticides, herbicides, pharmaceuti-
cal residues, industrial chemicals, and other recalcitrant organic compounds. Assessing
environmental quality and ensuring public safety heavily relies on the detection and
quantification of these substances.

Pesticides and herbicides pose significant challenges in environmental monitoring,
and CDs offer a promising solution for their detection and sensing [134–136] (Figure 6a).
Shokri et al. [134] developed a novel method to detect triticonazole using a dual-emission
ratiometric fluorescence sensor. This sensor involved encapsulating boron-doped CDs
(B-CDs) with blue fluorescence and phosphorus-doped green-emitting CDs (P-CDs) into a
zeolitic imidazolate framework-8 (ZIF-8). The B-CDs/P-CDs@ZIF-8 composite displayed
two distinct emission peaks at 440 nm and 510 nm when excited at a single wavelength of
385 nm, corresponding to B-CDs and P-CDs, respectively. In the presence of triticonazole,
the fluorescence intensity of B-CDs decreased significantly, while that of P-CDs remained
constant. As the concentration of triticonazole increased, the color of the ratiometric probe
shifted gradually from blue to green. Under optimized conditions, the B-CDs/P-CDs@ZIF-8
probe exhibited a low detection limit of 4.0 nM for triticonazole.

Pharmaceutical residues can disrupt ecosystems, contribute to antibiotic resistance,
and lead to various health issues, including allergies and poisoning. Monitoring and con-
trolling pharmaceutical residues are crucial to mitigate these risks [65,69,81,88,105,137–150]
(Figure 6b). One fundamental mechanism in detecting pharmaceutical residues is related
to electron transfer processes. Adsorption of pharmaceutical residues onto the surfaces of
CDs can trigger electron transfer processes, resulting in alterations in the CDs’ emission
properties. Jalili et al. [141] introduced a rapid-response ratiometric probe for the sensi-
tive visual detection of the banned veterinary antibiotic chloramphenicol (CLP), which is
still illicitly used in animal husbandry. They utilized two kinds of CDs, one with yellow
emission (Y/CDs, 560 nm) as the target-sensitive component and the other with blue
emission (B/CDs, 440 nm) as reference dyes to create the ratiometric fluorescence probe
(mMIP@YBCDs). In the presence of CLP, interactions between amino groups (-NH2) in the
APTES molecule, located within the binding sites of mMIP@YBCDs, and functional groups
in CLP, such as the carbonyl and nitro groups, lead to the formation of a Meisenheimer
complex through hydrogen bonding. This interaction results in electron transfer between
Y/CDs and CLP, significantly inhibiting radiative recombination of the electron–hole pair.
Consequently, the majority of excited electrons return to the ground state via nonradiative
decay instead of radiative decay, causing a reduction in fluorescence intensity.
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Figure 6. (a) Schematic diagram of construction method for blue/red-emission CDs probe and
ratiometric response to malachite green [135]. (b) Illustration of 11-mercaptoundecanoic acid-
functionalized CDs as a ratiometric fluorescence probe for selective doxorubicin (DOX) detection.
Mode I displays the fluorescence spectra of mercaptoundecanoic-CDs (MUA-CDs) (0.2 mg/mL) un-
der excitation at 399 nm, responding to varying DOX concentrations (0.25–97.07 µM). Mode II exhibits
the UV-vis absorption spectra of MUA-CDs under different DOX concentrations (0–63.20 µM) [148].

3.3. Other Contaminants

In addition to organic pollutants and heavy metal ions, CD-based ratiometric fluores-
cence probes have been utilized in detecting various other environmental contaminants.
These contaminants consist of a diverse range of substances, each presenting unique chal-
lenges for detection and quantification. The versatility and adaptability of CD-based probes
make them well-suited for addressing these challenges.

Anions: CD-based probes have been employed for detecting various anions, including
phosphate (Pi) [87,103,151], nitrite (NO2

−) [68,152], hypochlorite (ClO−) [153,154], bisul-
fite [155], and sulfide (S2−) [156] in water sources, facilitating the assessment of water
quality.

Gases and Vapors: CD-based sensors have been developed for detecting gases such as oxy-
gen (O2) [157], hydrogen sulfide (H2S) [66,158], volatile organic compounds (VOCs) [122,159–161]
(Figure 7a,b), and nitrogen dioxide (NO2) [162] (Figure 7c) in liquid or air quality monitor-
ing scenarios.

Biological and Biomolecular Targets: CD-based ratiometric fluorescence probes have
been adapted for detecting specific biological and biomolecular targets, such as bacte-
ria [82,163,164], biomarkers [75,165], cholesterol [77], amino acids [64], guanine [166,167],
DNA [168] (Figure 7d,e), and proteins [1,91,107,169,170]. These probes find applications in
genomics, molecular diagnostics, and bioanalytical assays.
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Figure 7. (a) Schematic diagram of the ratiometric fluorescence sensing system for isopropanol
detection and (b) reaction mechanism of the probe sensing part nicotinamide adenine dinucleotide
(NAD+) for isopropanol [161]; (c) schematic illustration of blue-emission CDs and red-emission
CdTe QDs hybrid probe structure and the visual detection principle for NO2 [162]; (d) synthesis of
positive-charged CDs (P-CDs) in a two-step procedure; (e) the quenching of fluorophore-labelled
ssDNA by P-CDs, while retaining the stable fluorescence intensity of P-CDs, enabling a ratiometric
analytical method for gardnerella vaginalis DNA with the target sequence circulating under the
assistance of exonuclease III (Exo III) [168].

4. Conclusions and Outlook

Detecting environmental contaminants is crucial for safeguarding ecosystems and pub-
lic health. While traditional CD fluorescent probes have shown versatility in environmental
monitoring, they are not without limitations, particularly in terms of the accuracy and
reliability of detection results due to fluctuations in absolute signal intensity. Ratiometric
fluorescent probes, engineered with internal self-calibration mechanisms, offer significant
advantages, including enhanced sensitivity and reliability. In this review, we have explored
the design and applications of ratiometric fluorescent probes based on CDs for environmen-
tal monitoring. Our discussion has covered construction strategies, ratiometric fluorescence
principles, and applications in detecting various environmental contaminants, including
organic pollutants, heavy metal ions, and other environmental threats. Additionally, we
have outlined future directions as follows:

I. Sustainable synthesis of biocompatible CDs for eco-friendly sensing: Most CDs are
made using non-renewable materials and energy-intensive methods, which harm the
environment. Additionally, biocompatible CDs are a new area with limited practical
uses. Creating biocompatible CDs supports the global shift towards green chemistry
and sustainability. These CDs can reduce environmental risks, making sensing appli-
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cations safer. Their use also cuts down on hazardous waste and promotes renewable
resources.

II. Multiplexed sensing for comprehensive environmental analysis: Currently, many
CD-based ratiometric probes are designed for single analytes, which makes combining
multiple sensing capabilities into one probe challenging due to possible cross-reactivity.
Since the environment usually has a mix of contaminants, creating multiplexed ratio-
metric probes is crucial. These probes can detect various contaminants simultaneously,
reducing the need for many sensors. This approach provides a more accurate assess-
ment of environmental conditions by handling the complex nature of contaminants.

III. Portable field sensors for real-time monitoring: While CD-based ratiometric sensors
are mainly used in labs, their usefulness in field applications is limited. Even portable
sensors may lack durability and quick detection capabilities. Portable sensors are
important for real-time monitoring in tough environmental conditions, enabling rapid
responses to emergencies. Field monitoring ensures timely environmental assessments
and responses, especially in remote or disaster-prone areas. Developing portable,
strong sensors is vital for improving data collection.

IV. Microscale environmental mapping for detailed insight: Microscale environmental
mapping using CD-based ratiometric fluorescence has limitations in spatial precision
and integrating diverse sensing technologies. Many environmental issues require
a microscale perspective for deep understanding. Integrated spatial data improve
decision-making. Enhanced spatial precision offers detailed insight into contamination
patterns. Collaboration across disciplines helps interpret data effectively and derive
actionable insights.
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