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Abstract: Compound nerve action potentials (CNAPs) were used as a metric to assess the stimulation
performance of a novel high-density, transverse, intrafascicular electrode in rat models. We show
characteristic CNAPs recorded from distally implanted cuff electrodes. Evaluation of the CNAPs as a
function of stimulus current and calculation of recruitment plots were used to obtain a qualitative
approximation of the neural interface’s placement and orientation inside the nerve. This method
avoids elaborate surgeries required for the implantation of EMG electrodes and thus minimizes
surgical complications and may accelerate the healing process of the implanted subject.

Keywords: intrafascicular electrodes; compound nerve action potentials; peripheral nerve; rat model

1. Introduction
1.1. Peripheral Nerve Interfaces

Peripheral nerve interfaces, used in conjunction with prosthetic limbs, are designed to
record from efferent and/or stimulate afferent neural fibers to provide communication to
re-establish the lost functionality of missing limbs [1,2]. In the design of peripheral nerve
interfaces, a trade-off between increasing the invasiveness to obtain adequate selectivity
among multiple nerve fascicles/fibers and minimizing the invasiveness to provide ease
of implantation and reduce the foreign body response, which may have an impact on the
chronic stability of the interface [3], exists. In this light, two categories of nerve interfaces
are common in the literature: extraneural and intraneural electrodes [3–5].

Over the years, extraneural electrodes, including cuff, epineural, and FINE [6–18], and
intraneural electrodes, e.g., LIFE, tfLIFE, TIME, and USEA [19–39], have been designed
and tested in both animals and humans in different conditions with various degrees of
success [3,5,40]. Although extraneural electrodes are less invasive and simple to handle,
they have limited selectivity, i.e., the electrode contacts most often communicate with the
fascicles lying close to the surface of the nerve [32]. Intraneural electrodes implanted inside
the nerve, though invasive, have a high signal-to-noise ratio and a larger range of stimula-
tion and recording selectivity [41]. The human nerve topography shows the innervation of
different skeletal muscles by the fascicles lying both near the periphery and at the central
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regions of the nerve [42,43]. Therefore, if implanted precisely, an intraneural electrode will
have the capability to interface with fascicles in different regions. Moreover, intraneural
electrodes have the additional advantage of a lower stimulation current and an increased
signal-to-noise ratio in their recordings compared to extraneural electrodes [20,30,32]. The
common intraneural electrodes that can be placed intrafascicularly to date are LIFE, tfLIFE,
TIME, and USEA [2,4].

1.2. High-Density Transverse Intrafascicular Multichannel Electrode and Integrated Electronics

To maximize the performance of an intraneural interface, a novel high-density trans-
verse intrafascicular multichannel electrode (hd-TIME) has been designed and fabricated [44].
The hd-TIME probe consists of a CMOS electronic chip thinned and embedded into a flexi-
ble biocompatible polyimide substrate for transverse insertion into human nerve fascicles
for both recording and stimulation. The CMOS chip includes recording and stimulation
sites and amplification and multiplexing circuitry for added functionality. The highest
density implanted probe contains 64 neural recording electrodes and 16 fully reconfig-
urable neural stimulating electrodes. For more information about the fabrication, type, and
functionality of the probe, read [44,45]. The stimulation modality of the hd-TIME will be
used to encode sensory percepts via the evoked stimulation of the afferent nerve fibers
within a fascicle.

“Non-remote” integrated electronics [46] help to reduce the wiring and signal loss
of transmission. Miniature active electronics, along with lead electrodes [47], reduce the
footprint and will be a minimum challenge to implant into human-sized nerves. Therefore,
it has been envisioned that hd-TIME will have an advantage over low-channel-count
intraneural electrodes.

1.3. Metrics for Functional Assessment

The stimulation efficacy of earlier generations of multichannel intrafascicular elec-
trodes like tfLIFE and TIME has been investigated using the measured response of muscle
activity, with electromyograms (EMGs) as the metric for quantification [29,32,34,35,41,48].
The quantification method consists of measuring the evoked EMG response in specific
muscles for a range of stimulus parameters (e.g., cathode first, a biphasic current pulse
with a constant pulse width, and increasing pulse amplitudes). With this method, the
power of the EMG response (calculated using the peak-to-peak or RMS values of the EMG
signal) is plotted with respect to the stimulus’ current amplitude, for example, resulting in
a sigmoidal curve that relates a minimal and maximal response to the electrical stimulation.
Researchers use this curve as an estimate of the neural fiber recruitment, as the EMG
response correlates with the number of fibers activating the muscle [49]. Although neural
fiber recruitment estimation using EMGs is widely used, it does not contain information
about the sensory fiber activation. Since our interface is intended to be used to provide
sensory perception via electrical stimulation of the afferent nerve fibers, a quantification
metric that directly measures the response of the afferent populations of interest is needed.

Compound nerve action potentials (CNAPs) are the summation of individual axonally
propagating action potentials arising from a stimulus. Electrical stimulation of the nerve
can evoke action potential propagation in the efferent and afferent fibers; thus, the CNAPs
arising from electrical stimulation contain information on the excitability of all the fibers in
the nerve.

To the best of our knowledge, limited studies have employed only CNAP-derived
recruitment curves to assess the stimulation efficacy over a wide range of stimulus pa-
rameters for intraneural peripheral nerve interfaces. Because of this fact, we evaluate
an experimental method using measured CNAPs that can be used for acute and chronic
in vivo assessment of the stimulation effectiveness of the hd-TIME.

Moreover, in surgeries performed on large animal models or even humans, measuring
the CNAPs will mitigate the additional surgeries needed to implant EMG electrodes into
the muscles of a limb. The strength of CNAPs is generally independent of the distance
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between the stimulating and recording electrode, whereas the strength of EMGs depends
on the position on the muscle. Thus, they can give a false indication of the stimulation
strength. Crosstalk, i.e., contamination from muscles lying deeper under the muscle of
interest while recording, is also avoided [50]. The objective of this work is to evaluate an
experimental methodology to measure the stimulation selectivity using only measured
CNAPs for acute in vivo assessment of a passive version of the hd-TIME.

2. Materials and Methods
2.1. Animal Preparation

All the experimental procedures were approved by the University of Florida Insti-
tutional Animal Care and Use Committee (IACUC) guidelines. Anesthesia was induced
and maintained for the duration of surgery with 1–3% isoflurane in oxygen at 1–2 L/min.
Upon induction, all rats (Lewis rats, Charles River Laboratories, Wilmington, MA, USA)
received preoperative meloxicam (1–2 mg/kg SQ, Loxicom, Norbrook Laboratories, Newry,
Northern Ireland). The surgical sites were shaved using electrical clippers and aseptically
prepped for surgery. The rats were prone-positioned on a circulating water bath/heating
pad to maintain their core body temperature under a surgical microscope (V8 Stereomi-
croscope, Zeiss; Jena, Germany). Their heart rate and hemoglobin oxygen saturation were
monitored continuously throughout the procedure (PhysioSuite, Kent Scientific, Torring-
ton, CT, USA). Eye ointment was applied to both eyes to prevent them from drying and
becoming irritated.

The sciatic nerve was assessed by making a 3–4 cm long cutaneous incision. It was
made over the lateral aspect of the left limb or right limb or both, over the femur. The
sciatic nerve was exposed by bluntly dissecting the muscle bellies of the biceps femoris
and gluteus maximus. The nerve was exposed proximally to the iliofemoral ligament and
distally (1 cm) after the bifurcation of the sciatic nerve into the tibial, peroneal, and sural
branches. They were carefully freed from the connecting tissues.

Three rats (Rat1, Rat2, and Rat3) were implanted with the hd-TIME, into the sciatic
nerve in either the left or right limb or both, making a total of n = 5 stimulation studies.

2.2. The Electrodes Implanted

The design and fabrication of an hd-TIME were explained in detail in [44]. They are
laborious and expensive processes, raising the manufacturing cost of each probe. Each
step of fabrication needs to be meticulously executed. De-risking the hd-TIME becomes
essential to avoid design and functional glitches in the definitive version. A passive version
of the hd-TIME has been fabricated to optimize the design and implantation strategy. The
passive probe of both variants has only four working stimulation sites and is devoid of any
active circuitry. In the following sections, reference to the hd-TIME refers to the passive
short version of the probe. Stimulation sites 0, 5, 10, and 11 are the functional electrodes
of the probe (Figure 1). There are 10 working recording sites, but the scope of this current
study is limited to stimulation. A ground or reference electrode is also present in the probe
many millimeters away from the stimulation/recording electrodes (see Figure 1).

The hd-TIME was implanted transversally into the proximal sciatic nerve of the
rats, approximately 5 mm from the bifurcation (see Figure 2). Stimulation pulse trains of
different amplitudes were injected, and CNAPs were recorded from the three branches,
i.e., tibial (T), peroneal (P), and sural (S), using cuff electrodes. Since the hd-TIME is an
intrafascicular electrode, ideally, each stimulation site should be able to selectively activate
a sub-population of nerve fibers, a fascicle, or a small sub-group of fascicles in a poly-
fascicular nerve. The inbuilt ground electrode was used for the ground stimulation, making
sure that it made contact with the tissue inside the surgical opening but was not inside
the nerve.
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recorded for post-processing. 

Figure 1. The hd-TIME probe comprises a polyimide ribbon with a stainless-steel micro-knife attached
at the tip for easy implantation. The main probe body, which will reside inside the nerve, consists of a
double-sided back-to-back structure, with each side containing a CMOS-compatible silicon chip with
stimulation and recording sites encapsulated within a biocompatible and flexible support matrix. The
hd-TIME has two variants. The short chip (a) has 12 stimulation and 48 recording sites. The long
version (b) has 16 stimulation and 64 recording sites.
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Figure 2. Biphasic cathode-leading rectangular pulse trains, ranging from 2 µAmp to 650 µAmp in
pseudorandom order, pulsewidth of 50 µs and 100 µs, stimulation frequency of 5 Hz, were delivered
to the hd-TIME using the IZ2-32 stimulator. The CNAPs were recorded using the cuff electrodes
placed on each of the sciatic nerve branches, viz. T, P, and S. These signals were pre-amplified and
recorded for post-processing.

The recording tibial and peroneal cuffs are of a 750 µm and 500 µm diameter, respec-
tively, and were fabricated at Microprobes (Microprobes for Life Science, Gaithersburg,
MD, USA). Meanwhile, a 500 µm cuff was used for the sural nerve and was fabricated at
CorTec (CorTec GmbH, Freiburg, Germany). A separate external ground electrode was
placed on a nearby muscle belly.

During these studies, the minimum distance between the stimulating hd-TIME and
each recording cuff electrode was between 10 mm and 16 mm in every study due to the
restrictions of the length of the surgical opening in a rat model.
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2.3. The Stimulation Paradigm

Biphasic, cathodic-first, 25 µs inter-pulse duration stimulation pulses were used for
charge balanced stimulation, and their amplitude comprised a range of 2 to 650 µA. The
pulse train amplitudes were delivered in pseudo-random order to reduce the effect of neural
adaptation. The pulse train was repeated multiple times (35 to 40) and was delivered at 5 Hz
to the electrode using an isolated IZ2H Stimulator (Tucker-Davis Technologies, Alachua,
FL, USA) (Figure 2). The stimulation was repeated for 50 µs and 100 µs pulsewidths.

2.4. Data Collection and Analysis

The CNAPs obtained from the cuff electrodes from the three branches were recorded
at a 48 kHz sampling frequency using a 32-channel PZ5 NeuroDigitizer optically coupled to
an RZ5D recording bio-amplifier (Tucker-Davis Technology, Alachua, FL, USA) (Figure 2).
Time segments referenced to the stimulation time stamps were used to average the CNAP
waveforms and calculate the recruitment curves. The data analysis was performed offline
using MATLAB (MathWorks, Natick, MA, USA). To quantify the level of CNAP recruitment,
the area under the curve was calculated in a variable time window for each nerve.

2.5. Analysis of the Selective Recruitment of Nerve Fascicles

The area under the curve of the CNAPs was calculated to quantify the stimulation.
The TRAPZ function in MATLAB was used. The values were normalized by the largest
value across both pulse widths for each nerve.

The range in the calculation of CNAPs consisting of both peaks and troughs for any
nerve lies between 594 µs and 1044 µs. The area under the curve (AUC) was chosen
over the peak-to-peak voltage and RMS. Due to multiple repetitions of stimuli for each
amplitude, the noise from the electrophysiological recording is minimized by averaging
the stimulus–response. Any DC offset was corrected by averaging the first 12–14 data
values before the stimulus–response and then subtracting the entire stimuli and its response
from the averaged value. This is necessary to avoid overprediction or underprediction of
the CNAPs’ area under the curve values. Digital filters were avoided, as they introduce
unwanted ripples into the signal that might be mistaken for CNAPs, or contamination of
the CNAPs.

CNAP data were obtained from all three sciatic nerve branches. The area under the
curve was measured, and the recruitments were plotted. Their recruitment values were
normalized to the highest value across all three nerve branches (T, P, and S) and over both
50 µsec and 100 µsec pulse widths. The nature of recruitment and the number of nerve
branches that were recruited were visualized. No score or formula was used. Recruitment
of the tibial branch fibers will result in some recruitment of the sural branch fibers, as the
sural nerve branches from the tibial [51]. Therefore, it is highly probable that activating the
tibial will automatically activate the sural.

2.6. Predicting the Electrode Location Inside the Nerve

Based on the nerve branch recruitment, visual inspection, the electrode stimulation
site, and the direction of the implant (left or right), the location of the stimulation site was
estimated, and schematic drawings were made for each hd-TIME implant (Figure 10).

3. Results and Discussion
3.1. CNAPs with Respect to Stimulation Artifacts and Parasitic EMG Signals

One of the challenges when recording CNAPs is the contamination of the signal by
the stimulus artifact, as well as electromyogram (EMG) signals from activated muscles.
Figure 3 shows an exemplary recording where the CNAP, which is the smallest amplitude
feature, is in between the stimulus artifact and the EMG signal. This CNAP signal was
recorded using a monopolar cuff electrode with a distant ground on the tibial branch of the
left sciatic nerve in one of the animals. This recording scheme results in large-amplitude
CNAPs and thus a good signal-to-noise ratio compared to bipolar or tripolar recording
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schemes, but it also does not subtract out any of the unwanted signals, such as the stimulus
artifact or EMG. The dashed lines in Figure 3 correspond to the recorded signals for various
stimulus amplitudes after the nerve was transected distal to the recording cuff electrode.
The CNAP signal changed only slightly after the removal of the EMGs via nerve transection,
showing that the CNAP is indeed the second feature after the stimulus artifact and can be
influenced by the presence of EMGs.
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Figure 3. Example of CNAPS obtained from the tibial nerve branch without and with nerve transec-
tion at the distal site, when the sciatic nerve was stimulated using an hd-TIME in Rat3. The pulse
train had a 100 µs pulse width and various pulse amplitudes, shown in the graph. The disappearance
of the EMG after transection should be noted. The simulation-to-recording distance for this rat was
about 16 mm.

The distance between the stimulation and recording sites is of immense importance
for the detection of single or compound nerve action potentials [52]. When the nerve is not
dissected from muscle, if the distance between the stimulation and recording electrodes
is too long, then chances are the EMGs will engulf the CNAPs, whereas shorter distances
between two electrodes result in part or whole of the CNAP being lost within the stimu-
lation artifact itself (Figure 4). If an ideal distance is maintained, the CNAPs occur a few
microseconds after the stimulation artifact. Maintaining this ideal stimulation–recording
electrode distance can be a bit challenging in small animal models due to a lack of space. In
the case of Figure 3, the stimulation-to-recording distance was near 16 mm. Figure 5 shows
the experimental results in a case where the stimulation-to-recording distance was similar
to the one in Figure 3 (e.g., about 16 mm), except the pulse width was much larger (500 µs
compared to 50 µs) and the nerve was not transected distal to the cuff recording site. In this
case, the CNAP recordings are contaminated by the stimulus waveform and EMG signals.
With this higher charge per phase, the axonal excitement was so great that it induced
muscle twitching at a greater degree than in Figure 4, so the EMGs highly contaminated
the signal.
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Figure 4. CNAPs obtained when the right sciatic nerve of Rat1 was stimulated with pw = 100 µs
with various stimulation amplitudes. These results show the effect of the stimulus artifact obscuring
the CNAPS due to an inadequate stimulation-to-recording distance. There was a 13 mm distance
between the stimulating and recording electrodes. The recording was taken using cuff electrodes on
distal branches of the tibial, peroneal, and sural nerves.
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Figure 5. CNAPs obtained when the left sciatic nerve of Rat2 was stimulated with pw = 500 µs
with various stimulation amplitudes. These results show the effect of a longer pulse width on nerve
recording even while maintaining close to 16 mm distance between the stimulating and the recording
electrodes. The recording was taken using cuff electrodes on distal branches of the tibial, peroneal,
and sural nerves.

3.2. CNAPs and Recruitment Plots: Intact vs. Transected Nerves

To assess the influence of EMG contamination on the calculation of recruitment plots,
we compare the recruitment for Rat3 pre and post nerve transection. The left nerve branches
(T, P, and S) were distally severed (~5 mm distally from the recording cuff electrodes).
Figure 6 shows the CNAPs recorded from the three branches while stimulating the left
sciatic nerve of the animal while the nerves did and did not innervate the muscles. The
CNAPs of the tibial branch follow the regular trend of cresting and troughing all within
1 ms after the stimulation onset. There is a slight difference in amplitude between the curves
with and without nerve transection; the influence of the EMGs reduces the amplitudes, but
the relative trend with regard to an increasing pulse width is the same. The CNAP shape in
the peroneal and sural branches has been much more affected by the influence of the EMGs
since their CNAP signal was weaker. For the recruitment plots from these data, in the tibial
nerve, the AUC was calculated from the onset of the CNAPs, i.e., the first positive phase to
the end of the negative phase, while just the positive phase of the recruitment curve was
used for the peroneal and sural branches in the intact nerves since the EMGs corrupted
the negative phase. Figure 7 shows the recruitment curves plotted in one graph. The solid
lines represent the intact nerve, and the dashed lines represent the transected nerve. Both
recruitment curve sets were normalized to the respective maximum value for the transected
and non-transected cases. It is clear that the overall recruitment shapes are very similar
between the two cases. The onset of recordable activation due to stimulation occurs near
30 µA for the tibial nerve and 40 µA for the other branches. Evaluating the recruitment
curves can also give a rough estimate of where the intrafascicular electrode might be placed
and thus relate the selectivity of the neural implant. In this case, the stimulating electrode
seems to be further inside the tibial nerve branch than the others.
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Figure 7. Recruitment curves corresponding to CNAP curves in Figure 6. The dashed lines are
after nerve transection and the solid lines are before. Recruitment curves were normalized to the
maximum value in the cut and uncut tibial nerve CNAPs, respectively.

3.3. Activation of the Sciatic Nerve Branches and Placement of the Electrode

One of the objectives of this study is to determine the position of the intrafascicular
electrodes via evaluation of their recruitment curves calculated using the measured CNAPs.

Examples of the CNAPs and recruitment plots from Rat1 are given in Figures 8 and 9.
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Figure 8. (i) CNAPs measured from stimulation (pw = 100 µs) in the left sciatic nerve for Rat1. Notice
the relatively small voltage amplitude and selective activation of the tibial nerve branch. (ii) Resultant
recruitment plots of the three respective nerve branches. A lot of noise is present in this measurement
due to a low signal-to-noise ratio.
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Figure 9. (i) CNAPs measured from stimulation (pw = 50 µs) in the right sciatic nerve of Rat1. Notice
the greater response of recruitment in the peroneal nerve. (ii) Resultant recruitment plots of the three
respective nerve branches.

From the plot, we can concur that at the left sciatic nerve, the stimulation site is
positioned nearest to the tibial fascicle since relatively no activation is present in the other
nerve branches. However, due to the relatively small resultant CNAP voltage value (i.e., an
order of magnitude smaller than the others), there is a lot of noise in the CNAP signals and
in the recruitment curve as well. Since the onset of stimulation (around 30 µA) is similar to
that in the other data (Rat3), the source of the low-voltage recording would seem to stem
from the cuff recording rather than the interfascicular vs. intrafascicular placement of the
hd-TIME. Figure 9 shows the stimulation response of the right sciatic nerve of Rat1. The
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CNAP activation in the right side of the nerve is more robust and similar in amplitude to
Rat2 and Rat3. In this case, the peroneal activation is prominent. This concludes that the
electrode is more likely situated in the peroneal region (Figure 10). Also, part of the CNAPs
has been engulfed by the stimulation artifact. This happens when the stimulation pulse
width is too broad or there is a smaller separation between the stimulation and recording
sites. Figure 10 shows estimates of the relative placement of the stimulating electrode array
in the sciatic nerve of the rats. The figures are drawn to scale.
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Figure 10. Schematics (i–iv) depicting hd-TIME estimation of implantation direction and placement
of the stimulation electrodes inside the proximal region of the sciatic nerve. The cross-section of
the sciatic nerve shows the peroneal branching (the smaller section) and the tibial region. The sural
fascicle starts branching slightly distal from the implant region and has not been shown here. The
numbers on the electrode inside the nerve distinguish the active electrode. The electrode array and
nerves were drawn to scale.

3.4. Surgery and Implantation

Surgery and implantation in rats may not be an ideal model for validating peripheral
neural electrodes meant for humans. A suitable animal model would be one which has
peripheral anatomy similar to that of a human [53]. It would also give a closer prediction
of the functional bio-reaction to implantation post implantation. But for the early stages of
the development and fabrication of a novel neural interface, small animal models, i.e., rats,
are a better choice to obtain quick results due to the ease of surgery. This is important for
the early design and implant assessment of the interface. Therefore, we investigated the
measurement of the efficacy of the neural interface stimulation performance in small animal
models, keeping in mind the procedures needed for long-term implantation. Some of the
CNAP recordings were contaminated by the EMG signals. This could have been avoided
by severing the nerve from the innervated muscle distal to the cuff electrodes. However,
this method would be useless during chronic studies. So, knowing when and where
contamination happens and how to distinguish the CNAPs from EMGs during offline
processing are also the objectives of this study. An optimal distance for the placement of
the stimulating to recording electrodes in a rat model is around 16 mm with a stimulus
waveform of a pulse width between 50 µs and 100 µs, according to our results.

4. Conclusions

The future of bidirectional neural interfaces depends upon their ability to decode the
motor intention during stimulation and recording and relay it to the brain through the
afferent fibers in the quickest possible way. This study showed that the current neural
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interface can stimulate selectively, albeit in the passive stage with limited capabilities. Fur-
ther research is needed to evaluate a fully functional hd-TIME and exploit all its functions,
along with custom-built electronics.
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