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Abstract: Because the conventional Temperature Drift Error (TDE) estimation model for Capacitive
MEMS Gyros (CMGs) has inadequate Temperature Correlated Quantities (TCQs) and inaccurate
parameter identification to improve their bias stability, its novel model based on thermal stress
deformation analysis is presented. Firstly, the TDE of the CMG is traced precisely by analyzing its
structural deformation under thermal stress, and more key decisive TCQs are explored, including
ambient temperature variation ∆T and its square ∆T2, as well its square root ∆T1/2; then, a novel
TDE estimation model is established. Secondly, a Radial Basis Function Neural Network (RBFNN) is
applied to identify its parameter accurately, which eliminates local optimums of the conventional
model based on a Back-Propagation Neural Network (BPNN) to improve bias stability. By analyzing
heat conduction between CMGs and the thermal chamber with heat flux analysis, proper temperature
control intervals and reasonable temperature control periods are obtained to form a TDE precise
test method to avoid time-consuming and expensive experiments. The novel model is implemented
with an adequate TCQ and RBFNN, and the Mean Square Deviation (MSD) is introduced to evaluate
its performance. Finally, the conventional model and novel model are compared with bias stability.
Compared with the conventional model, the novel one improves CMG’s bias stability by 15%
evenly. It estimates TDE more precisely to decouple Si-based materials’ temperature dependence
effectively, and CMG’s environmental adaptability is enhanced to widen its application under
complex conditions.

Keywords: capacitive MEMS Gyros; temperature dependence; thermal stress deformation analysis;
TDE precise test method based on heat flux analysis; RBFNN

1. Introduction

Capacitive MEMS Gyros (CMGs) have so many merits, such as significant miniaturiza-
tion, high integration, low power consumption, and cost, and they are widely utilized and
applied in diverse fields, for example, inertial navigation, attitude detection, and heading
guidance [1–4]. However, because CMGs are manufactured with Si-based materials of
temperature dependence, temperature must change the physical properties of Si-based
materials, which introduces Temperature Drift Error (TDE) to reduce CMG’s bias stability
and limits their applications in some fields [5]. Intrinsically, optimizing the production
process of Si-based materials to decouple their temperature dependence is the fundamental
way to eliminate TDE [6]. Due to current material process limitations, it is so hard to
decouple temperature dependence in the present technological context. In the background
of the great repeatability of CMGs, temperature control and mathematical estimation are
mainstream methodologies to eliminate TDE [7–9]. The first one uses a temperature control
system to stabilize ambient temperature, and it has the merits of high temperature control
accuracy. In contrast, its demerits, high power consumption, large volume, and complex
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control, limit it to be used on a large scale [10–12]. The second one is based on given
models to estimate TDE precisely and calibrate CMG’s outputs in real time. Although it
has the merits of low cost and easy implementation, its accuracy depends on precise TDE
traceability and parameter identification of TDE estimation models [13,14].

On one hand, TDE traceability is important to enhance CMG’s bias stability [15].
Considering the consistent working principle of capacitive MEMS devices, Temperature
Correlated Quantities (TCQs), exciting TDE is universal and invariant, and it ought to be
figured out completely to offer references to describe TDE more accurately. Based on many
experiments, Maj et al. show ambient temperature variations of 1 ◦C introduce a sensitivity
variation of 1% of the scale factor of a capacitive MEMS accelerometer, which indicates that
the direct cause of TDE is ambient temperature [16]. Kim et al. research the influence of
ambient temperature on three-dimensional sizes of Si-based materials, and the experimental
results point out that Si-based materials deform linearly with ambient temperature [17]. So,
a composite model for estimating TDE is built with ambient temperature and TDE. After
estimation and compensation, the bias stability of capacitive MEMS devices is improved
by 10%. Wen et al. figured out that ambient temperature variation is key to describing
structural deformation inside CMGs [18]. Ambient temperature and its variation are
utilized as the TCQ of TDE, and the Radial Basis Function Neural Network (RBFNN) is
used to estimate TDE precisely; then, CMG’s bias stability is improved by 10%. Bekkeng
explores TCQs, ambient temperature, and their variation’s square, and a Kalman filter is
applied to estimate TDE [19]. Then, the absolute rate error of MEMS inertial devices is
reduced by more than a factor of 10. Chen et al. use linear microstructure thermal analysis
to show microstructure deformation of the combs in MEMS capacitive accelerometers
and obtain TCQs, ambient temperature variation, and their variation’s square [20]. TDE
is estimated with TCQs and RBFNNs, and its bias stability is improved by 60%. But,
microstructure deformation is analyzed from an uncomprehensive perspective, and the
factors that may cause nonlinear deformation are not studied to confirm whether nonlinear
deformation occurs. Shi et al. propose a multi-physical analysis to research TDE [21]. It
reveals that the deviation of the thermal expansion coefficient between simulations and
experiments is about 1~2 mg/◦C, and thermal expansion properties of Si-based materials
are nonlinear, which is non-ignorable to TDE traceability. Ambient temperature and its
square and ambient temperature variation and its square are explored as TCQs, and a novel
TDE estimation model is established with them and a Back Propagation Neural Network
(BPNN) using particle swarm optimization plus genetic algorithm. The experimental results
show that its bias stability is improved by 16.01% compared with the conventional model.
Furthermore, a conclusion is formed that Si-based materials have complex structural
deformation under the action of bending moment and elastic modulus, and it further
shows that partial structural deformation inside CMGs is nonlinear [22–25]. So, the key to
tracing TDE accurately lies in exploring complete TCQs based on the nonlinear structural
deformation of Si-based materials, especially under thermal stress.

On the other hand, precise parameter identification which describes the relationship
between TCQs and TDE is another key factor, and it requires the prerequisites that the TDE
estimation model is accurate. An accurate TDE estimation model focuses on the relationship
between its inputs and outputs, and the bias stability of CMGs is compensated to the target
ones with its inputs [26]. Cheng et al. apply a particle swarm optimization algorithm
in optimizing support vector machine models to improve bias stability. Small batch data
processing methods are used to ensure its modeling in real time [27]. Although it improves
capacitive MEMS accelerometers’ bias stability by up to 18.96%, support vector machine
models with complicated structures are unsuitable for disposing a lot of experimental results
and even reduce in real time. Pan et al. show a TDE estimation model using a wavelet neural
network, which improves bias stability after compensation to 10% of that before [28]. Due to
the diversity and uncertainty of signal transmission in wavelet neural networks, extensive
training is needed to identify its precise parameters. Xu et al. propose a TDE estimation
model based on a BPNN, and the nonlinear maximum of TDE is reduced from 3329 ppm
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to 603 ppm [29]. As a kind of classical artificial neural network, the BPNN has a simple
structure, including an input layer, one or more hidden layers, and an output layer, which
achieve more outstanding estimation performance to ensure its higher precision and better
real time performance, as well as easier implementation in applications compared with other
methods [30]. As is known, when BPNNs are trained, their local optimums are prone to occur
and may introduce non-optimal estimates of TDE. Wang et al. use a genetic algorithm to assist
in training BPNNs to avoid them [31]. The bias stability of the compensated capacitive MEMS
accelerometer is less than 0.017% during −10~80 ◦C, and it is 173 times more precise than the
TDE estimation model with polynomial fitting. But, the genetic algorithm has the demerits
of probability disorder, reducing its calculation accuracy and real time performance and
increasing the training amount of BPNNs and the targeted model’s identification difficulty.
So, a proper parameter identification is able to describe the complex nonlinearity and estimate
TDE precisely. Additionally, it should have more real time to compensate for CMG’s bias
stability with its TCQs to ensure that it outputs angular velocity timely, even in the case that
the carrier rotates at a large angular velocity. Compared with the BPNN, the RBFNN is a
neural network based on the function approximation method with three neural layers. The
function approximation method ensures that it describes the targeted complex nonlinearity
as accurately as possible, and three neural layers reduce calculation time to guarantee TDE
estimated in real time [32]. So, the RBFNN is a more proper choice compared to other neural
networks. However, inaccurate experimental results result in its imprecise implementation to
influence its estimation accuracy, so accurate experimental results are an important premise
to ensure RBFNN’s performance.

In the paper, TDE traceability for CMGs is explored using thermal stress deformation
analysis by simulating structural deformation under diverse conditions, and all-new TCQs
are obtained as the key factors to TDE traceability, ambient temperature variation ∆T, and
its square ∆T2, as well as its square root ∆T1/2. To improve TDE estimation performance,
an RBFNN is used to modify the conventional model based on a BPNN and establish a
novel model. Moreover, by analyzing the heat conduction between CMGs and thermal
chambers principally, a precise TDE test is established, and two important characteristics are
determined: proper temperature control interval and a reasonable temperature control period.
The novel model estimates TDE more accurately to decouple the temperature dependence of
Si-based materials, which further enhances the environmental adaptability of CMGs.

2. Methodology
2.1. Precise TDE Traceability
2.1.1. Conventional TDE Estimation Model

CMGs are miniaturized devices manufactured with Si-based materials and include mass,
driving circuit, sensing circuit, and substrate. With microelectromechanical technology, they
are assembled as microelectromechanical units. Figure 1 shows their basic principles.
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Figure 1. Basic principle of the CMG. (a) Physical design; (b) working principle. 
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Where kD and kS are the springs of the driving circuit and sensing circuit, respectively,
and CD and CS are their corresponding capacitors. According to Figure 1, the sensing circuit
and driving circuit have interspersed combs, and driving combs and sensing combs are
movable. Under the action of driving combs, sensing combs move along the driving axis.
Because of air gaps between driving combs, they can be abstracted as plate capacitors. One
capacitance of sensing combs C0 is shown with the plate capacitor’s formula as follows:

C0 =
ε

4πk
S0

d0
(1)

where ε is the relative dielectric constant, k is the electrostatic force constant, S0 is the
overlap area between the sensing combs, and d0 is its plate distance. In Figure 1, when the
carriers rotate, sensing combs displace away from their original position under the action of
the Coriolis force, and their displacements are related to the carriers’ angular velocity. The
higher their angular velocity is, the greater air gaps between the sensing combs change, and
the more significantly their capacitance varies. Because sensing combs have a common end,
they are connected in parallel in terms of electrical form. Assuming that sensing combs
have 2n combs, there are n air gaps, and capacitance variation ∆C measured by CMGs is
shown as follows:

∆C =
n

∑
i=1

(Ci − C0) = n
[

ε

4πk
S0

(d0 − ∆d)
− ε

4πk
S0

d0

]
(2)

where ∆d is plate distance variation and Ci is the capacitance between each air gap. So, the
carriers’ rotation is precisely sensed with capacitance variation. Also, sensing and driving
circuits’ stiffness determines CMG’s structural consistency. Considering that their stiffness
is so related to Si-based materials’ stiffness, ambient temperature is considered the root
cause [18]. Sensing and driving circuits deform as the ambient temperature varies inevitably
and the capacitance errors of sensing combs are excited, as are the TDE ∆E in CMG’s
output. The conventional TDE estimation model describes CMGs’ structural deformation
using linear analytical methods and shows that ∆E is determined by ambient temperature
variation ∆T and its square ∆T2. So, the conventional model is shown as follows:

∆Ecap ∝
(

∆T, ∆T2
)

(3)

2.1.2. A Novel TDE Estimation Model with Thermal Stress Deformation Analysis

According to Figure 1, the mass, driving circuit, and sensing circuit are fabricated on
the substrate, and they displace together as a whole with the substrate. Even if it deforms
as ambient temperature, their relative distances between each other remain relatively stable,
especially the air gaps. So, the substrate’s structural deformation has no influence on CMG’s
performance, and it can be negligible. In contrast, the structural deformation of sensing
combs changes air gaps between them and worsens the accuracy of capacitance variation.
So, their structural deformation is the key factor to be considered comprehensively.

Thermal stress is an internal stress inside objects. When ambient temperature varies,
the stress generated by the objects due to external and mutual constraints makes its structure
unable to fully expand and contract freely. It makes CMG’s structure deform under the
excitation of ambient temperature variation and changes the consistency of air gaps between
the sensing combs, and the accuracy of capacitance measurements are reduced directly.
Then, the influence of thermal stress on the capacitance measurement of sensing combs is
analyzed using thermal stress deformation analysis in diverse conditions.

(a) Ambient temperature T = T0 and angular velocity ω = ω0

When ambient temperature stabilizes at T0, CMG’s structure stays stable. If the carriers
rotate at ω = ω0, sensing combs displace in the y-axis under the Coriolis force. Figure 2
shows the structure of sensing combs when T = T0 and ω = ω0.
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Figure 2. Partial view of the structure of sensing combs when T = T0 and ω = ω0. (a) Top view of
sensing combs; (b) side view of sensing combs.

Where a0 is the comb thickness of sensing combs, b0 is the length of overlap area
between the sensing combs, c0 is their width, and S0 = b0c0. Because ambient temperature
stays still at T0, CMG’s structure remains unchanging, and the capacitance of the sensing
combs is constant. According to (2), ∆C measured by CMGs is shown as follows:

∆C =
n

∑
i=1

(Ci − C0) =
nε

4πk

(
b0c0

d0 − ∆d
− b0c0

d0

)
(4)

(b) Ambient temperature T = T1 and angular velocity ω = ω0

When T = T0, it is unmistakable for sensing combs to deform in three dimensions
because of the temperature dependence of Si-based materials. According to Thermal Ex-
pansion Theory, structural deformation includes expanding or contracting, which changes
the air gaps of sensing combs and their capacitance. So, the multi-physical field simulation
software COMSOL Multiphysics 6.0 is used to show its structural deformation. Because
CMG’s structure is at a micrometer scale, about 1~100 µm, specific physical quantities of
CMG’s structure are set at a common value [33,34]. The thermal expansion coefficient of
Si-based materials is 2.4 × 10−6/◦C, its elastic modulus is 175 GPa, and its Poisson’s ratio
is 0.28. Figure 3 shows the structure of sensing combs under thermal stress when T = T1
and ω = ω0 in simulations with COMSOL Multiphysics 6.0.
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According to Figure 3, the combs have complex structural deformations under thermal
stress, including linear and nonlinear. For non-connecting ends of the sensing combs, which
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have structural characteristics of long beams of Si-based materials, they deform freely in
three dimensions following the linear thermal expansion formula. After deforming, its
structure is still a long beam whose three-dimensional sizes scale up or down proportionally
as the ambient temperature varies [35]. In contrast, thermal stress from the connecting ends
acts on sensing combs, limiting their free structural deformation, and the bending moment
from thermal stress brings local nonlinear deformation. According to (4), the capacitance
variation of sensing combs is related to the overlap area of the sensing combs and their
plate distance. According to Figure 3, some characteristics of structural deformation are
obtained as follows:

• Thermal stress from the connecting ends limits sensing combs to deform laterally, like its
width and thickness, and it is useless for longitudinal structural deformation at all. So,
its length deforms freely and can be calculated with a linear thermal expansion formula.

• Thermal stress from the connecting ends and free structural deformation of the non-
connecting ends make sensing combs’ length vary in a curved line. Given that its width
is bigger than its thickness in normal conditions, thermal stress to the width is also
bigger than that to its thickness, which means the curve radian of the thickness varies
more quickly than the width. Considering that sensing combs are arranged in a positive
and negative way, the overlap area is represented as an approixmate rectangle whose
length and width should be calculated with the linear thermal expansion formula.

• According to Figure 3, because the the curve radian of the thickness of the overlap area
varies much more quickly than its width, the distance between the sensing combs is
shown as a “wide-narrow-wide” pattern. It causes plate distance to vary nonlinearly.
In a word, it should be calculated with a nonlinear expression.

Based on that, the length of the overlap area b1 with linear thermal expansion formula
can be shown as follows:

b1 = b0 + ∆b′ + ∆b′′ = b0 + αb0∆T + αb0∆T = b0(1 + 2α∆T) (5)

where α is the thermal expansion coefficient of Si-based materials, ∆b′ is the length de-
formation of a sensing comb, ∆b′′ is that of the next one, and ∆T is ambient temperature
variation. Then, the width of the overlap area with linear thermal expansion formula c1 is
shown as follows:

c1 = c0 + 2∆c = c0 + 2αc0∆T = c0(1 + 2α∆T) (6)

where ∆c is width deformation. According to Figure 3, the structural deformation of
sensing combs is near the connecting end, which influences the in-plate distance of the
overlap area but not its area. In a word, the area of the overlap area can be seen as constant,
but its plate distance varies at any point of sensing combs. Figure 4 shows the structural
deformation of the long beam of Si-based materials under thermal stress.
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Given that the sensing combs are axisymmetric, a three-dimensional positive half-axis
coordinate system is established on a comb for simplified calculation in Figure 4. Addi-
tionally, the bending moment from thermal stress is used to describe nonlinear structural
deformation. So, its bending moment M at any position of the sensing combs can be
calculated as follows [36]:

M =

a0
2∫

0

αE∆Tb0

( a0

2
− x

)
dx =

αEb0a2
0

8
∆T (7)

where E is the elastic modulus of Si-based materials. According to Figure 4, the thickness
of sensing combs a1 under its bending moment is shown as follows:

a1 = a0 + 2∆a = a0 + 2 M
EI

x2

2 = a0 + 12 α∆T
a0

x2 x ∈ (0, b0) (8)

where ∆a is thickness deformation, I is the inertia moment of the combs, and I = b0(a0/2)3/12.
So, the plate distance under its bending moment d1 is shown as follows:

d1 = d0 − ∆aP − ∆aN = d0 − 12
α∆T

a0
x2 −

[
12

α∆T
a0

(b0 − x)2
]
= d0 − 12

α∆T
a0

(
2x2 − 2b0x + b2

0

)
(9)

where ∆aP is the thickness deformation of sensing combs arranged in a positive way and
∆aN is the thickness deformation arranged in a negative way. If the carriers rotate at ω = ω0,
the capacitance in the sensing circuit ∆C′ is shown as follows:

∆C′=
n

∑
i=1

(
C′

i − C′
0
)
= n

b0∫
0

(
ε

4πk
b1c1

d1 − ∆d
− ε

4πk
b1c1

d1

)
dx

=
nε

4πk
b0c0(1 + 2α∆T)(1 + 2α∆T)

b0∫
0

[
1

d0 − 12 α∆T
a0

(
2x2 − 2b0x + b2

0
)
− ∆d

− 1
d0 − 12 α∆T

a0

(
2x2 − 2b0x + b2

0
)]dx

=
nεb0c0

4πk
(1 + 2α∆T)2 1

24 α∆T
a0

b0∫
0

 1

−
(

x − b0
2

)2
+ d0−∆d

24 α∆T
a0

− b2
0
4

− 1

−
(

x − b0
2

)2
+ d0

24 α∆T
a0

− b2
0
4

dx

=
nεb0c0

4πk
(1 + 2α∆T)2 1

4
√

6 α∆T
a0

 1√
d0 − ∆d − 24 α∆T

a0

b2
0
4

ln

∣∣∣∣∣∣∣∣
b0
2 +

√
d0−∆d
24 α∆T

a0

− b2
0
4

− b0
2 +

√
d0−∆d
24 α∆T

a0

− b2
0
4

∣∣∣∣∣∣∣∣−
1√

d0 − 24 α∆T
a0

b2
0
4

ln

∣∣∣∣∣∣∣∣
b0
2 +

√
d0

24 α∆T
a0

− b2
0
4

− b0
2 +

√
d0

24 α∆T
a0

− b2
0
4

∣∣∣∣∣∣∣∣


(10)

In (2), the capacitance errors measured in sensing circuit ∆Ecap
′ can be expressed

as follows:

∆Ecap′= ∆C′ − ∆C

=
nεb0c0

4πk
(1 + 2α∆T)2 1

4
√

6 α∆T
a0

 1√
d0 − ∆d − 24 α∆T

a0

b2
0
4

ln

∣∣∣∣∣∣∣∣
b0
2 +

√
d0−∆d
24 α∆T

a0

− b2
0
4

− b0
2 +

√
d0−∆d
24 α∆T

a0

− b2
0
4

∣∣∣∣∣∣∣∣−
1√

d0 − 24 α∆T
a0

b2
0
4

ln

∣∣∣∣∣∣∣∣
b0
2 +

√
d0

24 α∆T
a0

− b2
0
4

− b0
2 +

√
d0

24 α∆T
a0

− b2
0
4

∣∣∣∣∣∣∣∣
− nε

4πk

(
b0c0

d0 − ∆d
− b0c0

d0

)

= f1

(
∆T, ∆T2

)
f2

(√
∆T

)
f3

(√
∆T

)
∝ f

(
∆T, ∆T2,

√
∆T

)
(11)

According to (11), there is a deviation between CMG’s output and its reference when
ambient temperature varies. (11) can be expressed as the product of three uncorrelated
functions that cannot be simplified further, and it is related to ambient temperature variation
∆T and its square ∆T2, as well as its square root ∆T1/2. So, the conventional model is
modified to a novel model, which is shown as follows:

∆Ecap′ ∝ f
(

∆T, ∆T2, ∆T1/2
)

(12)
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2.2. Precise Parameter Identification for the Novel TDE Precise Estimation Model

Based on precise TDE traceability and a novel model for CMGs, identifying its param-
eters is another important factor. The more precisely the novel model is identified, the less
ambient temperature influences TDE, and the better the bias stability of CMGs. So, testing
TDE accurately is the key prerequisite, and a proper TDE test method is essential.

2.2.1. TDE Accurate Acquisition Methodology

(a) Heat conduction solutions

To ensure the experimental results’ reliability, heat from ambient temperature should
be conducted to CMGs efficiently. Heat conduction solutions are applied on CMGs, like
thermal grease and thermal conductive rubber, which keep the ambient temperature
the same as the CMG and reduce the deviation between experimental results and their
theoretical values.

(b) Precise temperature measurement system

Precise ambient temperature represents CMG’s environmental adaptability compre-
hensively, so it is necessary to apply a precise temperature measurement system. It needs
be installed closely on the CMG to reduce the temperature gradient. Its measuring ac-
curacy needs to be over 2 times more accurate than ambient temperature variation, and
its measuring frequency needs to be higher than CMG’s output frequency for complete
experimental results.

(c) Proper temperature control interval

TDE is a statistical characteristic deviation represented based on mathematical models.
Once CMGs are manufactured, their mechanical properties are fixed, and their TDE can be
expressed with bias, scale factor, and random error. So, CMGs have similar environmental
adaptability but unique TDEs, and from their datasheets, TDEs can be roughly estimated
as follows:

∆E′ = γ∆T + β∆T (13)

where ∆E′ are roughly estimated TDEs, γ is the parameter “Zero-rate level change vs.
temperature”, and β is the parameter “Sensitivity change vs. temperature”. Theoretically,
∆E′ is smaller than TDE because some non-statistical errors are ignored and ∆E′ ≤ ∆E.
CMG’s sensitivity ∆ES determines the measured minimum of angular velocity, and higher
sensitivity brings more accurate angular velocity. When ambient temperature deteriorates
suddenly during CMG work, it is probable that TDE is much bigger than ∆ES, even
covering up CMG’s sensitivity to measure inaccurate angular velocity. So, it is essential to
vary ambient temperature at a reasonable temperature variation rate. To test TDE precisely,
set ∆ES ≈ ∆E′, and the temperature control interval can be further expressed as follows:

∆T ≤ ∆ES
γ + β

(14)

(d) Reasonable temperature control period

According to heat conduction theory, a long enough heat conduction period conducts
the heat from position A to position B completely, which ensures that ambient temperature
variation at position A is the same as position B. An insufficient heat conduction period
causes an incomplete heat conduction process, and the TDE of the CMG is tested imprecisely.
Usually, a thermal chamber is used to test TDE. It is designed as a cube of front-door-open
and -closed insulation. Also, it integrates a temperature control system with six temperature
control units on each plane, and they can be further simplified according to the targeted
control efficiency. There is a rate table inside to offer the referenced angular velocity.
To reflect the ambient temperature of the CMG better, temperature sensors are set on it.
Figure 5 shows a schematic diagram of the test platform.



Micromachines 2024, 15, 324 9 of 21

Micromachines 2024, 15, x FOR PEER REVIEW 9 of 21 
 

 

Precise ambient temperature represents CMG’s environmental adaptability compre-

hensively, so it is necessary to apply a precise temperature measurement system. It needs 

be installed closely on the CMG to reduce the temperature gradient. Its measuring accu-

racy needs to be over 2 times more accurate than ambient temperature variation, and its 

measuring frequency needs to be higher than CMG’s output frequency for complete ex-

perimental results. 

(c) Proper temperature control interval 

TDE is a statistical characteristic deviation represented based on mathematical mod-

els. Once CMGs are manufactured, their mechanical properties are fixed, and their TDE 

can be expressed with bias, scale factor, and random error. So, CMGs have similar envi-

ronmental adaptability but unique TDEs, and from their datasheets, TDEs can be roughly 

estimated as follows: 

E T T  =  +   (13) 

where ∆E′ are roughly estimated TDEs, γ is the parameter “Zero-rate level change vs. 

temperature”, and β is the parameter “Sensitivity change vs. temperature”. Theoretically, 

∆E′ is smaller than TDE because some non-statistical errors are ignored and ∆E′ ≤ ∆E. 

CMG’s sensitivity ∆ES determines the measured minimum of angular velocity, and higher 

sensitivity brings more accurate angular velocity. When ambient temperature deteriorates 

suddenly during CMG work, it is probable that TDE is much bigger than ∆ES, even cov-

ering up CMG’s sensitivity to measure inaccurate angular velocity. So, it is essential to 

vary ambient temperature at a reasonable temperature variation rate. To test TDE pre-

cisely, set ∆ES ≈ ∆E′, and the temperature control interval can be further expressed as fol-

lows: 

 


 

+

S
E

T  (14) 

(d) Reasonable temperature control period 

According to heat conduction theory, a long enough heat conduction period conducts 

the heat from position A to position B completely, which ensures that ambient tempera-

ture variation at position A is the same as position B. An insufficient heat conduction pe-

riod causes an incomplete heat conduction process, and the TDE of the CMG is tested 

imprecisely. Usually, a thermal chamber is used to test TDE. It is designed as a cube of 

front-door-open and -closed insulation. Also, it integrates a temperature control system 

with six temperature control units on each plane, and they can be further simplified ac-

cording to the targeted control efficiency. There is a rate table inside to offer the referenced 

angular velocity. To reflect the ambient temperature of the CMG better, temperature sen-

sors are set on it. Figure 5 shows a schematic diagram of the test platform. 

T
erm

p
eratu

re 
C

o
n

tro
l U

n
it 3#T

er
m

p
er

at
u

re
 

C
o

n
tr

o
l 

U
n

it
 1

#
Termperature 

Control Unit 5#

Termperature 
Control Unit 6#

Termperature 
Control Unit 2#

Front View

L1

L3

Rate Table

CMG

Z axis

y axis  

T
erm

p
eratu

re 
C

o
n

tro
l U

n
it 3#T

er
m

p
er

at
u

re
 

C
o

n
tr

o
l 

U
n

it
 1

#

Termperature 
Control Unit 4#

Termperature 
Control Unit 2#

Vertical View

L1

L2

Termperature 
Control Unit 6#

Rate Table

CMG

X axis

y axis

 

(a) (b) 

Micromachines 2024, 15, x FOR PEER REVIEW 10 of 21 
 

 

CMA

TDE precise 
estimation system

RS422 bus

PC

A Device receiving 
the compensated 

raw data

5V Power supply

 

 

(c)  

Figure 5. A schematic diagram of the test platform. (a) Front view of the CMG installation; (b) ver-

tical view of the CMG installation; (c) field test of the CMG. 

In Figure 5, the heat is transferred through the thermal chamber’s inner wall to con-

trol ambient temperature inside the targets, and the heat from temperature control units 

uniformly transfers to the CMG. Then, the center of the rate table is taken as a reference 

position, and it is also the central position of the thermal chamber. Given that the sizes of 

the thermal chamber are L1 × L2 × L3, the farther the position is away from the inner wall, 

the longer the period of heat transfers. Under the action of temperature control units, 

CMGs obtain the heat, and their environmental adaptability changes. The position where 

the CMG is located is the final area where the ambient temperature stays stable. According 

to energy conservation law and Newton’s law of cooling, the heat flux density equation 

in three dimensions is shown as follows: 

h

u u u
q k i j k

x y z

   
= − + + 

     
(15) 

where u is the ambient temperature of any position in the thermal chamber at moment t, 

q is its heat flux density, kh is the heat conductivity coefficient, u x   is the spatial varying 

rate of ambient temperature on the x-axis, u y   is the spatial varying rate of the ambient 

temperature on the y-axis, u z   is the spatial varying rate of the ambient temperature 

on the z-axis, i  is the unit vector on the x-axis, j  is the unit vector on the y-axis, and 

k  is the unit vector on the z-axis. The heat on the x-axis heats CMGs, and according to 

(15), a heat transfer equation can be established as follows: 

( ) ( )
2

2x x x h h hA A A
A A A

u u u
Q q q y z t k k y z t k x y z t

x x x+
+

      
 = −    = − − −    = −                  

(16) 

where Qx is the heat at position A on the x-axis, (qx)A is its heat flux density, (qx)A+ΔA is its 

heat flux density of its close position A + ΔA near position A on the x-axis, Δy is the width 

of the plane where the heat conducts, Δz is the height of the plane where the heat conducts, 

and Δt is the period when the heat conducts. Considering that the CMG is heated on the 

x-axis, y-axis, and z-axis, a heat transfer equation can be established on the y-axis and z-

axis as follows: 
2 2

2 2y h z h

u u
Q k x y z t Q k x y z t

y z

 
= −     = −    

   
(17) 

where Qy is the heat at position A on the y-axis and Qz is the heat of position A on the z-

axis. Based on (16) and (17), the heat at position A in three dimensions can be deduced as 

follows: 

Figure 5. A schematic diagram of the test platform. (a) Front view of the CMG installation; (b) vertical
view of the CMG installation; (c) field test of the CMG.

In Figure 5, the heat is transferred through the thermal chamber’s inner wall to
control ambient temperature inside the targets, and the heat from temperature control units
uniformly transfers to the CMG. Then, the center of the rate table is taken as a reference
position, and it is also the central position of the thermal chamber. Given that the sizes
of the thermal chamber are L1 × L2 × L3, the farther the position is away from the inner
wall, the longer the period of heat transfers. Under the action of temperature control units,
CMGs obtain the heat, and their environmental adaptability changes. The position where
the CMG is located is the final area where the ambient temperature stays stable. According
to energy conservation law and Newton’s law of cooling, the heat flux density equation in
three dimensions is shown as follows:

q = −kh

(
∂u
∂x

→
i +

∂u
∂y

→
j +

∂u
∂z

→
k
)

(15)

where u is the ambient temperature of any position in the thermal chamber at moment t, q
is its heat flux density, kh is the heat conductivity coefficient, ∂u/∂x is the spatial varying
rate of ambient temperature on the x-axis, ∂u/∂y is the spatial varying rate of the ambient
temperature on the y-axis, ∂u/∂z is the spatial varying rate of the ambient temperature on

the z-axis,
→
i is the unit vector on the x-axis,

→
j is the unit vector on the y-axis, and

→
k is the
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unit vector on the z-axis. The heat on the x-axis heats CMGs, and according to (15), a heat
transfer equation can be established as follows:

Qx =
[
(qx)A − (qx)A+∆A

]
∆y∆z∆t =

[(
−kh

∂u
∂x

)
A
−

(
−kh

∂u
∂x

)
A+∆A

]
∆y∆z∆t = −kh

∂2u
∂x2 ∆x∆y∆z∆t (16)

where Qx is the heat at position A on the x-axis, (qx)A is its heat flux density, (qx)A+∆A is its
heat flux density of its close position A + ∆A near position A on the x-axis, ∆y is the width
of the plane where the heat conducts, ∆z is the height of the plane where the heat conducts,
and ∆t is the period when the heat conducts. Considering that the CMG is heated on the
x-axis, y-axis, and z-axis, a heat transfer equation can be established on the y-axis and z-axis
as follows:

Qy = −kh
∂2u
∂y2 ∆x∆y∆z∆t Qz = −kh

∂2u
∂z2 ∆x∆y∆z∆t (17)

where Qy is the heat at position A on the y-axis and Qz is the heat of position A on the
z-axis. Based on (16) and (17), the heat at position A in three dimensions can be deduced
as follows:

Q = Qx + Qy + Qz = −kh∆x∆y∆z∆t
(

∂2u
∂x2

→
i +

∂2u
∂y2

→
j +

∂2u
∂z2

→
k
)
+ F(x, y, z, t)∆x∆y∆z∆t

→
v (18)

where F(x,y,z,t) is the heat flux density of the potential heat sources related to its position

and time, v is the 3D unit vector matrix, and
→
v =

[→
i

→
j

→
k
]T

. When the thermal chamber
works in a period ts, according to the specific heat capacity formula, we can obtain the
following equation:

Q =

[
−kh∆x∆y∆z

(
∂2u
∂x2

→
i +

∂2u
∂y2

→
j +

∂2u
∂z2

→
k
)
+ F(x, y, z, t)∆x∆y∆z

→
v
]

ts = Cm∆T
→
v (19)

where C is the specific heat capacity of air in a thermal chamber in a closed condition, m is
its mass, ∆T is temperature variation, and ∆T = |Tb-T0|. T0 is the initial temperature and
Tb is the final temperature. Then, (19) can be transformed as follows:[

−kh∆x∆y∆z
(

∂2u
∂x2

→
i +

∂2u
∂y2

→
j +

∂2u
∂z2

→
k
)
+ F(x, y, z, t)∆x∆y∆z

→
v
]

ts = Cρ∆x∆y∆z∆T
→
v (20)

where ρ is the air density inside the thermal chamber. Considering that different positions
in the heat conduction pathway have different heat flux densities in the heat conduction
process, the further the heat is conducted, the smaller the heat flux density becomes, and
the lower heat transfer efficiency stays. The CMG is a sensor, and its heat is relatively
insignificant to the thermal chamber, so F(x,y,z,t) can be ignored in magnitude. Then, (20)
can be deduced as follows:(

∂2u
∂x2

→
i +

∂2u
∂y2

→
j +

∂2u
∂z2

→
k
)
= −Cρ∆T

khts

→
v (21)

To calculate total heat along the heat conduction pathway, (21) is integrated on the
x-axis, y-axis, and z-axis separately, and then we obtain the following equation:

L1∫
0

L1∫
0

∂2u
∂x2 dxdx +

L2∫
0

L2∫
0

∂2u
∂y2 dydy +

L3∫
0

L3∫
0

∂2u
∂z2 dzdz = ∆T

Cρ

khts

 L2∫
0

L3∫
0

dydz +
L1∫

0

L3∫
0

dxdz+
L1∫

0

L2∫
0

dxdy

 (22)

After integration, (22) is transformed and shown as follows:

Tx + Ty + Tz = ∆T
Cρ

khts
(L2L3 + L1L3 + L1L2) (23)
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where Tx is the control target of the temperature control unit on the x-axis, Ty is on the
y-axis, and Tz is on the z-axis. Then, ts can be deduced as follows:

ts =
Cρ

kh

(L2L3 + L1L3 + L1L2)(
Tx + Ty + Tz

) ∆T (24)

Usually, a thermal chamber is designed as a cube, and its size is L × L × L. Moreover,
the control target on the x-axis, y-axis, and z-axis is set the same as Tb, and (24) can be
simplified further as follows:

ts =
CρL2

khTb
(Tb − T0) (25)

Then, the period for heat conduction from the inner wall to the center of the thermal
chamber can be calculated with (25). To guarantee that the thermal chamber is heated
uniformly, the temperature control period is set as ts ≤ tp. Taking L3GD20H as an ex-
ample, it is chosen to test TDE randomly. From its datasheet, ∆ES = 8.75 mdps/digit,
γ = ±0.04 dps/◦C, and its operating temperature range is −40~85 ◦C. After dimensional
transformation, β is obtained as follows:

β = 2%/◦C × 8.75mdps × [(85 ◦C)− (−40 ◦C)]

2
= 10.9375mdps/◦C (26)

According to (14), temperature control interval ∆T is shown as follows:

∆T ≤ 8.75mdps/digit
0.04dps/◦C × (245dps/2000dps) + 10.9375mdps/◦C

≈ 0.55 ◦C (27)

To simplify the test steps, ∆T = 0.5 ◦C. A thermal chamber SET-Z-021 is utilized to
test L3GD20H, and its parameters are C = 1.005 kJ/(kg×K), kh = 0.0267 W/m◦C, L = 0.6 m,
and ρ = 1.293 kg/m3. Given that CMG’s operating temperature range is −40~85 ◦C, (25) is
obtained as follows:

ts ≈ 25.766 s (28)

So, temperature control units take 25.766 s as the temperature control period to vary
the temperature control interval at 0.5 ◦C. To simplify test steps and reserve an allowance
for stable heat conduction, tp = 30 s. L3GD20H is tested in temperature experiments, and
its temperature is obtained with a precise temperature measurement system of measuring
accuracy of ±0.03 ◦C and measuring frequency of 10 Hz. Thus, a temperature experiment
is designed as follows:

1. CMG L3GD20H is installed on the rate table, its measuring direction is parallel to the
rate table, and the referenced true value is the angular velocity of the rate table.

2. Temperature sensors of the precise temperature measurement system are attached
close to L3GD20H, the wireless data transmission module transmits the experimental
results, and the PC is prepared to receive its temperature TG and its output DG.

3. Cool the thermal chamber to a minimum operating temperature of −40 ◦C and keep
TG and DG recording for 0.5 h when the ambient temperature stays stable.

4. Heat the thermal chamber to a maximum operating temperature of 85 ◦C at a rate of
60 ◦C/h, 0.5 ◦C per 30 s. When TG goes up to 85 ◦C, stop the test when it stays stable
for 0.5 h.

5. Redo steps (2) to (4) five times and record them as the experimental results.

Figure 6 shows a flowchart of the temperature experiment and experimental results.
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2.2.2. Implementation of Novel TDE Precise Estimation Model Based on an RBFNN

Under the premise of building a novel TDE precise compensation model and obtaining
TDE and TCQs, identifying its precise parameters is another key to estimating the TDE of
the CMG accurately. As shown in Figure 6, the ambient temperature goes up from −40 ◦C
to 85 ◦C, and at the very beginning, the ambient temperature stays stable for 0.5 h, and it
is set as the reference ambient temperature. Moreover, the reference output of the CMG
is 0 dps/s because ωs = 0. ∆T, ∆T2, ∆T1/2, and TDE deduced from Figure 6 are shown
in Figure 7.
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Figure 7. Ambient temperature variation and its square, as well as its square root and TDE.

As shown in Figure 7, when ambient temperature T varies, ∆T and ∆T2 vary in a
similar trend. Because of the small numerical amplitude of ambient temperature variation
at the beginning, ∆T1/2 has the same trend with a small range of numerical fluctuations.
Under the excitation of ∆T and ∆T2, as well as ∆T1/2, TDE has an approximate varying
trend. Therefore, it shows that there is some relevance among ∆T, ∆T2, ∆T1/2, and TDE.
Figure 8 shows the corresponding relationship among them.
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As shown in Figure 8, there is a complex nonlinear relationship among ∆T, ∆T2, ∆T1/2,
and TDE, and it is so difficult to estimate precisely in real time. So, it is essential to use
a nonlinear model of multiple inputs and a single output as well as high accuracy to fit
the nonlinearity. The RBFNN is a feedforward neural network based on the function
approximation method with a single hidden layer. It consists of neurons and neural layers.
Neurons are applied as basic computing units, and neural layers are utilized as a computing
framework. Its neural layers include an input layer, a hidden layer, and an output layer,
and neurons are distributed in diverse layers. The neurons in the hidden layer and output
layer have kernel functions, and inputs in the RBFNN are transmitted between the input
layer and the output layer by neurons and kernel functions. By means of neurons and
neural layers, as well as kernel functions, the output in the RBFNN perfectly represents
or approximately approaches the targets. Usually, it uses the Gaussian function as the
kernel function in the hidden layer and the purelin function as the activation function in
the output layer, and they are shown as follows:

y = e−∥x−cj∥2/2σ2
j y = purelin(x) = ax + b (29)

where cj is the center of the Gaussian function and δj is its width, a and b are constant, x is
the input of the functions, and y are their outputs. Moreover, the RBFNN has two merits
as follows:

• Owing to RBFNN’s mathematical principles, its calculation results are optimal in
global scope to avoid local minimums, even in flat areas where the error gradient
approximates to zero.

• From the Kolmogorov theorem, a three-layer forward network is able to approach any
continuous function with any target accuracy [18]. The RBFNN has the structure of
an input layer, a hidden layer, and an output layer, and it can represent the targeted
nonlinearity with any accuracy.

Figure 9 shows the structure of the RBFNN for the complex nonlinear relationship
among ∆T, ∆T2, ∆T1/2, and TDE.
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Where Ii(i = 1· · · 3) is the ith neuron of the input layer, Hi(i = 1· · ·K) is the ith neuron
of the hidden layer, and O1 is the neuron of the output layer. Based on that, the RBFNN
is a good choice to represent the nonlinear relationship among ∆T, ∆T2, ∆T1/2, and TDE
accurately. So, (12) can also be deduced as follows:

∆Ecap′ = RBFNN
(

∆T, ∆T2, ∆T1/2
)

(30)

Then, the parameters of the novel model should be identified as follows:

1. Two temperature experiments are conducted, and the experimental results are recorded.
One of them is a training sample set, and the other one is a verification sample set.

2. Based on sample data of the training sample set, TDE is calculated by subtracting the
reference value of CMGs from the sample data of their actual outputs one by one. ∆T
is calculated by subtracting the reference temperature of CMGs from the sample data
of their actual temperature one by one. Then, ∆T2 is obtained by multiplying itself,
and ∆T1/2 is obtained by calculating the square root of ∆T.

3. The RBFNN uses ∆T, ∆T2, and ∆T1/2 as its inputs and TDE as its output. It is trained
with mathematical tools until the differences between its outputs and targeted TDE
meet the requirements.

4. The compensated results of CMGs are calculated from subtraction between the actual
outputs of CMGs and their corresponding estimated outputs of RBFNNs.

The sample data of the training sample set are determined by MEMS Gyros’ output
frequency under the target operating conditions. The higher MEMS Gyros’ output fre-
quency is, the more quickly MEMS Gyros outputs, and the higher the sample data of the
training sample set. Then, (30) is trained with the experimental results, and its parameters
are identified precisely. Figure 10 shows the primary data and those compensated by the
conventional model and novel model in five experiments.

To check its estimation performance, the Mean Square Deviation (MSD) is introduced
as follows:

MSD = MSE(x − x′) (31)

where x is the evaluated sample, x′ is its reference, and the MSE is the mean square error
algorithm. The MSD is an index that indicates the dispersion degree of the evaluated
sample and its reference. The less the MSD is, the smaller the dispersion degree stays. The
bias stability of CMGs is the evaluated sample. So, the MSD can be implemented with
programming software based on mathematical principles. The MSD of the bias stability
of its primary data is MSD1, the bias stability of those compensated by the conventional
model is MSD2, and the bias stability of those compensated by the novel model is MSD3,
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which are shown in Table 1. An MSD improvement of the conventional model Q1 and the
novel model Q2 are shown as follows:

Q1 = MSD2
MSD1

Q2 = MSD3
MSD1

(32)
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Table 1. Performance comparison between the conventional and novel models in experiments.

MSD1 MSD2 MSD3 Q1 Q2 |Q2 − Q1|/Q1 (%)

First experiment 9.5552 3.5555 × 10−2 3.2172 × 10−2 3.7210 × 10−3 3.3670 × 10−3 9.51%
Second experiment 9.5579 3.5957 × 10−2 3.1756 × 10−2 3.7620 × 10−3 3.3224 × 10−3 11.68%
Third experiment 9.5567 3.4492 × 10−2 3.1616 × 10−2 3.6092 × 10−3 3.3083 × 10−3 8.34%

Fourth experiment 9.5590 3.5734 × 10−2 3.1339 × 10−2 3.7383 × 10−3 3.2784 × 10−3 12.30%
Fifth experiment 9.5507 3.5442 × 10−2 3.1660 × 10−2 3.7109 × 10−3 3.3150 × 10−3 10.67%

In Figure 10, CMGs compensated by the conventional and novel models perform
stably with small fluctuations around the reference, but CMGs compensated by the novel
model run more stably and have smaller fluctuations, which shows that the novel model
can estimate TDE more accurately. In Table 1, although the conventional and novel models
reduce the MSD of the CMG effectively, the novel model reduces the MSD of the CMG
less, and the MSD after compensation is enhanced by four orders of magnitude. Moreover,
CMG’s bias stability is enhanced better by 10.5% evenly than the conventional model. So,
the novel model can estimate TDE more accurately to improve the bias stability of the
CMG significantly.

3. Experiments and Analysis

To verify the estimation universality and the robustness of the novel model further,
CMG I3G4250D is taken as a test object. It is chosen randomly and tested in five verification
experiments. The conventional model is based on the least square method and ∆T (Con-
ventional 1), the conventional one is based on the BPNN and ∆T and ∆T2 (Conventional 2),
and the novel one is based on the RBFNN and ∆T, ∆T2, and ∆T1/2 (Novel). They are
established on the x-axis, y-axis, and z-axis, and their bias stabilities are compared. To
ensure experimental results’ reliability, the referenced angular velocity in three axes is
set as ωref

x = 25 dps, ωref
y = 5 dps, and ωref

z = 53 dps randomly. Figure 11 compares the
experimental results in the experiments.

According to (31), the MSD of the bias stability of its primary data is MSD1, the
bias stability of those compensated by Conventional 1 is MSD4, the bias stability of those
compensated by Conventional 2 is MSD5, and the bias stability of those compensated by
Novel is MSD6. They are shown as follows:

MSD1 = MSE(k − k′ i)
MSD4 = MSE[k(∆T)− k′ i]
MSD5 = MSE

[
k
(
∆T, ∆T2)− k′ i

]
MSD6 = MSE

[
k
(

∆T, ∆T2, ∆T−1/2
)
− k′ i

] (33)

where k is the primary data of I3G4250D in three axes; k(∆T) are those compensated by
Conventional 1 in three axes; k(∆T, ∆T2) are those compensated by Conventional 2 in three
axes; k(∆T, ∆T2, ∆T1/2) are those compensated by Novel in three axes; and ki

′(i = x, y, z) is
the referenced angular velocity in three axes. In (31), the MSD improvement of Conven-
tional 1 is Q3, the MSD improvement of Conventional 2 is Q4, and the MSD improvement
of Novel is Q5. MSDs in five experiments are shown in Tables 2–6.

Q3 = MSD4
MSD1

Q4 = MSD5
MSD1

Q5 = MSD6
MSD1

(34)
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Table 2. MSDs of the experimental results in the first experiment. 
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Figure 11. Comparison of the experimental results in five verification experiments. (a) First experi-
ment; (b) second experiment; (c) third experiment; (d) fourth experiment; (e) fifth experiment.

Table 2. MSDs of the experimental results in the first experiment.

MSD1 MSD4 MSD5 MSD6 Q3 Q4 Q5 |Q4 − Q3|/Q3 (%) |Q5 − Q3|/Q3 (%) |Q5 − Q4|/Q4 (%)

x-axis 4.7794 0.0216 0.0214 0.0193 4.519 × 10−3 4.478 × 10−3 4.038 × 10−3 0.93% 10.65% 9.81%
y-axis 8.5768 0.0280 0.0233 0.0214 3.265 × 10−3 2.717 × 10−3 2.495 × 10−3 16.79% 23.57% 8.15%
z-axis 0.7258 0.0270 0.0220 0.0210 3.720 × 10−2 3.031 × 10−2 2.893 × 10−2 18.52% 22.22% 4.55%

Table 3. MSDs of the experimental results in the second experiment.

MSD1 MSD4 MSD5 MSD6 Q3 Q4 Q5 |Q4 − Q3|/Q3 (%) |Q5 − Q3|/Q3 (%) |Q5 − Q4|/Q4 (%)

x-axis 3.8545 0.0194 0.0192 0.0184 5.033 × 10−3 4.981 × 10−3 4.774 × 10−3 1.03% 5.15% 4.17%
y-axis 6.8265 0.0256 0.0219 0.0208 3.750 × 10−3 3.208 × 10−3 3.047 × 10−3 14.53% 18.75% 5.02%
z-axis 0.6582 0.0271 0.0211 0.0202 4.117 × 10−2 3.206 × 10−2 3.069 × 10−2 22.14% 25.46% 4.27%

Table 4. MSDs of the experimental results in the third experiment.

MSD1 MSD4 MSD5 MSD6 Q3 Q4 Q5 |Q4 − Q3|/Q3 (%) |Q5 − Q3|/Q3 (%) |Q5 − Q4|/Q4 (%)

x-axis 4.7779 0.0210 0.0202 0.0190 4.395 × 10−3 4.227 × 10−3 3.976 × 10−3 3.81% 9.52% 5.94%
y-axis 8.5962 0.0289 0.0240 0.0221 3.362 × 10−3 2.792 × 10−3 2.571 × 10−3 16.96% 23.53% 7.92%
z-axis 0.7286 0.0280 0.0227 0.0214 3.843 × 10−2 3.116 × 10−2 2.937 × 10−2 24.91% 26.35% 1.92%

Table 5. MSDs of the experimental results in the fourth experiment.

MSD1 MSD4 MSD5 MSD6 Q3 Q4 Q5 |Q4 − Q3|/Q3 (%) |Q5 − Q3|/Q3 (%) |Q5 − Q4|/Q4 (%)

x-axis 3.8575 0.0200 0.0199 0.0189 5.185 × 10−3 5.159 × 10−3 4.900 × 10−3 0.51% 5.50% 5.03%
y-axis 6.8208 0.0256 0.0221 0.0211 3.753 × 10−3 3.240 × 10−3 3.094 × 10−3 13.67% 17.58% 4.52%
z-axis 0.6538 0.0273 0.0207 0.0200 4.176 × 10−2 3.166 × 10−2 3.059 × 10−2 24.18% 26.74% 3.38%

Table 6. MSDs of the experimental results in the fifth experiment.

MSD1 MSD4 MSD5 MSD6 Q3 Q4 Q5 |Q4 − Q3|/Q3 (%) |Q5 − Q3|/Q3 (%) |Q5 − Q4|/Q4 (%)

x-axis 3.8538 0.0198 0.0193 0.0189 5.138 × 10−3 5.008 × 10−3 4.904 × 10−3 2.53% 4.55% 2.07%
y-axis 6.8339 0.0256 0.0217 0.0212 3.746 × 10−3 3.175 × 10−3 3.102 × 10−3 15.23% 17.19% 2.30%
z-axis 0.6588 0.0274 0.0209 0.0203 4.159 × 10−2 3.172 × 10−2 3.081 × 10−2 23.72% 25.91% 2.87%

According to Figure 11, CMGs compensated by Conventional 1, Conventional 2,
and Novel perform stably with small fluctuations around the references, and the bias
stability of CMGs compensated by the novel model is reduced the most significantly. It
shows that the novel model estimates TDE more accurately and effectively, which ensures
CMGs perform more stably and reliably. According to Tables 2–6, the MSDs of CMGs
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compensated by Novel are smaller than Conventional 1 and Conventional 2, and its MSD
after compensation is improved about two orders of magnitude at minimum. Although
their difference is small, there is a performance improvement of the test data in a statistical
sense. So, the primary data’s performance must be improved at a certain moment; it
may be much better or a little better, and its actual performance must be improved more
than the MSD. Furthermore, Novel and Conventional 2 can enhance CMG’s bias stability
better by 15% than Conventional 1, and Novel can enhance CMG’s bias stability more
perfectly by 5% than Conventional 2. Hence, the novel model is able to estimate TDE
more accurately and enhance the bias stability of CMGs markedly. By comparison, the
conventional model has higher TDE estimation accuracy and more perfect universality and
robustness, which guarantees CMGs to perform stably and accurately for a long time in
diverse complicated conditions.

4. Conclusions

In this paper, TDE traceability for CMGs is explored adequately with thermal stress
deformation analysis by simulating structural deformation in diverse conditions, and
∆T, ∆T2, and ∆T1/2 are deduced as more key decisive TCQs to establish the novel TDE
precise estimation model. To increase TDE estimation accuracy, an RBFNN is applied to
implement the novel model and avoid the local optimums of BPNNs. By analyzing heat
conduction between CMGs and the thermal chamber, a precise TDE test is established
with heat flux analysis. Two key parameters, the proper temperature control interval and
the reasonable temperature control period, are obtained to avoid time-consuming and
expensive experiments. The MSD is used to evaluate TDE estimation accuracy, and the bias
stability of CMGs compensated by the novel model is improved by about 15% compared
with the conventional ones. The novel model can estimate TDE more precisely to decouple
the temperature dependence of Si-based materials, which enhances the environmental
adaptability of CMGs to widen their application in different complicated conditions. This
study provides a universal and robust means of estimating the TDE of CMGs in diverse
applications, optimizing the TDE precise estimation model to perform precisely and in real
time in fields, such as industrial production, smart agriculture, infrastructure construction,
and so on, offering a proper TDE precise test method without the need for time-consuming
and expensive experiments.
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