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Abstract: The food industry is one of the most regulated businesses in the world and follows strict
internal and regulated requirements to ensure product reliability and safety. In particular, the industry
must ensure that biological, chemical, and physical hazards are controlled from the production and
distribution of raw materials to the consumption of the finished product. In the United States, the
FDA regulates the efficacy and safety of food ingredients and packaging. Traditional packaging
materials such as paper, aluminum, plastic, and biodegradable compostable materials have gradually
evolved. Coatings made with nanotechnology promise to radically improve the performance of food
packaging materials, as their excellent properties improve the appearance, taste, texture, and shelf
life of food. This review article highlights the role of nanomaterials in designing and manufacturing
anti-fouling and antimicrobial coatings for the food packaging industry. The use of nanotechnology
coatings as protective films and sensors to indicate food quality levels is discussed. In addition, their
assessment of regulatory and environmental sustainability is developed. This review provides a
comprehensive perspective on nanotechnology coatings that can ensure high-quality nutrition at all
stages of the food chain, including food packaging systems for humanitarian purposes.
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1. Introduction

A coating layer is defined as a uniform layer that is formed when a material is applied
one or more times to a substrate [1]. Typically, surfaces are coated with lacquer or paint to
protect them from mechanical, chemical, and weather effects and to improve their aesthetic
appearance. Ionomer and coextruded films are used for food packaging lamination and
extrusion coatings in all major flexible packaging. In recent years, nanotechnology has be-
come increasingly important in the development of surface coatings. Additives containing
nanoscale materials have been used for decades in the production of varnishes and paints
(e.g., barium sulfate and iron oxide) [1]. Novel nano-based coatings are widely used for sur-
face functionalization and protection against corrosion and dirt. Designing and developing
a coating for a specific substrate, application, and operating environment is a challenge, due
to the many influencing parameters such as thickness, grain size, adhesion of the coating
to the substrate, hardness, etc. [2,3]. The unique properties of nanomaterials compared to
microscale materials have led to the successful development of nanostructured coatings
in which at least one component is at the nanometer scale [4–7]. Nanostructured coatings
provide enhanced surface protection and are therefore used in the fields of food packaging
and more [8,9]. Different synthetic methods are used to prepare nanocoatings depending
on the target application [10–16]. In addition to the traditional methods of manufacturing
nanostructured coatings, such as physical vapor deposition and chemical vapor deposi-
tion, new approaches such as laser deposition, the sol-gel method, laser cladding method,
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spray coating method, and electrodeposition are also used to fabricate nanostructured
coatings [17–23]. With the development of nanomaterials and nanocoatings, corrosion
control has become relatively more effective [24]. Nanocoatings are versatile as they are
resistant to corrosion, temperature fluctuations, abrasion, adhesion, abrasion, and fogging,
and can be biocompatible and antibacterial [9,23,25–34]. The benefits of nanotechnology in
food management systems from food sources, processing, and products to packaging are
described in Figure 1.
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Food preservation refers to the management and treatment of food to prevent germs
from destroying its nutritional content, edibility, or quality. Among the traditional ways
that have been used as food preservation procedures are drying, canning, and freezing. To
lessen environmental pollution, packing materials are ideally comprised of biodegradable
materials. The application of nanotechnology to the food packaging sector has made this
concept a reality. When packaging food, several techniques need to be considered, including
the use of high-barrier plastics, the introduction of antimicrobials, and contamination
detection procedures. Smart packaging uses nanosensors to identify food degradation
and release nano-antimicrobials as needed to prolong shelf life. According to Alfadul and
Elneshwy (2010), nanoscience can offer solutions for issues like altering the permeation
behavior of foils, improving mechanical and heat resistance properties, improving barrier
qualities (such as thermal, chemical, and microbial), introducing active antimicrobial
and antifungal surfaces, and sensing/signaling any changes that have taken place in
the microbiological and biochemical realm. The most widely utilized nanomaterials as
antimicrobials in the food business are silver nanoparticles and their nanocomposites [35].
Ag+ ions, which attach to membrane proteins and form pits or induce other morphological
changes, are obtained from these nanoparticles [36]. These also trigger the production of
reactive oxygen species (ROS) in bacterial cells, which ultimately results in oxidative stress-
induced cell death [37]. According to Ntim et al. (2015), there is no discernible or minute
amount of silver nanoparticles released from the containers that migrate to the actual food
samples and food stimulants, suggesting that silver nanocomposites are quite safe for food
packaging [38]. Furthermore, new coatings made of nanomaterials with special qualities
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are being introduced because of continuous research and development efforts and advances
in nanotechnology. Coatings made of nanomaterials frequently minimize environmental
impact, increase energy efficiency, and decrease waste, all of which are in line with the
current trend toward sustainable practices. In comparison to traditional technologies, the
nanomaterial coating market is expected to experience significant growth shortly due to the
growing demand for improved coatings and the ongoing development of new applications.

1.1. Background of Food Packaging Challenges in Humanitarian Efforts

Global food insecurity remains a pressing challenge, affecting millions of individu-
als worldwide. Despite advancements in agricultural technologies and food production
methods, a significant portion of the global population continues to face inadequate access
to safe, nutritious, and sufficient food. According to The United States Department of
Agriculture (USDA), food insecurity is defined as “the lack of access to sufficient, safe,
and nutritious food [39]”. This definition underscores the multidimensional nature of
food insecurity, which encompasses not only the availability of food but also its safety
and nutritional quality. The problem of global food insecurity is closely linked to the
Sustainable Development Goal (SDG) 2, which aims to “end hunger, achieve food security
and improved nutrition, and promote sustainable agriculture 1”. This goal reflects the
international community’s commitment to addressing the root causes of food insecurity
and hunger while promoting sustainable food systems [40]. The issue of food insecurity
is exacerbated by various factors, including poverty, political instability, climate change,
and natural disasters. Climate change poses a substantial threat to global food systems.
Rising temperatures, unpredictable weather patterns, and extreme events adversely impact
crop yields and agricultural productivity. The Intergovernmental Panel on Climate Change
warns that climate change-related shifts in precipitation and temperature patterns could
lead to a decline in food production by up to 2% per decade. Additionally, a NASA study
found that climate change may affect the production of perishable foods as early as 2030,
with maize crop yields projected to decline by 24% (Team, by Ellen Gray, NASA’s Earth
Science News). The COVID-19 pandemic unveiled new dimensions of food insecurity,
with disruptions in supply chains, income losses, and limited access to markets further
amplifying the problem. According to Karpman et al., about one-third of US families strug-
gled to meet basic needs during the pandemic [41]. The disruptions in food availability
and accessibility led to increased reliance on food banks and nutrition aid programs [42].
It therefore became important for food banks and other hunger relief organizations to
bridge the gap in food accessibility by bringing food closer to the communities that need it
through various hunger relief programs [43]. Addressing global food insecurity necessitates
multifaceted approaches that consider both immediate relief efforts and long-term sustain-
able solutions [44]. The establishment of meal programs, food pantries, and mobile food
markets serve as immediate solutions to a long-standing problem. The food distributed
includes fresh food and shelf-stable foods. Nutritious food packages must include fresh
produce including fruits, vegetables, dairy, and all kinds of meat. To bring the food closer
to underserved communities, the food may need to travel longer distances to rural areas to
reach them. It is therefore important to consider the viability of the food to prevent spoilage
before it reaches its destination. This is where an effective and efficient food packaging
system must be developed and employed to ensure that the food provided for human-
itarian purposes is healthy and fresh. Nanoengineering, the branch of engineering that
manipulates structures and devices at the nanoscale, has shown immense potential in revo-
lutionizing food packaging and preservation methods. In recent years, the intersection of
nanotechnology and food engineering has opened new avenues for addressing these issues.
This paper delves into the transformative role of nanomaterials in food packaging, focusing
on their applications in the context of food rescue and humanitarian relief. In humanitarian
efforts, ensuring the safe transportation and preservation of food is paramount, yet it poses
significant challenges [45]. Humanitarian situations often involve transporting perishable
goods over long distances and varied environmental conditions, making conventional
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packaging methods inadequate. Traditional packaging materials lack the necessary barrier
properties, leading to quick spoilage and contributing to food waste in emergency aid
scenarios. Furthermore, the lack of reliable refrigeration options in disaster-stricken regions
exacerbates the problem, demanding innovative solutions to extend the shelf life of perish-
able foods without compromising safety [46]. Humanitarian organizations are continually
striving to enhance food packaging methods to address these challenges. Research in this
domain emphasizes the urgency of developing packaging solutions that can withstand
harsh conditions and protect food items from contamination, spoilage, and physical dam-
age during transit. The integration of nanoengineered materials in food packaging has
emerged as a promising avenue. By leveraging the unique properties of nanomaterials,
such as enhanced barrier capabilities and antimicrobial features, researchers aim to create
packaging that ensures the safe delivery of food aid, particularly in regions where resources
are limited, and infrastructure is compromised. These advancements hold the potential to
revolutionize humanitarian food packaging, minimizing waste and maximizing the impact
of aid efforts in vulnerable communities.

1.2. Antimicrobial Nanomaterials: Safeguarding Food Safety

Foodborne illnesses resulting from microbial contamination pose a significant threat,
especially in disaster-stricken areas where resources are limited. Nanomaterials with inher-
ent antimicrobial properties, such as silver nanoparticles and nanoliposomes, have been
integrated into food packaging systems to inhibit the growth of pathogenic microorgan-
isms [47]. These antimicrobial nanocoatings create a hostile environment for bacteria and
fungi, ensuring the safety of perishable foods during storage and transportation.

1.3. Sustainability and Environmental Impact

In addition to enhancing food safety and shelf life, nanomaterials contribute to sus-
tainability efforts by reducing food waste and minimizing the environmental footprint of
packaging materials. Biodegradable nanocomposites made from natural polymers and
nanoclays have emerged as eco-friendly alternatives to conventional plastic. These mate-
rials not only decompose rapidly, reducing landfill burden, but also conserve resources
by extending the usability of packaged foods [48]. The integration of sustainable nanoma-
terials aligns with the principles of humanitarian relief, emphasizing the importance of
environmentally responsible solutions. Nanomaterials have ushered in a new era in food
packaging technology, offering innovative solutions to the challenges faced by food rescue
and humanitarian relief initiatives. By leveraging the unique properties of nanomaterials,
the food industry can develop packaging systems that enhance food safety, prolong shelf
life, and promote sustainability [49]. As ongoing research continues to explore novel appli-
cations of nanotechnology in food packaging, the potential for improving the efficiency
and effectiveness of food rescue efforts remains promising.

This paper explores the design and manufacture of nanomaterial coatings for food
packaging, including regulatory and sustainability issues. Section 2 compares nanotech-
nology with traditional packaging methods, evaluates coating technology, and exam-
ines current food packaging methods and preservation techniques. Section 3 highlights
nanomanufacturing, explores nanomaterials in food packaging, and assesses their impact
on food quality and safety. Section 4 focuses on food preservation and the enhancement of
shelf life. Section 5 addresses environmental, safety, and regulatory impacts with a focus
on sustainable development and regulations. Section 6 deals with humanitarian aspects
and explores applications in extreme environments. Finally, the main conclusions and
recommendations are presented at the end of Section 7.

2. Development and Design
2.1. Comparative Analysis: Nanoengineered vs. Traditional Packaging Methods

In comparison to traditional packaging methods, nanoengineered packaging has
several advantages, including improved mechanical barrier, heat-resistant properties, and
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biodegradability [50]. Nanomaterials can be utilized to detect food deterioration using
nanosensors due to their increased antibacterial properties [51]. Antimicrobial packaging
(structured polymeric films) or encapsulating materials limit the development phase of
microorganisms on the packed food’s surface by distributing active substances onto the
food or into the external area [52]. Antimicrobial nanoparticles are used in active packaging
to protect food against detrimental and spoilage-causing bacteria to extend shelf life and
quality freshness. They are also included in the active packaging to make it stronger, lighter,
and less O2 accessible [53–55].

Today’s market is seeing an increase in the use of different materials to meet the
growing demand for cost-effective products. There is documented evidence of the adop-
tion of nanotechnology to enhance existing technology and develop new products with
improved functions, features, design, characteristics, reliability, and quality. The appli-
cation of nanotechnology has made existing and new materials become lighter, stronger,
and more durable thanks to their mechanical, electrical, and conductive properties. The
development of nanotechnology also means many tangible benefits or dangers. The food
industry is experiencing a paradigm shift from the traditional way of preserving food to
the more efficient nature of nanomaterials designed at the nanoscale level with excellent
barriers against oxygen, ultraviolet light (UV), water vapor, gas ingress, moisture, and
contaminants. The most interesting question facing developers and researchers around
the world is the future of nanotechnology, its application, associated risks, and possible
consequences. Every developer and researcher must understand the functional, geometric,
and mechanical properties of materials to advance the design process and its application.
Before selecting a material for commercial use, the interaction of material, function, form,
and environment must be evaluated. Researchers have studied and used nanotechnology
in medicine [56,57] to promote, protect, restore, and improve health, and in the energy
sector [58,59], to reduce greenhouse gases and improve sustainability. In the electronics
industry [60,61] there is a need for faster, smaller, and more efficient handles, while in the
food industry, to improve taste, flavor, texture, color, shelf life, and packaging [62].

2.2. Active Packaging System

When specific additives are integrated into packaging film to extend the shelf life of
food products, the package composition is considered active [63]. This active food packag-
ing can seek out moisture, oxygen, odor taints, antioxidants, preservatives, antimicrobials,
enzymes, etc. [64]. The creation of active packaged food materials involves adding active
compounds to the template of existing packaging materials or immobilizing antioxidants
on the surfaces of the packaging film to improve its functionality [65]. Figure 2 describes
several foods that have benefited from active packaging technology.
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2.3. Overview of Coating Technology

Designing a nanotechnology platform involves integrating, formulating, and using
cost-effective methods such as roll-to-roll nanocoating, thin-film spray coating, extrusion-
based coating, or alloying [66]. The purpose of coating materials is to protect, reinforce,
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and/or provide additional functions and properties to the underlying object’s surface or
bulk materials. In recent years, nanotechnology has been widely applied to functional
coatings, because nanoscale processing materials can provide unique chemical, mechanical,
thermal, surface, and photophysical properties that can be exploited to improve func-
tions required in urban environments [67]. Research shows that active ingredients can
be incorporated into active packaging coatings using immersion, non-covalent immobi-
lization, and layer-by-layer coating methods and techniques. The surface properties of
materials, especially packaging materials, are different from bulk materials [65]. Photo-
coating adds several properties to the surfaces of materials that enable the materials to
be used in functional packaging systems, including antimicrobial and self-cleaning [68],
antistatic and self-protective [69], metal chelating antioxidant [70], free-radical removal
antioxidant [71], biocatalytic [72], and easy printing properties [73]. Functional coating
materials vary in their properties and functionality from organic polymers to hybrid com-
posites and inorganic nanoparticles. The research and development of functional coating
technologies mainly involves the development of coating materials and coating methods
based on different applications [74]. The study of functional coating technologies has
attracted increasing interest in recent years due to their promising application in advanced
engineering materials. The traditional approach involves applying a coating to the surface
for environmental protection or aesthetic properties. Recently, the growing demand for
technical universal materials has encouraged the development of innovative, intelligent,
and high-performance coatings in various fields of application. These materials must be
designed for use in different industrial contexts or for specific applications, offering tar-
geted properties such as resistance to harsh environmental conditions, chemothermal and
mechanical stability, tailored surface morphology, or environmental sustainability [75]. The
main goal of nanotechnology platform development is to significantly improve the barrier
properties of biomaterials, such as packaging papers. The packaging material must have
properties that prevent the migration of various substances that penetrate or permeate the
atmosphere [76]. A polyvinyl alcohol (PVA)-based polymer coating was used to improve
the barrier properties of the paper through its good film-forming ability [77]. The coated
paper had excellent water resistance due to a hydrophobic contact angle of about 100◦.
After PVA/AKD coating, the grease resistance and mechanical properties of the base paper
also improved [78]. Sensors have been developed that detect changes in oxygen, mechan-
ical tearing, temperature, and pH to ensure the multi-functionality of food packaging.
Nanoparticles are used in the development of advanced packaging, active packaging, and
smart packaging that help preserve food and traceability throughout the supply chain.
Nanoparticles have antimicrobial activity, oxygen scavenging ability, UV transmission, and
many other properties that make them valuable for use in nanocomposites [79].

2.4. Plastic Film Coating

Coating as a method to improve the properties of plastic films and containers is an
active area of innovation. Coatings are applied to the surfaces of plastic films to improve
heat sealing and sealing properties. For example, acrylic jars are available in gold, gray,
and clear and are suitable for a variety of products including soups, vegetables, broths,
and nutritional drinks. Acrylic coatings have good odor-barrier properties. The coating
is glass-clear, hard, heat-sealable, and very glossy. It is highly resistant to oxygen, aroma,
and gas [80,81]. Due to environmental concerns that organic products like PVOH coatings
may produce dioxins, the compound ignites, and has a high gas barrier, nanotechnology
is being employed to replace polyvinylidene dichloride (PVDC) without changing the
coating parameters [80]. Liquid-phase treatment of packaging coatings with nanoclay
and polyvinyl alcohol (PVOH) has been developed [82]. The resin-based ionomer coating
(LTSCs) is used in emulsion form in contrast to acrylic and PVDC coatings. The ionomer
surface inks well without leaving any printing ink residue. SiOx is added as a coating.
SiOx is transparent, reusable, and recyclable and has good protective properties. This is a
technology that deposits silicon oxide (SiOx) on plastic films [83]. The photolysis of SiOx
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(glass) is like that of aluminum oxide during vacuum casting, as the resulting material is
relatively simple. As with aluminum, the addition of a SiOx layer significantly improves
the air and barrier properties and has the benefit of making the coating transparent [83–85].

2.5. Research Area of Nanomaterials Applied in Coatings

Researchers around the world have studied the behavior of functional coatings using
nanoparticles. This includes scratch resistance, pollution resistance, self-cleaning, corrosion
protection, and UV protection. For example, Hasim et al. (2015) looked at UV/ozone-
treated commercial low-density polyethylene (LDPE) films coated with layer-by-layer (LbL)
alternate deposition of polyethyleneimine (PEI) and poly (acrylic acid) (PAA) polymer
solutions and antimicrobial silver [86]. They showed that the resulting films containing an-
timicrobial Ag NPs can be studied in antimicrobial packaging. An et al. (2008) documented
that coating fresh asparagus spears with AgNP/polyvinylpyrrolidone nanocomposite films
extended their refrigerated shelf life by 25 days [87]. In addition, cellulose cushions contain-
ing silver nanoparticles have also been successfully used to cover beef, with a significant
reduction in microbial load [88]. Chawengkijwanich and Hayata (2008) observed a 3-log
reduction in the incidence of Escherichia coli E. coli after 3 h of illumination compared to
fresh lettuce treated with an oriented polypropylene (OPP) film coated with TiO2 nanopar-
ticles [89]. In contrast, uncoated films can reduce the number of E. coli by only 1 log under
similar conditions. Another study analyzed plastic films coated with TiO2 nanoparticles
for Penicillium expansum spoilage of apples, tomatoes, and lemons. The results showed
that the growth of P. expansum was inhibited due to the photocatalytic properties of TiO2
particles under the influence of light [90]. Chen et al. (2013) modified the paper to form
a lotus-like superhydrophobic surface by coating it with R812S silica nanoparticles and
polydimethylsiloxane (PDMS) silicone oil [91]. The coated paper had strong waterproof
properties. Maneerat and Hayata (2006) developed TiO2-coated polypropylene films to re-
move ethylene vapors from packaged horticultural products. Smolander et al. (2004) detect
spoilage of meat products by applying a transition metal coating (silver or copper) (1–10 nm
thick) to plastic film or paper packaging structures [92]. When using graphene materials in
food packaging, GM has been incorporated into foods or coatings to provide antimicrobial
activity and has been used as fillers to improve the physical properties of the films or
coatings [93]. Food packaging based on nanotechnology offers many advantages over
conventional food packaging materials, improving several properties such as temperature
resistance, better durability, flame resistance, sealing, recyclability, and optical properties,
as well as processability due to lower viscosity. The expert delivery of active materials into
biological systems at low cost reduces environmental damage. Such advances make it an
ideal candidate for the development of nanomaterials in a wide range of food packaging
applications, such as processed meat and meat products, cheese, confectionery, cereals, and
convenience foods. It also helps in extrusion coating applications for fruit juices and dairy
products or co-extrusion processes for bottling beer and carbonated beverages [94,95].

Due to the importance of food packaging, many authors have recently investigated
different types of nanoparticles [96–98]. Their work showed that the interaction of silver
nanoparticles (AgNPs) with DNA helps to detect and treat the degradation process, consid-
ering the prevention of microbial attack and the possible functional nutrition of coconut
water [96]. Several studies have shown that nanoparticles such as gold and silver extend
the life of food packaging due to their ability to prevent and reduce microbial contamina-
tion [96–100]. Toker et al., 2013 reported that Zn, Ti, Cu, Au, and Ag are emerging metal
nanoparticles with biocidal properties for use in food packaging [101].

2.6. Manufacturing of Coatings

Nanocoatings require a narrow particle size distribution. The so-called sol-gel tech-
nique plays an important role in the production of nano-coatings. In this process, the sol-gel
is applied to the surface using a conventional coating method (e.g., dip, spray, or spin
coating). The thickness of the resulting layer is 0.5 to 3 µm. The use of nano-coatings on
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external surfaces is based on the use of organic nanocomposites as binders in water-based
surface coatings. The nanocomposites are prepared by emulsion polymerization of acry-
lates in silica sol. When utilizing this method, a uniform distribution of silica nanoparticles
in the polymer and silica content of up to 50% in the nanocomposite is possible. Organic
components greatly improve the strength and durability of the coating. In addition, the
surface acquires superhydrophobic properties due to the high concentration of polar silanol
groups. These properties create a self-cleaning effect on the surface [55].

3. Nanomaterials in Food Packaging
3.1. Current State of Nanoengineering Applications in Food Packaging

Nanocomposites used in food packaging applications are classified into three main
functions (i.e., advanced, intelligent, and active food packaging) [79]. Advanced packaging
involves the use of nanoparticles in nanocomposite materials to improve their mechanical
properties, barrier properties, and stability under different temperature and humidity
conditions [55]. Smart packaging technology uses interactive technology to provide and
improve real-time information about the quality of packaged foods and marketing strate-
gies. In addition, it protects against fraud and counterfeit products and indicates exposure
to some harmful factors such as insufficient temperature or high oxygen levels [102,103].
Active packaging provides protection and preservation based on mechanisms activated
by natural or acquired factors (antimicrobial activity, biodegradable activity) and reduces
food loss due to their shelf life extension [104]. Although many studies on new applica-
tions of nanomaterials in food packaging are reported every day, most of the materials
are still at the stage of feasibility and demonstration studies, and employment in the food
packaging industry has not yet been approved due to safety issues, which may be due
to the transfer of nanomaterials from the packaging to the food matrix [105]. In general,
nanomaterials used for food packaging can be divided into two categories: inorganic and
organic materials. In previous materials, metals, metal oxides, and clay nanoparticles
embedded in nanocomposite films and nanofibers [53,106] were discussed. Furthermore,
some inorganic materials such as oxidized nanoparticles (CuO, ZnO, TiO2, MgO, and
Fe3O4) have attracted much attention. The interest in these oxides stems from their ability
to withstand harsh processing conditions and enhance strong inhibition against foodborne
pathogens. Clay can resist gases, water vapors, and improve the mechanical strength
of biopolymers [107]. The second group consists of organic materials including, but not
limited to, phenols, halogenated compounds, quaternary ammonium salts, plastic poly-
mers, and natural polysaccharide or protein materials such as chitosan, chitin, zein, and
whey protein isolates, which have recently been very highly rated [108,109]. The food
industry has begun to use nanotechnology to develop nano-sized ingredients to improve
the color, texture, and taste of foods [62,110]. TiO2 and SiO2 nanoparticles [111,112] and
amorphous silicon dioxide [112,113] are used as food additives. TiO2 is used as a coloring
agent when coating donuts with icing sugar. The main nanomaterials used for food pack-
aging are montmorillonite (MMT), zinc oxide (ZnO-NP) coated silicate, kaolinite, silver
NP (Ag-NP), and titanium dioxide (TiO2NP), because these nanomaterial-coated films
form a barrier to oxygen, carbon dioxide and aromatic compounds [114]. In addition to
the well-known silver nanoparticles and nanoclay, the nanomaterials used in the package
include nanometal oxides [115], nitrocellulose [116], and halloysite nanotubes and essential
oils [117]. These nanomaterials can provide various functions to packaging compounds,
including antioxidant (e.g., essential oils), antimicrobial (e.g., nano-silver), ethylene (e.g.,
nano-KMnO4), and oxygen scavenger (e.g., Pd- nanoparticles) functions, as described in a
recent review article [118]. The selection of the main nanomaterials used in food contact
materials is described in Table 1.
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Table 1. Nanomaterials used in food contact materials.

Nanomaterial Property Enhancement Applications

Titanium nitride
Improvement of thermal properties [119],
antimicrobial and deodorant agent [120],

UV filter [121]
PET, fridges [120]

Zinc oxide UV filter, antimicrobial and fungi
static agent [122], deodorant [120] Plastic glasses, plastic films

Carbon black Additive [123] Rubber, silicones, printing inks

Silver Antimicrobial [124], anti-biotic, antistatic agent Reusable food containers [120]

Nanoclay (bentonite) Improvement of barrier properties [125] PE, PET, PP, PS, TPO and nylon [120,126]

Aluminum

Filler in polymers, scratch- and
abrasion-resistance in coatings [123],
improvement of barrier properties,

UV filter [120]

Silicon dioxide Anti-slip agent Printing inks, paper and boards,
rubbers, silicones

Studies show that nanocoatings, a good substitute for traditional polystyrene,
polypropylene, and other coatings used in food packaging and storage, prevent the forma-
tion of bacteria. Additionally, less waste is produced by microbes. The most often utilized
nanocoating materials for food preservation and packaging are titanium dioxide and silicon
dioxide [127]. For example, silicon dioxide is used as a food colorant, anticaking agent, and
drying agent. Further, nanostructured titanium dioxide can be utilized to eradicate diseases
and germs on surfaces that come into contact with food due to its potent photocatalytic ac-
tivity. One of the most significant characteristics of nanomaterials is their surface-to-volume
ratio, which is also responsible for many other characteristics. The unique physio-chemical
properties of these high surface-to-volume ratio nanomaterials, including their solubility,
toxicity, strength, magnetism, diffusivity, optics, color, and thermodynamics, are displayed
by these high surface-to-volume ratio nanomaterials [128,129]. Materials at the nanoscale
can interact with a greater number of biological molecules and microbes, more successfully
exhibiting their antibacterial capabilities due to this high surface-to-volume ratio.

3.2. Relevance of Nanomaterials for Food Packaging

Nanomaterials have garnered significant attention in the food packaging industry due
to their potential to address emerging challenges and improve sustainability. This literature
review provides an overview of the contributions of various academic research papers to
the field of nanomaterials for food packaging and sustainability.

In the editorial “Nanomaterials in Food Packaging”, Garcia discusses the development
of composites using nanomaterials and their impact on food packaging. It references
several relevant studies on the applications and implications of nanotechnology in the
food sector, providing insights into the potential of nanomaterials for creating advanced
food packaging with enhanced barrier properties and active packaging capabilities [130].
Alweera et al., highlight the benefits and drawbacks of using nanotechnology in food
packaging, emphasizing its ability to enhance the properties of food packages and extend
the shelf life of food products [79]. Sharma et al., emphasize the evolving nature of food
packaging considering consumer demands for natural quality, safety, minimal processing,
extended shelf life, and ready-to-eat concepts. They also discuss the technological advances
in food packaging, particularly in the domain of nanomaterials, shedding light on the
future applications of nanotechnology in food packaging [55].

The paper “Nano-Food Packaging: An Overview of Market, Migration Research”
reviews the availability of nano-food packaging in the current market and reports on case
studies of nanomaterial migration. In this paper, Bumbudsanpharoke and Ko provide
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an in-depth exploration of the technological advances in food packaging, particularly in
the domain of nanomaterials, and their implications for sustainability and food quality.
They also examine different regions of the world and the status of the regulations there.
While the United States stands at the forefront of pioneering nanomaterial safety measures
for food and its packaging, Canada lacks specific regulations on nanomaterials. Health
Canada, however, leverages existing legislative and regulatory frameworks to advance
public health goals and mitigate potential health risks associated with nanomaterials [131].

In their study, Ahmad et al., delve into the potential of nanotechnology as a promising
and widely used resource in the food packaging industry, shedding light on the types
of nanomaterials being used and their societal concerns. Their study suggests that the
remarkable physicochemical properties, bioavailability, and chemical reactivity inherent in
nanomaterials may potentially lead to a significant level of cytotoxicity [132].

3.3. Effect of Nanomaterial Composition on the Improvement of Barrier Properties

Nanoparticles can be classified based on their size, shape, and physical and chemical
properties. The classification of these nanomaterials often determines their functionality.
Due to their unique structure, nanomaterials offer many advantages in improving barrier
properties, such as impermeability, thickness, nanoscale sensors, etc.

3.3.1. Impermeability

Conventionally, packaging materials have been limited in their ability to provide
comprehensive protection against environmental factors that can compromise product
quality and safety. The ability to manipulate the structure and composition of materials at
various nanoscales promises to create effective barriers for food packaging applications.
Nanoscale structures are designed to be very dense and impermeable. For example, to
maintain the composition of the gas in the package, the structure of the package material
must be impermeable to gases [108].

3.3.2. Thickness

The thickness used in certain packaging applications varies and may have commercial
implications. Nanomaterial protective shields offer the same protection as thicker traditional
materials, including reduced thickness with less material usage [133]. Lower thickness coat-
ings can be vital for transportation in humanitarian food logistics wherein bulkier materials
can limit the distribution of perishable items under climate-controlled environments.

3.3.3. Nanoscale Sensors

Nanotechnology is used to maintain and extend the sensory quality shelf life of food.
Throughout the life cycle of food, nanoscale sensors are added to packaging materials to
help detect and measure properties such as the temperature, humidity, gas content, and
freshness of perishable products. They are vital in identifying contamination from microbes
to check the condition of food during transportation and storage. Real-time data from
these sensors has helped suppliers, manufacturers, retailers, and consumers make timely
quantitative decisions [134].

3.4. Chemically Released Nanopack

The possible release of nanomaterials from coatings has been the subject of several
studies [135–138]. Particles smaller than 100 nm are released during the abrasion, sanding,
and aging processes. However, the added nanoparticles are usually retained in the binder
matrix. Packaging can release nanoscale antimicrobials, antioxidants, flavors, aromas, or
nutrients into foods or beverages to extend shelf life or improve flavor or aroma [139–142].
Many experts agree that the release of detached nanomaterials from the coating can only
be carried out by the prechemical or thermal treatment of the matrix material, not by
mechanical treatment [128]. Studies have shown that small synthetic TiO2 particles with
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a size of 20–300 nm or silver nanoparticles with a size of less than 15 nm can be released
from exterior paint during the weathering process [143,144].

3.5. Nanostructured Materials in Food Packaging

Functional properties of bionanocomposite films such as starch, cellulose, chitosan,
montmorillonite (MMT), metals, and metal oxides have been used in food packaging.
Nanomaterials as reinforcements can improve the mechanical, mechanical, and thermal
properties of composites, creating new and better materials. In addition, nanomaterials can
be used to develop active ingredients with antibacterial, antioxidant, and other effects [145].
In addition to the well-known silver nanoparticles and nanoclay, the nanomaterials used
in packaging are nanometal oxides [116], nanocellulose [117], halloysite nanotubes, and
essential oils [118]. These nanomaterials can provide a variety of functions to cap com-
pounds, including antioxidant (e.g., essential oil), antibacterial (e.g., nanosilver), ethylene
scavenging (e.g., nano-KMnO4), and oxygen scavenging (e.g., Pd nanoparticles) according
to recent review articles [146].

Although the exact mechanisms underlying the antibacterial properties of nanopar-
ticles remain unclear and depend on the microorganism type, oxidative stress induction,
metal ion release, and non-oxidative mechanisms are currently recognized as viable op-
tions. Against both Gram-positive and Gram-negative bacteria, nanoparticles have shown
broad-spectrum antibacterial properties. ZnO nanoparticles, for instance, have been shown
to inhibit Staphylococcus aureus [147]. Based on current research, the following primary
mechanisms underlie nanoparticles’ antibacterial effects: the bacterial cell membrane can
be disrupted, reactive oxygen species (ROS) can be produced, the bacterial cell membrane
can be penetrated, and intracellular antibacterial effects, including interactions with DNA
and proteins, can be induced.

It has been effectively shown that the size, dose, concentration, and shape of nanoparti-
cles determine their actions. Generally speaking, antiviral substances work against viruses
directly or by obstructing critical stages in their replication [148]. For example, silver
nanoparticles have been shown to have potent antibacterial properties as well as to be
effective against a variety of viruses. Despite the fact that the exact mechanism of antiviral
action is not completely clear, silver nanoparticles can directly affect viruses and the initial
stages of their interaction with the host cell. This is dependent on a number of factors, in-
cluding functionality, size, shape, and concentration. Additionally, AgNPs’ broad-spectrum
antiviral activity and capacity to stop cell infection have drawn a lot of interest in the
food packaging industry. AgNPs primarily function by physically interacting with the
free viral particle, as numerous studies have shown. AgNPs have the ability to impede
the initial stages of viral replication or to have virucidal effects [149]. However, it should
be highlighted that the studies used to elucidate the mechanisms of action of AgNPs are
heterogeneous, which can occasionally make it challenging to identify the stage of viral
replication that is inhibited [150].

3.5.1. Characteristics of Nanostructured Materials

Nanostructured materials are attractive in food packaging due to their enhanced
functional properties, such as mechanical strength and barrier properties, and a wide range
of biologically active compounds, including antibacterial and antioxidant properties, to
maintain quality and extend shelf life in various food applications. The advancement of
nanomaterials within the food packaging space has brought numerous changes in food
preservation, capacity, distribution, and utilization. The characteristics of nanostructured
materials are size, shape, specific surface area, aspect ratio, agglomeration/aggregation
state, size distribution, solubility, surface morphology/topography, and structure, including
crystallinity and defect structure [151].
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3.5.2. Analytical Method for Characteristics of Nanomaterials

Nanomaterials can be characterized using a variety of methods, depending on their
characteristics. Table 2 below shows different techniques used in analyzing the properties of
different nanomaterials. Electron microscopy, electron spectroscopy, field flow fractionation,
chromatography, light scattering, Raman spectroscopy, and mass spectrometry have all
been used to analyze nanomaterials [152].

Table 2. Properties of nanoparticles (nanoparticle powder).

Size, size distribution, shape [152]

Scanning electron microscopy (SEM)
Transmission electron microscopy (TEM)
Atomic force microscopy (AFM)
X-ray diffraction (XRD) for crystalline nanoparticles
Differential mobility analysis

Crystallinity, crystal structure [152] X-ray diffraction (XRD)
Electron diffraction in a transmission electron microscope (ED)

Chemical composition and purity of a nanoparticle
ensemble (powder sample)

Inductively coupled mass spectroscopy (ICPMS)
Inductively coupled plasma atomic emission spectroscopy (ICP-AES)

Chemical properties of single nanoparticles [152]

Atom-absorption spectroscopy (AAS)
X-ray fluorescence spectroscopy (XRF)
X-ray photoemission spectroscopy (XPS)
Time-of-flight secondary ion mass spectroscopy (TOF-SIMS)
Ultraviolet-visible spectroscopy (UV-Vis)
Fourier-transform infrared spectroscopy (FTIR)
Energy-dispersive (wavelength) dispersive X-ray spectroscopy in an
electron microscope

Surface chemistry and surface reactivity [152]
X-ray photoemission spectroscopy (XPS)
Electron spin resonance (ESR)
Auger electron spectroscopy (AES)

Surface area as an indicator for agglomeration [152] Isothermal gas adsorption/BET

3.5.3. Testing of Nanomaterial Food Packaging

Testing food packaging made of nanomaterials at the conceptual stage before being
used for food packaging would ensure that materials that fail in design, manufacturing,
and customer specifications are rejected to avoid their use. It is necessary to build quality
and reliability in the project, phases of production, and distribution. It was found that
distributors or suppliers were not very aware of or focused on package evaluation. Different
types of nanotechnology packaging materials are quantitatively tested to evaluate their
mechanical properties, chemical properties, and geometric properties, while performance
tests are evaluated to better simulate the behavior of the packaging material during outdoor
transport, storage, and handling.

Paper Packaging

Parameters to be tested are square weight, moisture content, thickness, breaking
strength, water absorption, breaking length, flexural stiffness, tearing strength, etc. Re-
searchers have produced papers showing the use of nanomaterials in food packaging.
Kwon et al., produced sulfate fiber-silver nanoparticle composite sheets with antimicro-
bial activity against E. coli. Muñoz-Shugulí et al., developed β-cyclodextrin complexes
containing allyl isothiocyanate. NAMI has announced that it has developed an ecologi-
cal nano-protective coating that replaces perfluoroalkyl and polyfluoroalkyl substances
(PFAS) in paper-based food packaging. PFASs are often mixed with paper pulp or coated
on paper to provide water and oil resistance in paper-based food packaging. PFAS is
not biodegradable. It is mixed with paper pulp or coated onto paper to provide water
and oil resistance to the environment at large. NAMI claims its nano-shield coating is a
liquid solution developed through the composition optimization of modified hydrophobic
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biodegradable polymer and nanoparticles, well dispersed and interacting with each other
to form cross-linking to prevent the spread and penetration of water and oil on paper.

Plastic Films and Laminates

A lamination film is a layer of a base film such as polyester, nylon, polypropylene, or
vinyl bonded with an adhesive. Laminated film is ideal for packing foods such as snacks,
coffee, cookies, etc. Laminate film protective barriers are made of PE (LDPE), BOPP, PET,
and so on. Plastic films for lamination must be of very good quality. Thickness errors
should not exceed ±4% to ±7%. Otherwise, the film will lose its usability in the process
and lead to a loss of production. It should be considered that the speed and power of
oxygen-removing plastic films and laminated trays are significantly lower compared to
iron-based oxygen scavenger bags or tags [128,153]. The tested parameters for plastic
films and laminates are thickness, density, tensile strength, impact resistance, duty factor,
gloss determination, flexible laminate fog and peel strength determination, elongation at
break, etc.

Glass Container

The theoretical strength of glass is very high. In practice, the strength is much lower
due to surface defects. Nanotechnology has improved the surface of the glass to reduce
manufacturing defects and surface coatings due to the use of metal oxides in the glass ma-
terial, which improves both the electrical and thermal conductivity of the glass [154–156].
Three popular classes of glass are standard glass, ceramic glass, and nanostructured
glass [157,158]. Closures for glass packaging containers are usually made of metal or
plastic and divided into normal seals, vacuum seals, and pressure seals. The parameters
tested are color, height, power measurement, mechanical impact force, annealing, thermal
shock test, and hydrostatic pressure [159,160].

3.6. Types of Plastic Used in Packaging

Carbon nanotubes (CNTs) have recently been synthesized from polymers such as
polyvinyl alcohol (PVOH), polypropylene (PP), nylon, polylactic acid (PLA), etc., and
have been investigated for packaging purposes, especially as antimicrobial and smart
sensors. There are two types of CNTs: single-atom-thick nanotubes and multiple concentric
nanotubes. Nanocomposites used in packaging films solve the problems of conventional
packaging by providing better antimicrobial, degradation, thermal, barrier, and mechanical
properties with a nanosensor that alerts consumers to conditions (e.g., temperature, gas,
humidity, impurities, etc.) and food safety [116]. A selection of some of the most important
types of plastic used in food packaging is as follows:

3.6.1. Polyethylene Terephthalate (PET or PETE)

PET is widely used in many food packaging applications due to its durability, lightness,
and flexibility. Recycling PET bottles saves energy, reduces greenhouse gas emissions, and
conserves natural resources. PET containers are used to package foods such as peanut
butter, salad dressings, and condiments. Traditional PET production relies on the use of
EG and terephthalic acid extracted from petroleum. PET is a thermoplastic polymer, so
it can be easily recycled at high temperatures. PET is also easy to recycle, as almost the
entire beverage bottle industry uses this plastic. The widespread use of PET in beverage
packaging has recently attracted attention due to the short life of this type of container, and
particularly its single use. These factors, along with economic and cultural factors, make
PET bottles one of the most visible forms of plastic waste [161]. Plastic pollution is now
recognized as a global problem [162], and many countries around the world are working to
improve local plastic recycling rates [163]. The European Union has decided that by 2030,
drink bottles will contain at least 30% recycled plastic. However, PET bottles made from
recycled plastic can leach more dangerous chemicals into the new plastic packaging. British
researchers report this in a recent study. Researchers from Brunel University in London
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analyzed 91 studies on food and drinks that contained chemicals from packaging plastics.
Of the 193 substances found in PET bottles that end up in food or drink, 150 were found at
least once and 18 of them exceeded the legal requirements [164]. Most importantly, and
most surprisingly, they found that drink bottles made from recycled plastic appeared to
contain more harmful chemicals than pure plastic bottles. The researchers say that recycled
PET cannot currently be used as a raw material for food packaging or drink bottles.

3.6.2. Polyvinyl Chloride (PVC)

PVC is widely used as a plastic for food packaging because it is resistant to heat
and prevents the growth of microorganisms. It is used to make films, salad bowls, and
food trays. PVC requires a variety of hazardous chemicals during production, posing
risks to workers, people, and the environment. Evidence shows that PVC is responsible
for more national and annual dioxin loads during its lifetime than any other industrial
product. Dioxin studies by the United States Environmental Protection Agency (EPA)
indicate that there is no safe level of dioxin exposure [165]. Therefore, even a small amount
can cause serious health problems [165]. The EPA has also determined that the levels of
dioxin currently found in most adults and children are already high enough to pose a
health hazard to the American public. The higher the concentration of PVC in the fuel
mixture, the higher the formation of dioxins. PVC is important in the formation of diox-
ins/furans in fires, construction, or land combustion [166]. Nanotechnology strategies
are an effective way to improve the dielectric strength, morphology, and surface energy
properties of PVC materials. In this study, nanotechnology strategies were used to improve
the surface strength properties of polyvinyl chloride (PVC). Different types of nanoparticles,
such as clay, ZnO, SiO2, and Al2O3, and concentrations of 1 wt.%, 5 wt.%, and 10 wt.%
were investigated [167]. The morphology, dielectric constant, contact angle, wet strength,
diffusion coefficient, and adhesion behavior of pure PVC and PVC nanocomposites were
investigated. Tap water and salt water were used to study the surface tension properties.
The results showed that the type and concentration of nanoparticles used influenced the
properties of the nanocomposites obtained. Changes in surface roughness, regulation of
hydrophilic expression and dipole/dipole interaction, and changes in the type and con-
centration of nanoparticles used are the main reasons for improving the surface resistance
properties of PVC nanocomposites.

3.6.3. Polystyrene (PS)

Polystyrene could be a lightweight and delicate plastic used for packing materials and
disposable food containers. It is additionally utilized within the food industry for items
like fast-food packaging. The generation and transfer of PS pose critical natural dangers
because it takes a long time to break down and can discharge destructive chemicals into the
soil and water. Due to these dangers, numerous companies and organizations are taking
steps to stage out the use of PS in their packaging. The consideration of 4% (w/w) nanoclay
brought about an increment in oxygen barrier properties of polystyrene (PS) by 51% in one
of the conducted studies [168].

4. Shelf Life
4.1. Food Preservation and Shelf Life of Current Traditional Materials

Blanching is a commonly used enzyme deactivation process at low temperatures.
Enzyme inactivation prevents such reactions from occurring and increases the shelf life.
During the heat treatment of fruits and vegetables, the blanching step is similar but aims to
block an additional enzyme, so the flotation of fruits or vegetables is reduced [169,170]. The
degree of heat treatment necessary to obtain a product with acceptable stability depends
on the types of microorganisms and enzymes that are present, the storage conditions
of processed foods, and other storage methods used. The production of heat-preserved
packaged foods centered on heating the food to reduce it to an acceptable value and
retention of its nutrients in airtight packaging to prevent reinfection. Blanching is a process
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designed to inactivate enzymes and is usually applied immediately before other thermal
preservation processes either at high or low temperatures. Without a blanching step, the
shelf life of, for example, frozen vegetables used in commercial and domestic practice, but
it does slow down storage life, the chemical reactions that cause food spoilage could occur,
albeit at a slow rate. In thermal processing of fruits and vegetables, the blanching step is
similar, but its objective is to prevent further enzymic breakdown of the foods if delays
occur before processing the foods [169,170].

4.2. Nanoscale Functionality: How Nanostructured Materials Improve Food Preservation

Food producers are constantly looking for new ways to produce food with improved
taste and nutritional properties. Conventional thermal processes reduce the vitamin content
of food and affect its structure, taste, and appearance. Nanotechnology provides efficient
systems for the reduction or elimination of microorganisms with minimal adverse effects on
food ingredients. Nano-encapsulated food ingredients and additives/supplements provide
protective barriers, taste and aroma concealment, sustained discharge, and enhanced
dispensability for water-insoluble food components and supplements/additives [171]. The
use of nano-biocomposites in food packaging has enhanced the ability of food packaging
to act as a barrier against gases.

4.3. Impact of Nanomaterial Packaging on Food Quality, Shelf Life Extension, and Safety

Nanotechnology has great potential to ensure changes in color, taste, and nutritional
values, extend the shelf life of food, and monitor food integrity [172]. Nanotechnology is
used in the formation of capsules, emulsions, and biopolymer matrices. Nanoencapsulation
hides odors or tastes, regulates the interaction of active ingredients with the food matrix,
regulates the release of active ingredients, ensures availability at the target time and a
certain speed, and protects them from moisture and heat [173]. Product shelf life is best
defined as part of the product development cycle. It is also important that the product
packaging requirements are considered in the early stages of product development. Shelf
life tests are performed by keeping representative samples of the final product under
certain conditions. The process follows those the product encounters from manufacture
to consumption. Packaging may limit a product’s shelf life or determine how shelf life-
limiting processes are controlled. The shelf life of packaged food is based on acidity,
water activity, nutrient content, antimicrobial occurrence, biological structure, temperature,
relative humidity, and gas structure [174]. Nano-sized materials are broadly utilized as
antimicrobials to decrease the microbial deterioration of packaged foods. The application of
nanotechnology also extends to these platforms, including but not limited to the following.

4.3.1. Nano Packaging for Fruits

By mixing polyethylene with nanopowder (nano-Ag, kaolin, anatase TiO2, rutile TiO2),
a new nanopackaging material with lower relative humidity, oxygen permeability, and
high longitudinal strength was synthesized, and its effect on the storage quality of the
substance was studied. The results showed that nanopackaging was able to maintain the
sensory, physicochemical, and physiological quality of strawberries at a higher level than
conventional polyethylene packaging bags [175].

4.3.2. Nano Packaging for Beverages

Due to very large aspect ratios, relatively low levels of nanoparticles are sufficient
to change the properties of packaging materials without significantly changing the den-
sity, transparency, and processing characteristics. The addition of certain nanoparticles to
molded objects and films has been shown to make them light, fire-resistant, stronger in
terms of mechanical and thermal properties, and less permeable to gases. New packaging
solutions focus even more on food safety, preventing the growth of microbes, slowing down
oxidation, improving the visibility of violations, and ease of use. Three main categories
of nanotechnology applications and functions are being developed for food packaging:
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improving plastic material barriers; adding active components that can provide functional
properties beyond those of conventional active packaging; and identifying and communi-
cating relevant information [176].

4.3.3. Nano Packaging for Chocolates

Nanofilters, which are essentially tiny sieves that can filter viruses and bacteria, are al-
ready in use in the brewing and dairy industries. Beet juice was tested in a laboratory where
the color was eliminated (turning red wine to white) while maintaining the flavor. With the
current technology, lactose can now be filtered out of milk and substituted with another
sugar. As a result, food processing may employ less chemicals and heat treatment [177].

4.3.4. Chicken and Spinach Nano Pack

Nanoscale sensors are being developed that monitor toxins and bacteria at all stages
of food processing. This helps the producer detect salmonellosis in chickens or E. coli in
spinach long before the products reach the stores. Self-checkout food packaging is maturing
into nanotechnology. When it is connected to a refrigerator, it detects and warns about
various chemicals caused by the release of rotten food or the presence of bacteria and then
cleans them [152].

4.4. Shelf Life Extension: Studies and Findings on Prolonged Freshness

Factors that damage fresh produce and prevent shelf life extension include microbial
growth, physical harm, moisture, humidity, temperature, exposure to ethylene, etc. A
longer shelf life allows for longer seasonality, less food waste, and a better chance of
maintaining freshness. Many studies have been carried out to maintain or extend the
shelf life of food products on the market. Some of these studies are highlighted below.
For example, Reyes et al., presented interesting results that shed light on the effects of
vacuum packaging on the surface color and lipid oxidation of beef fillets. The results of
this study suggest that vacuum packaging can be used for beef fillets to maintain quality
characteristics for a longer shelf life [178]. A study by Nicosia et al., suggested that there
was a tendency to increase or eliminate SSL claims for industrial pesto sauces because
the products remained safe for longer than stated on the label. This research will lead to
practical results in households to reduce food waste and in the industrial world to reduce
inventory turnover and save costs [179]. Panza et al., evaluated the breading of olive paste,
a by-product of olive oil production, on fresh fish sticks stored for 15 days at 4 ◦C. The
results showed that enrichment with olive paste increased the total phenolic, flavonoid, and
antioxidant activities of the breaded fish samples compared to the control without affecting
the sensory parameters [180]. Horticulture professor Avtar Handa found that adding a
yeast gene increases the production of a compound that slows the aging and microbial
decay of tomatoes. The authors expressed a yeast spermidine synthase (ySpdSyn) gene
under constitutive (CaMV35S) and fruit ripening specific (E8) promoters in tomato and
determined the alterations in tomato vegetative and fruit physiology in transformed lines
compared to the control. The ySpdSyn-transgenic fruits had a longer shelf life, reduced
shriveling, and delayed decay symptom development in comparison to the wild-type (WT)
fruits. Additionally, the expression of several cell wall and membrane degradation-related
genes in ySpdSyn-transgenic fruits was not correlated with the extension of shelf life
indicating that the Spd-mediated increase in fruit shelf life is independent of the above
factors. Crop maturity, indicated by the percentage of ripening fruits on the vine, was
delayed in a CaMV35S-ySpdSyn genotype with fruits accumulating higher levels of the
antioxidant lycopene. Together, these results provide evidence for the role of Spd in
increasing fruit shelf life, likely by reducing postharvest senescence and decay [181].

4.5. Nanocoating Anti-Corrosion Technology for Food Preservation

Nanomaterials within coatings have been shown to provide anti-corrosion properties
due to their high hardness, chemical inertness, antimicrobial and anti-fouling proper-
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ties [182]. Packaged foods, when stored for longer durations in harsh environmental
conditions, are susceptible to leaching of acids, alkanes and enzymes that can deteriorate
the food coating integrity due to their corrosive nature. This can result in the degradation
of food nutrition as well as lead to the toxicity of package contents. Nanobarrier materials
provide a solution by impeding the corrosive behavior of food leachants by absorbing them
within the matrix or reacting with them to produce benign by-products [183]. Nanoma-
terials such as ZnO, TiO2, Ag, and CuO have shown antibacterial properties to improve
stability and the preservation of micronutrients [184]. The incorporation of the above-said
materials within food packaging provides a passivation layer to prevent cracking and the
leakage of fluids. Nanomaterial-based sensors can alleviate long-term storage deterioration
by providing signaling capabilities. These sensors can be tethered with radio frequency
identification tags or internet-of-things (IoT)-based interfaces for real-time detection. In
addition, the inclusion of sensor-based nanomaterials within the food packaging can detect
the spoilage of food items based on the corrosive products of the contents with time-
temperature indicators. Single-walled carbon nanotube (SWCNT) composites have been
used to detect analytes in dairy and fruit products [185]. An electronic nose can be used
to sense volatile compounds based on the aroma of the corrosion products [186]. Thus, a
variety of strategies can be employed with nanomaterial-based coatings to detect, mitigate,
and neutralize the effects of corrosion products within food packaging.

5. Environmental, Safety, and Regulatory Implications
5.1. Sustainable Practices: Role of Nanostructured Materials in Green Packaging Solutions

As society leans towards more sustainable practices, nanotechnology has emerged as
a promising avenue for making green and sustainable packaging solutions more accessible
and efficient. Nanostructured materials, with their unique properties, have demonstrated
significant potential in transforming conventional packaging methods, taking us one step
closer to a greener planet. Several key nanomaterials have emerged as prominent players
in this arena. Montmorillonite (MMT) is utilized to create films that act as robust barri-
ers against oxygen and carbon dioxide. Zinc oxide-coated silicate (ZnO-NPs) serves as
a protective shield in sustainable packaging materials, while Kaolinite, a clay mineral,
bolsters the packaging’s barrier properties. Silver nanoparticles (Ag-NPs) stand out due
to their remarkable antimicrobial properties, thereby effectively prolonging the shelf life
of food items. Additionally, titanium dioxide (TiO2 NPs) is employed to construct barri-
ers, shielding against various compounds, including oxygen and carbon dioxide. These
advancements underscore the pivotal role nanomaterials play in elevating the standards
of sustainable food packaging [115]. Polysaccharides like starch, chitosan, and cellulose
derivatives are used for their bio-based and antimicrobial properties, as well as their me-
chanical strength and moisture resistance. Biodegradable polymers such as polylactic
acid (PLA), polyhydroxybutyrate (PHB), and polycaprolactone (PCL) offer eco-friendly
alternatives to petroleum-based plastics. Edible films made from proteins, lipids, or polysac-
charides extend the shelf life of food when consumed with the product [187]. Composite
materials, known as nano-enhanced composites, combine these materials’ properties, often
incorporating antimicrobial agents to prevent food spoilage. These nanomaterials not only
extend food shelf life and enhance safety but also contribute to sustainability by reducing
waste from food packaging materials [188].

UV absorption can disturb the flavors, colors, and nutrients in dairy food products,
necessitating the need for efficient UV protective solutions [189]. Similarly, crops require
protection from direct UV radiation. Properly designed UV protective films can shield not
only dairy products but also play a role in preserving chlorophyll synthesis in plants, thus
finding application in agriculture [190]. Therefore, another type of biopolymeric nanocom-
posites under consideration is the incorporation of ultraviolet (UV) protective properties
into the packaging materials. By adding biocompatible nanomaterials with maximal ab-
sorption properties in the UV spectrum (200–400 nm), the UV protective properties of the
packaging materials can be enhanced significantly. These advancements are particularly
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important in preserving the intrinsic chemical, physical, and biological properties of food
items, pharmaceuticals, and beverages during transportation and storage [191].

5.2. Biodegradability and Environmental Impact of Nanostructured Materials

The environmental impact and biodegradability of nanomaterials in food packaging
are critical considerations for their successful implementation, particularly in disaster-prone
areas [192]. While nanotechnology offers innovative solutions for enhancing food safety
and quality, the potential environmental consequences of nanomaterials must be care-
fully evaluated [193]. Organisms are inherently exposed to nanomaterials, yet their mere
presence does not guarantee harmlessness. Their impact can be profoundly detrimental, de-
pending on specific circumstances. Additionally, naturally occurring nanoparticles typically
aggregate and form larger-sized materials over time, whereas manufactured nanoparticles
tend to persist due to the incorporation of surfactants and stabilizers. Consequently, there
is a necessity to assess how the utilization of these materials could potentially influence
the environment [194]. To categorize a nanomaterial as biodegradable, it is essential to
initially identify and chemically characterize it to understand its potential physicochemical
properties, which are crucial for evaluating the risks to both human health and the environ-
ment. According to Innocenti, the key factors influencing these characteristics encompass
composition, structure, molecular weight, vapor pressure, reactivity, solubility in water,
boiling and melting points, and stability [195]. The presence of organic compounds in
the material’s structure enhances biodegradability, as microorganisms can break down
these compounds, leading to material degradation. Additionally, the size and shape of
the nanomaterial impact its biodegradability, with smaller particles and irregular shapes
being more easily broken down, offering an increased surface area for microbial attack.
Researchers can also deliberately modify material structures to impart biodegradability. Ma
et al. delved into this concept, concentrating on the application of such modifications to 2D
nanomaterials like graphene. Beyond graphene, other 2D materials amenable to modifica-
tions include Xenes, Mxenes, transition metal dichalcogenides (TMDs), 2D transition metal
oxides (TMOs), and 3D carbon nanotubes (CNTs) [196]. Manatunga et al., have explored
chitosan nanoparticles for their antimicrobial properties and potential to extend the shelf
life of food products [197]. Chitosan is a biodegradable and biocompatible polymer derived
from chitin, with the ability to extend the shelf life of food products and reduce food waste.
It offers a sustainable alternative to synthetic polymers in food packaging [197]. Another
example is the use of cellulose nanocrystals (CNCs) in food packaging, which have been
explored for their potential as a sustainable and biodegradable alternative to synthetic
polymers [79]. CNCs are derived from renewable sources such as wood pulp and have been
investigated for their mechanical strength, barrier properties, and potential application
in active and intelligent food packaging. However, the environmental impact of CNCs
and their potential ecotoxicity must also be carefully evaluated to ensure their safe and
sustainable use in food packaging.

5.3. Reduction of Food Waste: Environmental Benefits

Reducing food waste through the use of sustainable food packaging materials of-
fers significant environmental benefits. According to the Harvard T.H. Chan School of
Public Health, worldwide, one-third of food produced is thrown away uneaten, causing
an increased burden on the environment [198]. It is estimated that reducing food waste
by 15% could feed more than 25 million Americans every year. The benefits of reducing
food waste include cost savings on labor, reduced methane emissions from landfills, and a
lower carbon footprint [199]. According to a report by Golden West Packaging, employing
environmentally friendly packaging materials, such as recyclable and biodegradable pack-
aging, can reduce landfill waste associated with food packaging. This can lead to a lower
carbon footprint and reduced greenhouse gas emissions, contributing to a more sustainable
and environmentally friendly food supply chain [200]. By implementing sustainable food
packaging materials and reducing food waste, it is possible to mitigate the environmental



Micromachines 2024, 15, 245 19 of 34

impact of the food supply chain and contribute to a more sustainable and healthy food
system. The food production supply chain network diagram is shown in Figure 3.
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5.4. Regulatory Framework
5.4.1. Current Guidelines and Regulations for Nanostructured Food Packaging

Several guidelines and regulations have been developed by various regulatory agen-
cies around the world to develop reliable and effective tools to ensure the safe use of
nanomaterials. In the context of food, modified nanomaterial is defined in Article 3(2)(f) of
the Novel Food Regulation (EU) 2015/2283 as any intentionally produced material that
has one or more dimensions of the order of 100 nm or less, or which consists of separate
functional parts, either internally or on the surface, having one or more dimensions on
the order of 100 nm or less, including structures, agglomerates, or aggregates that may
be larger than 100 nm but retain nanoscale properties. In 2021, the European Food Safety
Authority [201] published guidance documents on the technical requirements to detect the
presence of small particles in food and how to carry out risk assessments of nanomaterials
in the food chain, including particle transfer from food contact materials. The office reports
on the results of the public consultation. The US Food and Drug Administration reports
on advances in nanotechnology and its role in promoting public health through better
regulation with a focus on interdisciplinary collaboration and regulatory research. The
FDA Nanotechnology Task Force report addresses regulatory and scientific issues and
recommends that the FDA consider developing nanotechnology-related guidance for man-
ufacturers and researchers. The FDA has not developed effective guidance on the suitability
of current test methods to assess the safety, efficacy, and quality of nanoscale materials
in the food industry. The FDA should do more to regulate nanotechnology products and
packaging, including the biological effects and interactions of nanoscale materials in the
food industry. Developing a nanotechnology guide for manufacturers and researchers
would ensure and promote customer confidence in nanotechnology. In 2020, the European
Observatory on Nanomaterials (EUON) published a study according to which 87 percent of
consumers in five EU countries want better labeling of everyday products containing nan-
otechnology [202]. In 2019, the European Chemicals Agency published updated versions
of two guidance documents for the registration of substances in nanoform.

5.4.2. Comparison of Regulatory Systems for Nanostructured Food Packaging

The regulation of nanomaterials in packaging and other materials varies globally, and
the regulatory landscape is continuously evolving. Table 3 below is a comparison of the
regulatory approaches in different parts of the world focusing on the United States, the
European Union, Canada, Australia, and China.
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Table 3. Regulatory systems for nanostructured food packaging in the world.

Criteria United States European Union Canada Australia China

Regulatory Body

FDA (Food and Drug
Administration),

EPA (Environmental
Protection Agency)

[203]

European Chemicals
Agency (ECHA),
European Food

Safety Authority
(EFSA) [204]

Health Canada,
Environment nada

[205]

National Industrial
Chemicals Notification

and Assessment Scheme
(NICNAS),

Food Standards
Australia New Zealand

(FSANZ),
Therapeutic Goods

Administration (TGA),
National Industrial

Chemicals Notification
and Assessment Scheme

(NICNAS)
The Australian

Competition and
Consumer Commission

(ACCC) [206]

State Food and Drug
Administration (SFDA)

The National Health
Commission of China,
The National Medical

Products Administration
(NMPA) (Yu)

National
Nanotechnology
Standardization

Technical Committee
(NSTC)

Standardization
Administration of
China/Technical

Committee (SAC/279)
[207,208]

Responsibility

The FDA is
responsible for

ensuring products
meet safety standards

and comply with
legal requirements.

[203,209]
EPA regulates

nanomaterials under
TSCA, requiring

reporting and
recordkeeping for

nanoscale chemical
substances [210,211]

Nanomaterials are
assessed to ensure
that their uses are

properly evaluated,
and any risks are
controlled. [212]
EFSA provides

guidance on risk
assessment which

includes
considerations for
nanomaterials in
food and Food

Contact Materials
(FCMs) [207]

Health Canada
does not regulate
nanomaterials in
these products

[131,203].

FSANZ regulates
nanotechnologies in

food.
TGA manages

nanoparticles in
therapeutic goods and
medical devices [213].

NICNAS is responsible
for industrial

nanomaterials in
consumer goods and

coatings
The ACCC regulates all

consumer products
containing

nanomaterials that do
not fall under other

regulatory jurisdictions
[214].

The SAC/TC279 serves
as the coordinating body

to draft essential
nanotechnology
standards. [208]
These bodies are
responsible for

managing risks and
appropriate frameworks

for nanotechnology

Legislation

Federal Food, Drug,
and Cosmetic Act,
Toxic Substances

Control Act (TSCA)

REACH, CLP,
Biocidal Products
Regulation (BPR)

[119]

Framework for risk
assessment of
manufactured
nanomaterials

under CEPA 1999
[205]

Food Standards
Australia New Zealand

(FSANZ)—under the
joint Australia New

Zealand Food Standards
Code (the Code) [213]

Environmental
Administration of New

Chemical Substances
made effective in

September 2003 [208]
Standard for the Use of

Food Additives (GB
2760-2014),

General Standard for the
Labeling of Prepackaged

Foods (GB7718-2011),
Standard for the

Nutritional Labeling of
Prepackaged Foods (GB

28050-2011). [215]

Labelling
Requirements

FDA recommends
voluntary labeling for

cosmetics [216]

Mandatory labeling
for certain

nanomaterials in
cosmetics and other

products [204]

Labeling not
explicitly required
for nanomaterials

[131,205]

The Code mandates that
food packaging must be
safe and reported [206]

Mandatory labeling and
reporting requirements

[208,217]

Product Bans or
Restrictions

Varies by product
type; e.g., certain
sunscreens with
nanomaterials

regulated [211,216]

Bans or restrictions
on certain

nanomaterials in
cosmetics [119]

General guidance
and risk

assessment for
products

containing
nanomaterials are

under existing
legislative

frameworks [205]

Some restrictions on
nanomaterials

transferring from
packaging to food [213]

Stringent regulations on
the use of nanomaterials

in cosmetics.
- Requirement for

specific physicochemical
indicators and

toxicological test data
for nanomaterials.

- Use of nanotechnology
in children’s cosmetics is

restricted [217]

Reporting of
Nanomaterial

Use

EPA requires
reporting [211]

Mandatory reporting
under REACH [207]

Reporting under
CEPA [205] Reporting required [206] Mandatory reporting

[208,215]
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Overall, while specific regulatory details vary, a common theme across these regions
is the focus on safety, health, and environmental concerns, with the industry being held
responsible for compliance with relevant standards and regulations.

5.5. Safety
5.5.1. Nano-Based Antimicrobial Packaging

These products typically use silver nanoparticles, as well as nano zinc oxide and
nano chlorine dioxide. Packaging materials using magnesium oxide, copper oxide, and
titanium dioxide in nanoform and carbon nanotubes are also being developed for use in
antimicrobial foods [218]. Zinc oxide nanoparticles have been incorporated into several
different polymers, including polypropylene [219]. Additionally, zinc oxide effectively
absorbs UV radiation without reradiating heat and thus improves the stability of polymer
composites. Chitosan is a biopolymer derived from chitin (a polysaccharide component
of crustaceans). This has led several groups to investigate its incorporation into various
composite materials that could be used in health care and food packaging, including its
use as a “green” reagent to reduce and stabilize silver ions [220] in combination with clays
such as rectorite used in polymer composites [221,222].

5.5.2. Ensuring Food Safety: Antimicrobial Properties and Pathogen Prevention

Food safety is a public health issue worldwide. The main goal of food safety is to
ensure that food does not harm consumers during preparation and consumption [223].
Food must be protected from various physical, chemical, and biological contaminants
during processing, handling, and distribution [224]. Advances in nanotechnology have
revolutionized the food industry through advances in improving nutritional value, ex-
tending shelf life, and reducing packaging waste, including different applications for food
processing, safety, and security [224]. Nowadays, due to rapid changes in recipes and
eating habits, food safety has become a major concern. Food-borne pathogens, toxins,
and other contaminants can have a negative impact on human health. Current methods
for detecting pathogens and toxins are labor-intensive and time-consuming. Advances in
nanotechnology have rapidly addressed food safety issues of microbial contaminants with
improved toxin detection, shelf life, and packaging strategies [60]. In addition, nanoma-
terials, including metal nanoparticles, carbon nanotubes, quantum dots, and other active
nanomaterials, can be used to develop bioassays for microbial measurements and other
tests for food safety applications [60,61]. Food labeling is currently required to reduce the
risk of consumers ingesting the contents of oxygen-free bags or other active ingredients
in the package. Some active packages may differ from inactive packages. Therefore, it
may be advisable to use appropriate notation to explain this to the consumer, even if there
are no regulations. The use of natural antimicrobial foods can ensure food safety and
quality as opposed to other preservation systems such as chemical or thermal preservation
systems. The demand for natural antimicrobial agents to replace synthetic ones is expected
to increase [56]. Antimicrobial agents are slowly released into food or the atmosphere
over the food and prevent microbial growth during its short shelf life [57]. One of the
investigated applications is the use of carbon nanotubes (CNTs) as antimicrobial agents
for water disinfection. CNTs have been widely studied as promising antimicrobial agents
due to their stability and effective biological properties [58,59]. The use of ethanol as an
antibacterial agent is effective against mold and also inhibits the growth of yeast and bacte-
ria. Many factors influence the antimicrobial effect of carbon dioxide, especially microbial
load, gas concentration, temperature, and permeability of the packaging film. Packaging
materials designed to be antimicrobial inhibit microbial growth but rarely act alone as
the major shelf-limiting factor. Antimicrobial action can be achieved in two ways. The
release of conservatives or portable systems contains a preservative that is designed to
be portable food [225]. Several antimicrobial agents are commercially available, and their
activity and efficacy have been reviewed [220]. An example of this technology is Microban
from Microban Products Co., Melton Mowbray, UK with two locations in Staffordshire
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and Leicestershire. This product incorporates the biocide triclosan into almost all types of
plastic so that it moves freely to the surface to kill any bacteria that may appear. Table 4
lists some commercial antimicrobial agents.

Table 4. List of some commercially antimicrobial agents.

Company Product Name Active Ingredient

Bactiblock, Zaragoza, Spain BactiBlock 920 B4 silver ions-based
Nanopack Technology & packaging, Girona, Spain Aglon Silver zeolites

BASF, Beaumont, TX, USA Irgguard Silver
Tessara-Grapetek, Cape Town, South Africa Uvacy TM Sulphur dioxide

Before the production of antimicrobial agents, the surface of plastic films is often
modified to improve the adhesion of the antimicrobial agents to the polymer matrix [97].
The design of an antimicrobial coating requires detailed information about interactions
between the active ingredient, the coating, the substrate, and the food. Specifically, the
active coating must adhere effectively to the film base and be inert in direct contact with
food and the concentration of the released active ingredient must be controlled. Three types
of antimicrobial agents were documented for use in fresh and minimally processed fruits
and vegetables [89]. The antimicrobial agents are shown in Figure 4.
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Packaging materials designed to have antimicrobial activity provide a hurdle for
microbial growth but seldom act alone as the key shelf life-limiting factor. Antimicrobial
activity can be obtained in two ways. Preservative-releasing or migrating systems contain
a preservative intended for migration into the food [225].

5.5.3. Effects of Nanomaterials on the Human Body

A variety of acute and long-term consequences, inflammation, and carcinogenesis are
linked to nanoparticle exposure [226]. Human cells may experience oxidative stress, liver
and kidney damage, and DNA damage because of prolonged nanoparticle exposure [227].
Numerous studies have shown that injected, infused or inhaled nanoparticles can travel to
various organs and tissues after entering the systemic circulation [228]. It is very common
for people working in nanotechnology plants to inhale particles and for those particles to
penetrate their skin [229]. The occurrence of toxic effects on the exposed human body and
the phenomenon of migration is closely associated with the toxicological risk associated
with the use of nanomaterials in food packaging [230]. Metals usually migrate when food
encounters materials used for packaging. The migrant nanoparticle diffuses, dissolves, and
disperses throughout the food as part of the migration process. For example, a researcher
found that the migration of nanoparticles, such as AgNPs from baby products, can be
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detrimental to the health of infants [231]. Determining the potential health effects of
nanoparticles when they come into contact with food products requires an understanding
of how they migrate [232]. International regulations have not yet been able to be adopted
due to limited information on the potential toxicity of nanomaterials [233].

5.5.4. Safety Assessment Protocols: Evaluating Nanomaterials for Food Contact

The European Food Safety Authority [201] has released guidance documents on the
technical requirements for the measurement and risk assessment of nanomaterials in the
food and feed chain [207]. The guidance covers physicochemical characterization, exposure
assessment, and hazard identification of nanomaterials. It includes a tiered framework for
toxicological testing, addressing aspects like genotoxicity, local and systemic toxicity, and
potential effects on the gut microbiome and endocrine activity. Additionally, the guidance
discusses the use of read-across and integrated testing strategies to fill data gaps and inform
risk characterization and uncertainty analysis [201].

5.5.5. Ethical Considerations: Balancing Innovation with Safety in Humanitarian
Food Packaging

There are currently no universally accepted standards on the biodegradability of
nanomaterials, as the biodegradability of a material can depend on a variety of factors
such as the specific type of material, its chemical functionalization, and the conditions
in which it is disposed of [234]. However, organizations such as the American Society
for Testing and Materials (ASTM) and the International Organization for Standardization
(ISO) have developed guidelines and protocols for testing the biodegradability of materials
in various conditions [235]. These guidelines typically involve assessing the material’s
ability to degrade under specific environmental conditions, such as in soil or water, and
measuring the rate and extent of degradation. Additionally, some organizations have
developed standards for biodegradable plastics, which may be used as a reference for the
biodegradability of nanomaterials. Still, it is important to keep in mind that they are not
specific to nanomaterials and might not always be applicable [235]. The ISO TC 229 has
published a Technical Report outlining best practices for occupational health and safety
regarding nanomaterials and nanotechnologies. This report includes recommendations
for toxicology testing, risk management, exposure control, and safety data sheets [192].
A collaborative effort between researchers, technologists, practitioners, and regulators is
necessary to ensure the safe development of nanoproducts. Different approaches, such
as those established by public standards-setting bodies and private enterprises, can be
considered to manage the risks associated with using nanomaterials [235].

6. Nanoengineering and Humanitarian Considerations
6.1. Nanoengineering and Food Security Challenges in Vulnerable Regions

Food security challenges in food-insecure and vulnerable populations are complex and
multifaceted, requiring comprehensive and sustainable solutions. Vulnerable populations,
such as those in remote and underserved communities, often face significant obstacles in
accessing safe and nutritious food. The food environment in these regions is characterized
by the limited availability of fresh produce, inadequate sanitation, and poor education
and training on food safety, leading to heightened food safety risks [49]. Additionally,
vulnerable populations are more susceptible to becoming food insecure or worsening
their food security in the face of shocks, such as crop failures, loss of income, or sudden
health crises, and have fewer coping strategies to deal with these shocks. Achieving
food security in vulnerable populations, particularly in the context of extreme events
such as droughts or disasters, is a critical challenge that requires sustainable and effective
interventions. Pastoralist communities, for example, are among the most vulnerable to
hunger when faced with extreme events, highlighting the need for targeted and context-
specific interventions to improve food security in these populations [236]. The relationship
between health and food security is also complex, as medical services play a crucial role in
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treating severe malnutrition and preventing illnesses from becoming prolonged, which can
affect the ability to work and further compromise food security and health [236]. Research
priorities for global food security under extreme events have been identified as a key area
for future research, providing a prioritization of threats to global food security from extreme
events and emerging research questions that require further investigation [45]. Addressing
the complex and interconnected challenges of food security in vulnerable populations
requires a comprehensive and multidisciplinary approach, encompassing areas such as food
environment policymaking, food safety, value chain approaches, and sustainable solutions
to improve access to safe and nutritious food in these regions. Food viability is an important
factor to consider when transporting food to remote and underserved communities. Fresh
produce, such as vegetables and fruits, is more nutritious than canned food and is essential
for addressing malnutrition and improving the health of vulnerable populations. However,
the transportation of fresh produce to remote areas presents logistical challenges, including
the need for proper storage and transportation facilities to maintain the freshness and
quality of the food aid [237].

6.2. Addressing Food Security: The Role of Nanoengineering in Underprivileged Regions

Nanotechnology is a promising solution to tackle food security challenges in vulner-
able regions, particularly when it comes to transporting nutritious food to remote and
underserved communities. The application of nanomaterials in food processing, preserva-
tion, and packaging stands is a key enabler for ensuring the secure and fresh delivery of
food aid to these regions. The application of nanomaterials in the food sector is recognized
as a pivotal area for future innovations, holding the potential to enhance the bioavailability
and retention of active biochemicals in food. This improvement results in increased loading
capacity and heightened stability [238]. Moreover, the adoption of nanotechnology in
agriculture and the food industry is acknowledged as a crucial strategy to safeguard food
security and safety, especially in the face of global climate change and rapid population
growth [239]. Furthermore, the incorporation of nanotechnology in agriculture offers a
potent approach to addressing prevailing food security challenges and threats, especially
within the context of sustainable agriculture and crop enhancement [240]. The ongoing
global food crisis, exacerbated by factors such as climate shocks, regional conflicts, and the
pandemic, underscores the pressing need for swift policy actions to mitigate the impact of
elevated import costs for food and fertilizer on food insecurity. In this critical context, the
application of nanotechnology in ensuring food security plays a vital role in guaranteeing
the safe and fresh delivery of food aid to vulnerable regions. This contribution becomes
integral to alleviating human suffering and safeguarding the most vulnerable populations.

6.3. Disaster-Prone Areas: Emergency Food Supplies and Nanoengineered Packaging

Nanotechnology offers innovative solutions for delivering food aid over long distances
in disaster-prone areas and emergency situations. Nanomaterials can be employed in food
packaging to extend the shelf life of food items, maintain food freshness, and preserve the
taste and quality of the food during transportation and storage [241]. According to Durán
and Marcato, nanoengineered packaging materials provide improved mechanical barriers,
heat resistance, and biodegradability than traditional food packaging, making them well-
suited for preserving food in disaster-ridden areas [242]. The application of nanotechnology
in food packaging is classified based on its function, with most nanoparticles used in food
packaging possessing antimicrobial capabilities and acting as antimicrobial polypeptide
carriers to protect against microbial deterioration. Nanoparticles can be incorporated into
packaging materials to provide protection, tamper resistance, and specific physical, chemi-
cal, and biological properties, ensuring the safety and quality of the packaged food [243].
Additionally, nanosensors can be employed to identify infections or contamination in food
throughout manufacturing, processing, packaging, storage, and transport, enhancing food
safety and quality assessment [244]. Nanotechnology-derived food packaging materials
have the potential to address the challenges of delivering food aid to disaster-prone areas
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and vulnerable communities. These materials can help maintain the freshness and quality
of food items during transportation and storage, ensuring the availability of safe and nutri-
tious food in emergencies [129]. The use of nanomaterials in food packaging represents
a significant advancement in food security and safety, offering sustainable solutions to
preserve food and mitigate the impact of disasters on vulnerable populations [245].

6.4. Case Studies: Successful Implementation in Challenging Environments

Several instances and case studies demonstrate the successful implementation of nano-
materials in food packaging, food safety, and food processing, particularly in challenging
environments such as disaster-prone areas. Nanotechnology has been applied to develop
improved packaging, active packaging, and intelligent packaging, offering enhanced me-
chanical barriers, antimicrobial properties, and improved shelf life for food products [79].
In a study published in Frontiers in Microbiology, the application of nanotechnology in
the food industry was highlighted, emphasizing the significant difference nanomaterials
bring to food quality, safety, and health benefits. Nanomaterials have been utilized in
food processing, packaging, and sensing, providing improved mechanical strength, barrier
properties, and antimicrobial films, as well as nanosensing for pathogen detection and
ensuring food safety [129]. Furthermore, research published in the journal Frontiers in
Microbiology discussed the use of nanotechnology in food packaging, preservation, and
safety assessment. The study highlighted the role of nanotechnology in ensuring food
safety by preventing decomposition and loss of nutrients, resulting in a longer shelf life for
food products [243].

6.5. Implications for the Future: Prospects of Nanoengineering in Humanitarian Food Packaging

The future of nanotechnology in food packaging holds great promise for enhanc-
ing food safety, quality, and shelf life, particularly in challenging environments such
as disaster-prone areas [187]. Nanotechnology is a rapidly advancing field that offers
opportunities for the development of new nanomaterials and nanosensors, which can
significantly impact the food industry, including food packaging, food security, and food
processing [55]. The application of nanotechnology in food packaging has the potential
to provide improved mechanical barriers, detection of microbial contamination, and po-
tentially enhanced bioavailability of nutrients, offering innovative solutions for delivering
food aid to disaster-prone areas and vulnerable communities [79]. The relevance of nano-
materials in food packaging and its advanced prospects has been highlighted in a study
published in the Journal of Nanotechnology, emphasizing the significant difference nanoma-
terials bring to food quality, safety, and health benefits. Nanomaterials have been utilized
in food processing, packaging, and sensing, providing improved mechanical strength,
barrier properties, and antimicrobial films, as well as nanosensing for pathogen detection
and ensuring food safety [181]. Additionally, the application of nanotechnology in food
packaging has been explored for the controlled release of preservatives and antimicrobials,
extending the product shelf life within the package, and ensuring the real-time quality of
food products. Nanotechnology-based food packaging materials have been instrumental in
addressing food quality, safety, and stability concerns, offering numerous advantages over
conventional food packaging [55].

7. Conclusions

This paper explores the design, manufacturing, regulatory, and sustainability impli-
cations of engineered nanomaterial coatings for food packaging. The importance of food
packaging and the challenges associated with traditional packaging materials are outlined.
The potential benefits of nanomaterial coatings, including improved mechanical and barrier
properties, as well as the ability to incorporate active ingredients for antimicrobial and
antioxidant effects are examined. The regulatory landscape for nanomaterials in food pack-
aging, including the current lack of universally accepted standards for the biodegradability
of nanomaterials are discussed. Further, the efforts of organizations such as the American
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Society for Testing and Materials (ASTM) and the International Organization for Stan-
dardization (ISO) to develop guidelines and protocols for testing the biodegradability of
materials in various conditions are highlighted. The importance of toxicology testing, risk
management, exposure control, and safety data sheets in ensuring the safe development
of nanoproducts is delineated. Thus, there is a need for a collaborative effort between
researchers, technologists, practitioners, and regulators to manage the risks associated with
using nanomaterials. In conclusion, engineered nanomaterial coatings have the potential to
address many of the challenges associated with traditional food packaging materials. How-
ever, the safe and sustainable use of nanomaterials in food packaging requires the careful
assessment and consideration of various factors, including biodegradability, safety, and
regulatory compliance. At present, minimal standards exist to govern the design, develop-
ment, and manufacture of nanomaterial coatings. Moving forward, it will be important to
continue to develop and refine the guidelines and protocols for the use of nanomaterials in
food packaging to ensure the safety and sustainability of our food supply. Finally, targeted
R&D investments can aid in the translation of nanomaterials and nanosurface coatings
with increased levels of automation.
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