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Abstract: A novel heat dissipation structure composed of square frustums thermal through silicon
via array and embedded in P-type (100) silicon substrate is proposed to improve the heat dissipation
capacity of power chips while reducing process difficulty. Based on theoretical analysis, the heat
transfer model and thermo-electric coupling reliability model of a power chip with the proposed heat
dissipation structure are established. A comparative study of simulation indicates that the proposed
heat dissipation structure, which can avoid problems such as softness, poor rigidity, fragility and easy
fracture caused by thinning chips has better heat dissipation capability than thinning the substrate of
power chips.
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1. Introduction

Power semiconductor chips include power devices and power integrated circuits.
With the improvement of integration, power chips tend to have high power density. They
are widely used in the fields of new energy power generation, aerospace, high-speed loco-
motive traction, hybrid electric vehicles and industrial motor drivers with high-reliability
demand. Reliability is the most important requirement of power semiconductor chips [1].
Practice has proved that the main causes of power electronic components failure are tem-
perature, humidity, vibration and dust. Temperature accounts for more than half of these
four factors and is the main cause of electronic components’ failures [2]. Research shows
that when the temperature of the device increases by 10 K, the life failure rate of the device
doubles. Additionally, increased temperatures result in quality deterioration and degraded
performance with thermal throttling [3]. Therefore, thermal management is important in
order to increase the lifetime and protect performance.

The research on thermal management has focused on reducing thermal resistance in
three parts. The first method is to use external cooling strategies to reduce the thermal
resistance from the device to the atmosphere, such as heat pipe [4] micro-channel coolers,
piezoelectric fans [5] and thermoelectric coolers [6]. This kind of cooling is low cost
and the temperature can be reduced quickly; however, there are many problems, such
as poor circulation and uneven heat dissipation [7–9]. The second method is to reduce
the thermal resistance of packaging structures, such as by using new substrate material,
solder [10], etc. The third method is to reduce the thermal resistance of the die itself,
such as via a wafer thinning process [11]. In 1989, Koyanagi et al. of Tohoku University
in Japan proposed a process for manufacturing 3D integrated circuits for the first time.
After bonding the wafer to another thick wafer, it is ground thin from the back of the
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wafer. However, in practical application, the wafer is too thin to be subjected to a large
thermal gradient, and the heat generated by a single device cannot be diffused horizontally,
resulting in the generation of hot spots [12]. Moreover, wafer thinning has thickness
limitations. The silicon substrate must have a certain thickness (200 µm~300 µm) in the
silicon body area to provide mechanical support and the chemical mechanical polishing
(CMP) process of preparing thinner (<200 µm) chips is more difficult. Embedded packaging
is currently the most advanced idea [13]. Various types of through silicon vias (TSVs) such
as cylindrical TSVs, annular TSVs, square frustum TSVs, etc., are widely used for signal
connection and heat dissipation. Vertical interconnection between upper and lower chips
has the advantages of small size, low power consumption, high interconnection density
and heterogeneous integration. Similarly, through silicon vias can also reduce their own
thermal resistance [14–16]. It can not only be used as a channel for signals in 3D integrated
circuits but also as a channel for heat dissipation in 3D integrated circuits [17].

In this paper, a low-cost heat dissipation structure embedded in a substrate of power
chips is studied. Square frustum thermal through silicon vias (SF-TTSVs), which can be
formed by KOH wet corrosion for etching vias, sputtering for titanium barrier layer and
copper seed layer preparation, and copper electroplating for vias filling, are embedded in
P-type (100) silicon bulk regions of power semiconductor chips as heat dissipation channels.
The SF-TTSVs inside a power semiconductor chip do not affect the layout of the device
region and high conductivity and high thermal conductivity materials refilled in SF-TTSVs
can greatly improve the conductivity and thermal conductivity of the bulk region in a
power semiconductor chip. It is significant to improve the heat dissipation performance of
high-power chips at a low cost [18]. The embedded heat dissipation structure is designed to
improve the thermal reliability of power dies, and the feasibility of the design is verified by
COMSOL Multiphysics 6.2. Compared with thinned chips, SF-TTSVs can almost penetrate
the silicon substrate, the capability of heat conduction of the proposed structure is better,
and the fabrication of the proposed structure is simpler.

Through silicon via play a vital role in enabling advanced integrated systems, but their
development is greatly hindered by multiphysics coupling effects. The multiphysics field
coupling process of TSV is very complicated, and the thermal field distribution, electro-
magnetic field distribution and structural distribution are related and interact. Aiming at
the multiphysics field coupling problem of TSV using COMSOL Multiphysics software for
modeling can give intuitive results. The influence of TSV physical structure size parameters
(radius, aspect ratio, insulating layer thickness and TSV filling) on the thermal conduction
of TSV and the advantages and disadvantages of different parameters can be clearly seen in
the simulation results [19–22]. Therefore, this paper uses COMSOL Multiphysics to establish
a simulation model to verify the effectiveness of the embedded heat dissipation structure.

2. Structure Design and Theoretical Analysis
2.1. Design of the Embedded Heat Dissipation Structure

A semiconductor power chip can be divided into device region and bulk region. As
shown in Figure 1, SF-TTSVs are embedded into the bulk region to form an array. It is
effective at improving heat dissipation capabilities of refilled high conductivity and high
thermal conductivity materials such as copper, silver, gold and carbon nanotube, etc., into
the SF-TTSVs. Compared to other materials, copper has a lower cost. Many studies on
copper-filled TSVs have been reported [15–23]. A barrier layer that is used to block copper
diffusion into silicon is needed for filling copper in the vias. Titanium, tantalum, titanium
nitride, tantalum nitride and soft organic compounds, etc., can be used as barrier layers
in TSVs. Many studies in the literature have reported that covering the inner walls of
TSVs with an extremely thin layer of titanium (~100 nm) can block the diffusion of copper
into silicon. Even though using soft organic compounds as the barrier layer is effective at
reducing mechanical stress, a thicker soft organic compound barrier layer will compress
the volume of copper filling in the TSV, thereby reducing the heat dissipation efficiency
of the proposed heat dissipation structure. Therefore, we selected titanium as the barrier
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layer and copper as the filling material. Because the titanium barrier layer is extremely
thin, the thermal resistance of this layer is ignored. Meanwhile, refilled high-conductivity
materials will reduce parasitic resistance of the bulk area and the heat generated by large
current flowing through the bulk region will be reduced. In this structure, the SF-TTSV
array does not pass through the device region where devices or circuits are located, so it
is not necessary to consider the effects of thermal stress resulting from SF-TTSVs on the
device region. Therefore, the device region is regarded as an integral heat source.
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Interventionary segmented thermal resistance model of an SF-TTSV in the heat dissi-
pation array as shown in Figure 1, is established in Figure 2. According to Kirchhoff’s law,
we can write the following equations:

T(
1

Rt3
+ 1

Rt4

) = q (1)

T
Rt1 + Rt2

= q (2)

where T is the temperature, q is the heat generated by the device region of the chip, Rt1 is
the thermal resistance of the device region, Rt2 and Rt4 are the thermal resistance of the
bulk region above the SF-TTSV and the thermal resistance of the bulk region on the right
and left sides of the SF-TTSV, respectively, and Rt3 is the vertical thermal resistance of the
SF-TTSV.
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Figure 2. Segmented thermal resistance model of SF-TTSV in the bulk region.
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According to Fourier’s law, we can get,

q = kA
△T

L
(3)

where L is the length of the heat path through the material, k is the thermal conductivity of
the material, A is the cross-sectional area of the heat path through the material and ∆T is
the temperature rise.

The thermal resistance, R, can be obtained by analogy with Ohm’s law:

R =
L

kA
(4)

It can be seen from Equation (4) that thermal resistance is inversely proportional to the
thermal conductivity of the material. Increasing the thermal conductivity of the material in
the heat dissipation path is beneficial to improving heat dissipation efficiency [23].

In Figure 3a, the thermal resistance of a cell with half the SF-TTSV contains the thermal
resistance of the device region, the silicon bulk region, and half of the SF-TTSV. Assume
the total thermal resistance is r1. In Figure 3b, thermal resistance of a cell without SF-TTSV
under the same size as in Figure 3a contains the thermal resistance of the device region and
the silicon bulk region. Assume the total thermal resistance is r2.

r1 = Rt1 + Rt2 + Rt3//Rt4 (5)

r2 = Rt1 + Rt2 + Rt5 (6)

Rt1 and Rt2 are the same for Figure 3a,b. SF-TTSV refilled high thermal conductivity
materials make Rt3 // Rt4 < Rt5. So, r1 < r2. The symbol // indicates that resistors are
connected in parallel.
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Figure 3. Thermal resistance distribution: (a) a cell with half the SF-TTSV. (b) the same size cell
without SF-TTSV.

In an embedded heat dissipation structure as shown in Figure 1, the volume ratio of
the refilled high-conductivity material in the bulk region is not high. The 54.7◦ tilt angle
of the SF-TTSV results in a beveled shape in the bulk region of the chip, accounting for a
relatively small volume of the entire chip substrate. Only one SF-TTSV embedded in the
whole bulk region of a power chip, as shown in Figure 4, can increase the volume ratio of
the refilled material.
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2.2. Theoretical Analysis

In Figure 5, the axial direction is z and the radial directions are x and y. The bulk
region of a power chip is divided into part a and part b.
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Based on the one-dimensional Fourier heat conduction law, the z-direction equivalent
heat fluxes of SF-TTSV and silicon of part b are qT and qSi, respectively.

qT =
kT × ∆T

H1
(7)

qSi =
kSi × ∆T

H1
(8)

kT and kSi are the thermal conductivities of SF-TTSV and silicon, respectively, as the
temperature rises.

In part b, the equivalent heat flux in the z-direction is

qz =
kz × ∆T

H1
(9)

kz is the equivalent thermal conductivity in the z-direction of part b.
Based on the law of conservation of energy, the total heat flux is

Q =
qTVT

H1
+

qSiVSi

H1
(10)

It can be deduced that the thermal conductivity of the equivalent block is

kz =
kT × VT + kSi × VSi

VT + Vsi
(11)

VT is the volume of SF-TTSV and VSi is the volume of silicon. V = VT + VSi is the
whole volume in part b.
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The volume ratio of SF-TTSV to silicon in part b is

α =
VT

VSi
(12)

kz =
kT × α + kSi

1 + α
(13)

The thermal resistance of part b is

Rtb =
H1

kz A
(14)

A is the cross-sectional area perpendicular to the z-direction
The thermal resistance of part a is

Rta =
H0 − H1

kSi A
(15)

The total thermal resistance of the bulk region is

Rt = Rta + Rtb (16)

Similarly, assuming the conductivity of SF-TTSV is σT and the conductivity of silicon
is σSi, the equivalent conductivity in the z-direction of part b in Figure 5 is

σz =
σT × α + σSi

1 + α
(17)

The resistance of part b is

Reb =
H1

σz A
(18)

The resistance of part a is

Rea =
H0 − H1

σSi A
(19)

The total resistance of the bulk region is

Re = Rea + Reb (20)

When current I flows through the bulk region, the dissipated power is

Qs = I2Re (21)

Under thermo-electric coupling, the temperature rise ∆T of the power chip can be
calculated as

∆T = (Q s +P)Rt (22)

where P is the power of the device region.
The maximum temperature T of the chip is

T = Ta + QsRt = Ta + I2ReRt + PRt (23)

Ta is the ambient temperature.
Taking the case of refilling copper into SF-TTSV as an example, setting the chip area

to 5 × 5 mm2, H0 = 625 µm, H1 = 500 µm, Rbottom of SF-TTSV is 4.9 mm, current I = 10 A,
conductivity of SF-TTSV, σT = 5.998 × 107 S/m, the conductivity of silicon σSi = 125 S/m,
thermal conductivity of SF-TTSV and heat sink kT = 400 W/(m·K),the thermal conductiv-
ity of silicon kSi = 130 W/(m·K), the ambient temperature is 300 K.

The parameter values are shown in Table 1.
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Table 1. Parameters for calculation and calculated results.

Parameter Value Unit

Volume ratio of SF-TTSV to silicon in part b (α) 1.97 ---
Equivalent thermal conductivity in the z-direction of part b (kz) 309.1 W/(m·K)

Total thermal resistance of the bulk region (Rt) 0.1027 K/W
Equivalent conductivity in the z-direction of part b in Figure 5 (σz) 39,784,755.89 S/m

Total resistance of the bulk region (Re) 1 Ω
Dissipated power (Qs) 100 W

Maximum temperature of the chip (T) 312.71 K

A model with the same parameters is established in COMSOL Multiphysics. As
shown in Figure 6, the maximum temperature is 314.066 K. In the thermal distribution
map generated by the COMSOL Multiphysics software, the upper temperature scale is
the temperature range in the vertical direction and the lower temperature scale is the
temperature range in the horizontal direction of the upper surface. The difference in the
maximum temperature between calculated results and simulated results is 0.43%. Therefore,
the theoretical calculation is proven to be believable.
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3. Validation of Simulation Analysis

For power chips, parasitic thermal resistance and parasitic resistance of the silicon
bulk region are usually reduced by a thinning wafer. It is easy to damage the wafer
during the thinning process, and the silicon bulk region must have a certain thickness
(200 µm~300 µm) for mechanical support. Thus, the proposed heat dissipation structure
is simulated in this paper and compared with thinned power chips to verify its feasibility
and effectiveness.

At present, the substrate in most integrated circuit chips is the P-type monocrystalline
silicon. Some power devices, such as p-channel MOSFETs, p-channel IGBTs, etc., also
have a P-type substrate. P-type (100) monocrystalline silicon can be etched to form square
frustums using an aqueous KOH solution. For integrated circuits, the resistance of the
P-type substrate is ~10 Ω·cm. For power devices, the resistance of the P-type substrate is
10−2~10−3 Ω·cm.

In power chips, the thermal resistance of the bulk region directly affects heat transfer
characteristics. Parasitic resistance of the bulk region can cause additional heat because of
the large current flows through this region. The heat generated in the device region flows
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through the bulk region, superimposed with the heat generated in the bulk region, and
then flows into the heat sink.

3.1. Thermoeletronic Simulation Analysis

Simulation models of power chips with or without SF-TTSVs were established in
COMSOL Multiphysics, as shown in Figure 7. The width and length of the power chip
were set to 3.2 mm, the thickness of the device region was set to 14 µm, the thickness of
the bulk region (H0) was 600 µm, the material filling the SF-TTSVs was copper, Rbottom
of SF-TTSV was 880 µm, the height of SF-TTSV (H1) was 500 µm, the spacing between
adjacent SF-TTSVs was 140 µm and the size of the heat sink was 3.2 mm × 3.2 mm × 5 mm.
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Figure 7. Simulation model of power chips: (a) with SF-TTSV array; (b) without SF-TTSV.

Assuming the current density of the power chips is 50 A/cm2, the parasitic resistance
of the device region is 140 mΩ and the resistance of the P-type (100) monocrystalline silicon
substrate is 8 Ω·cm. According to the equations in Section 2, the resistance of power chips
with SF-TTSV array, with single SF-TTSV, and with thinned bulk region is calculated in
Table 2. Maximum conduction current (Mcc) is equal to current density times chip area.
For different H1, Rbottom is fixed at 880 µm and the spacing between adjacent SF-TTSVs is
fixed at 140 µm.

Table 2. Different types of chip parameters.

Power Chips Resistance of the Substrate (mΩ) Mcc 1 (A)

SF-TTSV array
H1 = 500 µm, Side length = 3.2 mm 921.25 5.12

SF-TTSV array
H1 = 550 µm, Side length = 3.2 mm 530.63 5.12

Thinned chip
H0 = 100 µm, Side length = 3.2 mm 921.25 5.12

Thinned chip
H0 = 150 µm, Side length = 3.2 mm 1311.88 5.12

Thinned chip
H0 = 200 µm, Side length = 3.2 mm 1702.50 5.12

Thinned chip
H0 = 250 µm, Side length = 3.2 mm 2093.13 5.12

Thinned chip
H0 = 300 µm, Side length = 3.2 mm 2483.75 5.12

Thinned chip
H0 = 350 µm, Side length = 3.2 mm 2874.38 5.12

Thinned chip
H0 = 400 µm, Side length = 3.2 mm 3265.00 5.12

1 Mcc is the maximum conduction current, Jc = 50 A/cm2.
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In the simulation model, copper is refilled into the SF-TTSVs. There is a barrier layer
between the bulk silicon and the refilled copper. Because this layer is ultra-thin (~100 nm),
its influence on heat transfer can be ignored. The thermal power of the bulk region is
P = I2R. Where I is the current flow through the bulk region and R is the parasitic
resistance of the bulk region. The temperature of the bottom surface of the copper heat sink
(ambient temperature) is set to room temperature (300 K). It is assumed that heat can be
completely transferred into the atmosphere through the bottom surface of the heat sink
and other surfaces of the heat sink are adiabatic.

Firstly, the thermal distribution of a power chip without SF-TTSV and without thin-
ning is simulated. The current flow through the 3.2 mm × 3.2 mm power chip is set to
1 A. Figure 8a shows that the temperature rise in the chip is 7.821 K under heat transfer
conditions while under thermoelectric coupling conditions, the temperature rise in the
power chip is 8.493 K, as shown in Figure 8b. It is indicated that @ 1 A, the maximum
temperature of the chip increases by 0.672 K. Joule heat generated by the parasitic resistance
of the silicon bulk region induces an extra temperature rise in the power chip.
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Figure 8. Simulation models of a power chip without SF-TTSV and without thinning: (a) heat transfer
conditions; (b) thermoelectric coupling conditions.

Secondly, the thermal distribution of a power chip with an SF-TTSV array is simulated.
The current flow through the 3.2 mm × 3.2 mm power chip with the SF-TTSV array in
the bulk region is also set to 1 A. Figure 9a shows that the temperature rise in the chip is
1.426 K under heat transfer conditions while under thermoelectric coupling conditions,
the temperature rise in the power chip is 1.734 K, as shown in Figure 9b. The maximum
temperature in the power chip increases by 0.308 K, considering Joule heat generated by
the parasitic resistance of the bulk region @ 1 A.

Because of the high thermal conductivity of copper refill in SF-TTSVs, the thermal
resistance of the bulk region in the power chip with SF-TTSV array is reduced compared
with the power chip without SF-TTSV array and without thinning. Figures 8a and 9a
indicate that under heat transfer conditions, the temperature of the power chip with the
SF-TTSV array cooling structure is 6.395 K lower than that of the power chip without the
SF-TTSV array and without thinning. The copper refilled in SF-TTSVs also reduces the
parasitic resistance of the bulk region. Thus, under thermoelectric coupling conditions,
the temperature of the power chip with the SF-TTSV array cooling structure is 6.759 K
lower than that of the power chip without the SF-TTSV array and without thinning. The
SF-TTSV array cooling structure causes an obvious temperature drop and the temperature
drop under thermoelectric coupling conditions is more obvious than that under heat
transfer conditions.
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(b) thermoelectric coupling conditions.

3.2. Simulation and Comparative Analysis of Power Chips with SF-TTSV Array and Thinned
Power Chips

The proposed heat dissipation structure, in which the SF-TTSV array is embedded
into the bulk region of the power chip, and the thinned power chip structure are simulated
under thermoelectric coupling conditions.

The parasitic resistance of the device region is set to 140 mΩ, the current density is set
to 50 A/cm2, the chip area is set to 3.2 mm × 3.2 mm as an example and the thickness of the
device region is 14 µm. Thermal resistance and parasitic resistance of different structures
can be calculated using the equations in Section 2 and the maximum temperature at a
certain current can also be calculated.

At different currents, the maximum temperature of power chips with SF-TTSV ar-
ray @ H0 = 600 µm, H1 = 500 µm and 550 µm, respectively, and thinned power chips
@ H0 = 100 µm, 150 µm, 200 µm, 250 µm, 300 µm, 350 µm, 400 µm, respectively is simu-
lated. As shown in Figure 10, temperature of thinned power chips @ H0 = 100 µm, 150 µm,
200 µm, 250 µm, 300 µm, 350 µm and 400 µm increase from 300 K to 334.72 K, 350.06 K,
366.94 K, 384.57 K, 403 K, 422.24 K and 438.73 K, respectively, when the current increases
from 0 to 5.12 A. For thinned power chips, the higher the H0, the more the maximum
temperature increases with the increase in the current. Temperatures of power chips with
SF-TTSV array @ H0 = 600 µm, H1 = 500 µm and 550 µm are 347.29 K and 330.02 K, re-
spectively, when the current increases from 0 to 5.12 A. The maximum temperature of
power chips with SF-TTSV array @ H0 = 600 µm, H1 = 500 µm and 550 µm is lower than
that of thinned power chips @ H0 = 200 µm, 250 µm, 300 µm, 350 µm and 400 µm, within
0 A~5.12 A current range. The curve of thinned power chip @ H0 = 100 µm is bounded by
curves of power chips with SF-TTSV array @ H0 = 600 µm, H1 = 500 µm and H1 = 550 µm
on the temperature axis. The maximum temperature of power chips with SF-TTSV array
@ H0 = 600 µm, H1 = 500 µm and 550 µm is close to that of thinned power chip @ H0 = 100 µm
and 150 µm, when the current is lower than 2 A. Once the current exceeds 2 A, at the same
current, the maximum temperature from high to low corresponds to thinned power chip
@ H0 = 150 µm, power chip with SF-TTSV array @ H0 = 600 µm, H1 = 500 µm, thinned power
chip @ H0 = 100 µm, and power chip with SF-TTSV array @ H0 = 600 µm, H1 = 550 µm.
Heat dissipation capabilities of power chips with an SF-TTSV array are significantly better
than those of thinned power chips. Heat dissipation performance of a power chip with
SF-TTSV array @ H0 = 600 µm, H1 = 500 µm is better than that of a thinned power chip
@ H0 = 150 µm. Those of power chips with SF-TTSV array @ H0 = 600 µm and H1 = 550 µm
are even better than those of a thinned power chip @ H0 = 100 µm. At the maximum current
of 5.12 A, the maximum temperature of power chips with SF-TTSV array @ H0 = 600 µm
and H1 = 550 µm is 4.7 K lower than that of a thinned power chip @ H0 = 100 µm. At the
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maximum current of 5.12 A, the maximum temperatures of the power chip with SF-TTSV
array @ H0 = 600 µm and H1 = 500 µm reduced by 0.8%, 5.36%, 9.69%, 13.82%, 17.75% and
20.84% compared to the thinned power chips @ H0 = 150 µm, 200 µm, 250 µm, 300 µm,
350 µm and 400 µm, respectively, while the maximum temperature of the power chip with
SF-TTSV array @ H0 = 600 µm and H1 = 550 µm reduced by 1.4%, 5.72%, 10.06%, 14.18%,
18.11%, 21.84% and 24.78% compared to the thinned power chips @ H0 = 100 µm, 150 µm,
200 µm, 250 µm, 300 µm, 350 µm and 400 µm, respectively. Even though there are slight
changes in material properties and geometric parameters, it can be inferred that the power
chip with SF-TTSV array @ H0 = 600 µm and H1 = 550 µm has better heat dissipation
capability than the thinned power chips @ H0 = 200 µm. Under high current conditions,
the advantage of the heat dissipation capacity of power chips with an SF-TTSV array is
more obvious.
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Figure 10. The maximum temperature of power chips with the proposed heat dissipation structure
and thinned power chips obtained by varying currents.

The curves in Figure 10 indicate that the temperature of chips increases with the
increase in the current. The stronger the heat dissipation capacity of the chip, the smaller
the rate of change in the curve with the current. Therefore, thinner power chips and
power chips with the proposed heat dissipation structure are not easy to damage under
large currents.

Temperature versus current curves of power chips with SF-TTSV array @ H0 = 600 µm,
H1 = 500 µm and 550 µm, and thinned power chips @ H0 = 100 µm, 150 µm, 200 µm, 250 µm,
and 400 µm, respectively, at 300 K and 398 K ambient temperatures are shown in Figure 11.
In order to ensure that the model is completely consistent with other conditions, only the
temperature of the heat sink (Ths) is changed from 300 K to 398 K. Curves in Figure 11
indicate that the heat sink temperature will only increase the overall heat dissipation
simulation value of each chip by 98 K and the heat sink temperature will not affect the heat
dissipation capacity of power chips, just as the temperature of the radiator increases or
decreases as a whole. When the current increases beyond 5 A, the maximum temperature
of thinned power chips @ H0 = 400 µm and Ths = 300 K is higher than that of power
chips with SF-TTSV array @ H0 = 600 µm, H1 = 550 µm and Ths = 398 K, and thinned
chip @ H0 = 100 µm and Ths = 398 K. The temperature limit of silicon-based power chips is
about 473.15 K. Exceeding the temperature limit will lead to a reduction in the life of the
device or even direct failure. For thinned power chips @ H0 = 400 µm and H0 = 250 µm,
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Ths = 398 K, and the minimum current that causes the chip temperature to exceed the limit
temperature is 3.8 A and 5 A, respectively. The temperature of the thinned power chip
@ H0 = 200 µm, Ths = 398 K and @ 5.12 A is lower but very close to the temperature limit.
Even if temperature curves of thinned power chips @ H0 = 150 µm and H0 = 200 µm are
close to those of power chips with SF-TTSV @ H0 = 600 µm, H1= 500 µm and H1 = 550 µm,
respectively, reducing the thickness of a wafer to less than 200 µm is very difficult to control.
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Figure 11. Comparison of the maximum temperatures of power chips with the proposed heat
dissipation structure and thinned power chips under different heat sink temperatures.

3.3. Simulation and Comparative Analysis of Power Chips with Different Current Densities

Different power chips have different application fields, which require that different
power chips have different maximum conduction currents and current densities. Under
different current densities, the heat dissipation capacity of power chips with the proposed
heat dissipation structure and thinned chips are simulated and compared.

Compared with the simulation conditions in part B, only the current density changed.
Temperature curves, under 398 K ambient temperature (Ths = 398 K), obtained by varying
current densities from 50 to 100 A/cm2, of power chips with SF-TTSV array @ H0 = 600 µm,
H1 = 500 µm and 550 µm, and thinned power chips @ H0 = 100 µm, 150 µm and 200 µm are
shown in Figure 12. For thinned power chips @ H0 = 200 µm, H0 = 150 µm and H0 = 100 µm,
the current densities that will cause the temperature to exceed the temperature limit
(473.15 K) are about 52.99 A/cm2, 61.21 A/cm2 and 74.32 A/cm2, respectively. For power
chips with SF-TTSV array @ H0 = 600 µm, H1 = 500 µm and 550 µm, the current densities
that will cause the temperature to exceed the temperature limit are about 63.04 A/cm2

and 79.04 A/cm2, respectively. Compared with thinned power chips @ H0 = 200 µm and
H0 = 150 µm, power chips with SF-TTSV array @ H0 = 600 µm and H1 = 500 µm can conduct
higher currents in the same chip area. Even though a thinned power chip @ H0 = 100 µm
has better heat dissipation capability than a power chip with SF-TTSV @ H0 = 600 µm and
H1 = 500 µm, a power chip with SF-TTSV @ H0 = 600 µm and H1 = 550 µm has obviously
improved heat conduction capacity than that of a thinned power chip @ H0 = 100 µm;
additionally, the thinner the chip, the more difficult it is to process.
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Figure 12. Temperature curves of power chips with the proposed heat dissipation structure and
thinned power chips under different current densities.

When the thickness of a chip is 150 µm or less, there are many problems, such as soft-
ness, poor rigidity, fragility and easy fracture, that make wafer processing and transmission
difficult, and it is easy to cause surface damage and other problems in the process. The
proposed heat dissipation structure, in which the SF-TTSV array is embedded into the bulk
region of the power chip, is prepared by wet etching without grinding. Maintaining the
thickness of the bulk region (H0) can avoid these problems effectively.

3.4. Simulation and Comparative Analysis of SF-TTSV Array Cooling Structure Power Chips with
Different Sizes

The proposed heat dissipation structure, in which the SF-TTSV array is embedded
into the bulk region of other side-length power chips, and other side-length-thinned power
chip structures is simulated under thermoelectric coupling conditions. The chip area is
4 mm × 4 mm and the H0 of power chips with SF-TTSV array is 600 µm. The thermal resis-
tance and parasitic resistance of different structures can be calculated using the equations
in Section 2. The maximum temperatures at certain currents can also be calculated.

The maximum temperatures of power chips with SF-TTSV array @ H1 = 500 µm
and 550 µm, side length = 3.2 mm and 4 mm, respectively, and thinned power chips
@ H0 = 100 µm, 150 µm, 200 µm, 250 µm, side length = 4 mm, respectively, are simulated
under different currents. For power chips, the larger the side length, the larger the current
cross-sectional area. The large-size power chips have smaller parasitic resistance and
thermal resistance, and better heat dissipation capacities. The curves in Figure 12 compare
the heat dissipations of different sizes of power chips with the proposed heat dissipation
structure under the same current condition and compare the heat dissipation capacity of
power chips with an SF-TTSV array and thinned power chips that have the same side length.

As shown in Figure 13, within the 0 A~5.12 A current range, the maximum temper-
ature of the power chip with the proposed heat dissipation structure, whose side length
is 4 mm, is lower than the maximum temperature of the power chip with the proposed
heat dissipation structure whose side length is 3.2 mm. However, the maximum temper-
ature of a thinned chip @ H0 = 250 µm and side length = 4 mm is higher than that of a
power chip with SF-TTSV array @ H1 = 550 µm and side length = 3.2 mm; and when this
thinned power chip works at 8 A, the maximum temperature of the chip increases from
300 K to 387 K, an increase of 87 K, which means that this thinned power chip cannot
work at high ambient temperature and high current environments. For example, if this
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thinned power chip works in an environment where the ambient temperature is 398 K
and the current is 8 A, the maximum temperature of this chip will be about 485 K, which
exceeds the temperature limit of the chip, that is 473.15 K, will lead to chip failure or
destruction. The curve representing the maximum temperature of the power chip with
SF-TTSV array @ H1 = 500 µm and side length = 4 mm almost completely coincides with
the curve representing the maximum temperature of the thinned chip @ H0 = 150 µm and
side length = 4 mm, and the curve representing the maximum temperature of the power
chip with SF-TTSV array @ H1 = 550 µm and side length = 4 mm almost coincides with the
curve representing the maximum temperature of the thinned chip @ H0 = 100 µm and side
length = 4 mm.
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4. Comparative Analysis of the Proposed SF-TTSV and the Cylindrical TSV

For embedded heat dissipation structures using TSVs, cylindrical TSVs are widely used
as thermal TSVs. Section 3 shows that the power chip with the proposed heat dissipation
structure has better cooling capacity than the thinned power chip; however, the proposed
SF-TTSV is not directly comparable with the cylindrical TSV.

Firstly, the cylindrical TSV is usually prepared using the BOSCH etching process,
which is isotropic. It causes scallop patterns on the sides of the TSV wall and may cause
reliability problems for the overall system. However, the proposed SF-TTSV was prepared
by wet etching on P-type (100) monocrystalline silicon and this method is anisotropic. Note
that the proposed SF-TTSV prepared by wet etching has a very smooth side wall, but the
side wall of the cylindrical TSV prepared by BOSCH etching has a series of scallop patterns.
The scallop patterns would cause many reliability problems for the overall system if no
additional process was adopted. Thus, the proposed SF-TTSV prepared by wet etching
is better than the cylindrical TSV, which can avoid the reliability problems caused by
scallop patterns on the side walls of the TSV. Meanwhile, the process of manufacturing
the cylindrical TSV is complex and prone to filling defects. The side walls of SF-TTSVs are
inclined and the openings are large, which are conducive to film deposition and copper
electroplating filling, which can reduce process difficulty and improve filling quality. Even
though the proposed heat dissipation structure based on SF-TTSVs can only be used for the
P-type (100) monocrystalline silicon substrate, there are a considerable number of power
chips fabricated on the P-type (100) monocrystalline silicon substrate.
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Secondly, in the same unit, although the volume of the cylinder is slightly larger than
that of the pyramid—which also means that the cylinder will be filled with more copper
and the thermal resistance will be smaller than that of the pyramid—the edges and corners
of the cylinder are very sharp, and its cross-section is a right angle. Compared with the
pyramid, it is more conducive to heat dissipation, which may cause the accumulation of
heat and affect the thermal reliability of the system.

Table 3 shows a comparison of the advantages and disadvantages of SF-TTSV, wafer
thinning, and cylindrical TSV. From this table, it can be seen that SF-TTSV has advantages of
machining accuracy and heat dissipation efficiency compared to wafer thinning; it also has
advantages of cost, side wall of deep via, and mechanical reliability compared to cylindrical
TSVs. Therefore, embedding the proposed heat dissipation structure based on SF-TTSVs
into the silicon substrate of power chips can improve the heat dissipation efficiency of
power chips at a relatively low cost.

Table 3. Comparison of SF-TTSV, wafer thinning and cylindrical TSV.

SF-TTSV Wafer Thinning Cylindrical TSV

Etching technologies KOH corrosion CMP BOSCH etching
Machining accuracy Low Higher High

Cost Low Low High
Side wall of deep via Smooth --- Rough
Mechanical reliability High High Low

Silicon substrate Almost penetrate ≥200 µm Almost penetrate
Heat dissipation efficiency High Low High

5. Conclusions

In this article, a novel heat dissipation structure in which an SF-TTSV array fabricated
by wet etching and refilled with high conductivity and high thermal conductivity mate-
rials is proposed and verified by theoretical analysis and simulation based on COMSOL
Multiphysics. For power chips with P-type (100) silicon substrates, the proposed heat dissi-
pation structure is theoretically analyzed and simulated. Even though CMP is commonly
used to reduce the thickness of the silicon substrate to improve heat dissipation efficiency,
the process of preparing thinner (<200 µm) chips is more difficult and costly. Theoreti-
cal analysis and simulated results indicated that the proposed heat dissipation structure
based on SF-TTSVs significantly improved the heat dissipation capacity compared to wafer
thinning. Even though the volume of the cylinder is larger than that of the pyramid, the
proposed SF-TTSV has advantages during manufacturing and reliabilities compared to
cylindrical TSV.
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