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Abstract: Since machine learning techniques for raindrop removal have not been capable of com-
pletely removing raindrops and have failed to take into account the constraints of edge devices with
limited resources, a novel software-hardware co-designed method with a memristor for raindrop
removal, named memristive attention recurrent residual generative adversarial network (MARR-
GAN), is introduced in this research. A novel raindrop-removal network is specifically designed
based on attention gate connections and recurrent residual convolutional blocks. By replacing the
basic convolution unit with recurrent residual convolution unit, improved capturing of the changes
in raindrop appearance over time is achieved, while preserving the position and shape information in
the image. Additionally, an attention gate is utilized instead of the original skip connection to enhance
the overall structural understanding and local detail preservation, facilitating a more comprehensive
removal of raindrops across various areas of the image. Furthermore, a hardware implementation
scheme for MARR-GAN is presented in this paper, where deep learning algorithms are seamlessly
integrated with neuro inspired computing chips, utilizing memristor crossbar arrays for accelerated
real-time image-data processing. Compelling evidence of the efficacy and superiority of MARR-GAN
in raindrop removal and image restoration is provided by the results of the empirical study.

Keywords: raindrop removal; recurrent residual network; memristor; attention gate; GAN

1. Introduction

Adverse weather often results in a significant degradation of captured images [1–5].
As a result, it not only affects the quality of images but also hinders advanced vision
tasks, such as semantic segmentation [6], object detection [7], etc. Recently, scholars have
devoted considerable attention to the restoration of raindrop-laden images, given their
importance in real-world applications [8–10]. However, removing raindrops from a single
image remains a complex challenge due to the intricate physical structure of these droplets.

Currently, raindrop-removal techniques could be broadly classified into two categories:
one is a traditional algorithm based on prior knowledge [11,12], while the other one is
based on neural networks [13–19]. The first method requires a manual design or estimation
of the raindrop degradation model of raindrops and relies on prior knowledge to model
raindrops. This method, however, exhibits limitations in terms of its generalization ability
and computational efficiency. For the past few years, the majority of raindrop-removal
techniques have adopted the latter method. A generative adversarial network based on
recurrent attention has been suggested by Qian et al. [14], which is used to precisely identify
raindrop locations and efficiently remove them from images. To maximize the potential
significance of raindrop images, Shao et al. [15] has explored the blurred attributes of rain-
drops and proposed an uncertainty-driven, multi-scale attention network for enhancing
raindrop-affected images. The models generated by this approach exhibit commendable
quality. However, they incur the tradeoff from increased model size and reduced inference
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speed. A rapid and efficient network model has been proposed by Guo et al. [13], wherein
the key concept is to treat the rain-removal problem as a pixel-wise filtering task. By
leveraging highly optimized filtering operations, accelerated inference speed on the GPU
was achieved by this model, while significantly enhancing performance. Nevertheless,
additional computational resources and memory consumption are still necessitated for
deploying and utilizing this model. In addition, various multi-step structures have been
created to improve the overall image restoration performance. These include the cas-
caded attention guidance network (CAG-Net) [16] and the multi-axis MLP (MAXIM) [17].
Compared to conventional methods, the aforementioned techniques have significantly
improved the efficiency and quality of image processing. However, most of these systems
rely largely on cyclic and progressive processing modes. As a result, system calculation,
inference time, and memory usage all increase significantly. Meeting the requirements for
computer vision applications that prioritize efficiency becomes challenging at that point.
It also poses plenty of difficulties for the application and usage of rainfall algorithms on
various platforms. Therefore, it is imperative to provide a reasoning method for embedded
artificial intelligence applications that is more effective.

Deep learning has been greatly influenced by the remarkable contributions of deep
convolutional neural networks (DCNNs). These well-constructed DCNNs demonstrated
their efficient feature learning ability by successfully extracting abstract information from
images of rain. There has been a noticeable enhancement in the quality of de-rain im-
ages [20–22]. However, the substantial computational and memory demands of DCNN
arise from its extensive parameter count and calculations, presenting obstacles for hardware
implementation. Additionally, the progress in integrated circuit development has faced
limitations, making it challenging to overcome the memory constraints imposed by the
von Neumann architecture. Therefore, there has been a significant focus on enhancing
hardware implementation and expediting the performance of DCNNs. The memristor,
renowned for its nanoscale dimensions, rapid operation, non-volatile data storage capa-
bility, low power consumption, programmability, and compatibility with complementary
metal–oxide–semiconductor (CMOS) technology [23,24], offers innovative hardware solu-
tions for large-scale integrated circuits as well as applications in artificial neural networks,
pattern recognition, and image processing [25–28]. In recent developments, substantial
progress has been made in the architecture of memristor-based neural network comput-
ing [29–31]. Wang et al. has developed a convolutional neural network with five levels
that can adjust to the imperfections of the one-transistor–one-memristor array in order
to accurately classify the MNIST dataset [32]. An experimental demonstration showing
that a memristor crossbar array can be utilized to implement synaptic weights shared at
different time steps in an LSTM [33]. This innovative approach not only minimizes circuit
space requirements but also enables the storage of a vast number of parameters. Kong et al.
introduced a novel 5D fractional order differentiation memristive Hopfield neural network
(FOMHNN) [34]. Additionally, they presented a framework for constructing 2n + 1 dimen-
sional simplest Hamiltonian conservative chaotic systems (HCCSs) to optimize encryption
speed [35]. Furthermore, the capacity to do computations in memory is utilized, which
successfully overcomes the constraints imposed by the ‘von Neumann bottleneck’. The
neural signal analysis system’s high-efficiency capabilities allow for accurate neural signal
identification and filtering associated with epilepsy. In addition, it shows a nearly 400% im-
provement in energy efficiency over CMOS technology. Different materials and structures
have been utilized to develop a range of memristor devices following the example set by
HP memristors [36–38], accompanied by the creation of numerous mathematical models for
memristors. In particular, the VTEAM model (Voltage Threshold Adaptive Memristor) [39]
is an appropriate option for memristor-based neuromorphic systems due to its fundamental
physical device properties, experimental verification, and relatively straightforward and
precise equations. Hence, our research is focused on utilizing VTEAM, which comprises
two layers of TiO2-TiO2-x film positioned between independent Pt electrodes. It should be
emphasized that there exist several other memristors and models demonstrating similar
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characteristics that can also be employed in this investigation. In particular, the utilization
of a 1T1R configuration was proposed in this paper, which consists of a single transistor
and memristor connected in series [40], revising the matter of leakage current that arises
when applying a signal to an individual memristor. Furthermore, we incorporate image
de-raining technology into the memristive neural network.

The main contributions of this study could be summarized as follows:

(1) The proposed memristive attention recurrent residual generative adversarial network
(MARR-GAN) presents a software and hardware co-design of the image raindrop re-
moval network, which leverages a memristor crossbar array and deep
learning technology.

(2) A novel raindrop removal module is designed to construct a network for removing
raindrops using the autoencoder architecture. Temporal changes in raindrops within
images are effectively captured by this framework while preserving their location and
shape information. Furthermore, an attention gate design is introduced to enhance
the network’s understanding of both global structure and local details in order to
achieve comprehensive raindrop removal across different regions of the image.

(3) A hardware implementation scheme utilizing memristor crossbar arrays for MARR-
GAN is presented, integrating deep learning algorithms with neuron computing chips
to enhance the speed of processing image data in the real world. Finally, the efficacy
and superiority of MARR-GAN have been demonstrated in removing raindrops and
restoring fine-grained image details.

2. Related Works
2.1. Rain Streaks Removal

Rain streaks removal can be classified into two distinct categories: solutions based on
data analysis and solutions based on mathematical models. Zhuang et al. has presented a
novel approach for rain removal by using a deep convolutional neural network [41]. Data-
driven approaches involve techniques such as sparse coding, low-rank approximations [42],
and Gaussian mixture models (GMMs). A rain-removal technique based on directional
gradient priors has been proposed by Huang et al. [43]. Its goal is to eliminate the rain
streaks while preserving as much of the original rain image’s structural information as
feasible. On the other hand, a wavelet-based sparse optimization approach has been offered
by Sun et al. [44] as a solution to the problem of the rain removal process, followed by
joint optimization to remove rain-line details from the former while removing the rain
line from the latter. Model-based methods encompass convolutional neural networks,
transformers, and diffusion modules. Wan et al. has developed a global–local transformer,
which employs window-based local transformer blocks to process high-resolution feature
maps in shallow layers of GLFormer [20].

2.2. Snow Removal

Snow removal techniques commonly employ prior models based on snow driving
features such as a histogram of oriented gradient (HOG) [45], color assumptions [46], and
frequency spatial separation. Furthermore, the application of deep convolutional neural
networks (CNNS) [47] has been increasingly employed in the domain of removing snow
from individual images. These methods generally exhibit commendable performance
owing to the resemblance in the appearance of snow particles.

2.3. Raindrop Removal

Currently, deep learning methods are predominantly employed for image raindrop
removal tasks owing to their robust feature-extraction capabilities.

Qian et al. has integrated attention mechanisms into a type of generative adversar-
ial network, known as AGAN, for capturing details related to both raindrops and their
surroundings [14]. In order to improve raindrop-removal performance, a modular dual
residual connection network named DURN for achieving high-quality image restoration
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outcomes has been proposed [48]. It is important to consider that variations in blur and
resolution occurring due to differences in the distance between rainfall and the camera
when observing rainy scenes within images. To tackle this issue, a network effectively
handles diverse raindrop appearances by independently processing different frequency
bands was proposed by Zini et al. [9]. It is capable of performing raindrop removal on
images of varying scales, resulting in rapid and high-quality restoration. However, it
necessitates substantial computational resources during training and exhibits prolonged
processing time.

3. Model Design of MARR-GAN
3.1. Comprehensive Network Architecture

A one-stage network is proposed in this study for effectively separating the observed
raindrop image I into clear the background B and raindrop R. The limitations of current
progressive processing schemas on edge devices are being addressed, and the application
and deployment of rain removal technology are being facilitated by this network. The
mathematical expression could be represented by Equation (1). The network architecture
of MARR-GAN is illustrated in Figure 1, where an autoencoder framework and attention
gate connections are utilized as the raindrop removal network.

I = (1 − M(x))⊙ B + R (1)

where M is the mask, and I is defined as the input image. In this mask, x is a pixel of input
image, M(x) is dependent on the variable x, and M(x) = 1 indicates that x represents the
raindrop region, M(x) = 0 indicates the background of the input image. Furthermore, B
stands for the background information and R represents mixed raindrops, which symbolize
an intricate blend of previous knowledge and reflected light from the environment.
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Figure 1. The network overview of MARR-GAN.

From Figure 1, a generative adversarial network (GAN) is considered to be the main
body of this framework. The architecture consists of two sub-networks, namely a generator
and discriminator. First, the blue box is the raindrop feature extraction module, which
is used to extract raindrop features and generate attention maps. Furthermore, attention
residual recurrent gate (ARRG) is guided to generate a raindrop-free image based on the
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generated attention map. Finally, the discriminator determines whether the input image
originates from the generative network or the input image (i.e., Ic).

3.1.1. Raindrop Feature Extraction Module

The visual attention model utilizes the attention recurrent network to enhance target
recognition accuracy by identifying the target area [49]. Inspired by that, the network
architecture employed in this paper bears resemblance to that designed for raindrop
removal. The raindrop localization in an image is facilitated by the utilization of a visual
attention guidance generative network and a distinguish network in our study. The
generator section (see Figure 1) attention recurrent network comprises multiple circulation
modules. There are four residual blocks, a convolution long short-term memory (Conv-
LSTM) unit, and a convolution layer for each module. The residual block extracts raindrop
feature information from both the input image and the previously generated attention map.
Meanwhile, the Conv-LSTM unit and convolution layer generate a 2D attention map.

The generation of attention maps heavily relies on the mask, comprising only two distinct
numerical values: 0 and 1. A value of 0 indicates the absence of raindrops in a pixel, while
a value of 1 signifies the presence of raindrops in that pixel. The initial attention maps are
generated by the first recurrent module of the attention cycle network, which takes both
the raindrop image and the mask image as inputs. The mask map is obtained through the
subtraction of the clear image from the raindrop-infused image, followed by the application
of a specific threshold value for precise filtration. Despite its relatively coarse nature, the
obtained mask map significantly contributes to generating a precise attention map. The
main difference between the attention map and the mask map lies in what they contain:
while the mask map solely consists of 0 and 1, the attention map values range from 0 to 1.
The attention map’s higher median value indicates a stronger demand for pixel-focused
attention, suggesting an increased probability of raindrops being present at that specific
pixel. Even within identical areas affected by raindrops, variations could be observed in the
attention map values due to differences in raindrop shape and thickness, thereby reflecting
how raindrops impact different pixels within background images.

Conv-LSTM is a module that is part of the attention recurrent network. This module is
composed of an input gate (named “it”), a forgetting gate (called “ft”), an output gate (called
“Ot”), and a cell unit (called “Ct”). The definition of the state-gates temporal interaction is
given as follows:

it = σ(Wxi ∗ xt + Whi ∗ Ht−1 + bi)

ft = σ
(

Wx f ∗ xt + Wh f ∗ Ht−1 + b f

)
Ct = ft•Ct−1 + it•tanh(Wxc ∗ xt + Whc ∗ Ht−1 + bc)
Ot = σ(Wxo ∗ xt + Who ∗ Ht−1 + bo)
Ht = Ot•tanh(Ct)

(2)

where the convolution operation is denoted by ∗, while element-by-element multiplication
is represented as •. The Sigmoid function is defined as σ, and xt refers to input features.
Weight matrix W corresponds to each convolution, and Tanh activation function is indicated
by tanh. Bias vectors are represented as bi, b f , bo. By storing threshold weights, Conv-
LSTM effectively preserves raindrop pattern features and utilizes Ht for hidden-layer
representation. To perform computer vision tasks efficiently and adaptively, Conv-LSTM
replaces fully connected weights in traditional LSTM with convolutional counterparts.
Additionally, Ht−1 provides insights into determining the learning states of raindrops.

3.1.2. Raindrop Removal Network

The raindrop removal network is an autoencoder, referred to as the attention residual
recurrent gate (ARRG) module, illustrated in Figure 2.
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Figure 2. The structure of ARRG.

Recurrent convolutional block combined with the residual unit is employed in both en-
coding and decoding paths. Additionally, attention gate (AG) is utilized instead of skipping
connections to rectify low-resolution features by leveraging deep features. Moreover, batch
normalization (BN) is incorporated to enhance the stability and accelerate the convergence
speed throughout the neural network’s up-sampling procedure. The utilization of BN
enables data standardization, facilitates smaller regularization, diminishes generalization
errors, and enhances overall network performance [50].

The autoencoder receives as input the attention map that the raindrop picture and the
attention recurrent network produce. The raindrop removal and background restoration
processes are guided by the attention map. The autoencoder consists of nine residual
recurrent convolution layer (RRCL). Both decoding and encoding have a symmetrical
structure. To avoid blurring the image, an attention gate connection is made between the
corresponding modules. The detailed configuration of RRCL can be observed in Figure 3.
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The RRCL block performs recurrent convolutional layers based on the discrete time
steps described in the recurrent convolutional neural network [51]. Let us consider an input
sample ul in the lth layer of the RRCL block and a pixel located at (i, j) within an input
sample on the kth feature map in the recurrent convolutional layers. The output at time
step t, denoted as Ml

ijk(t), could be represented as follows:

Ml
ijk(t) =

(
w f

k

)
u f (i,j)

l (t) + (wr
k)

Tu f (i,j)
l (t − 1) + bk (3)

In Equation (3), u f (i,j)
l (t) and u f (i,j)

l (t − 1) represent standard convolutional layers
and the input sample of the lth recurrent convolutional layers, respectively. The standard
convolutional layer and the recurrent convolutional layers of the kth feature maps are, re-
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spectively, weighted by w f
k and wr

k, and bk is the bias. The output of recurrent convolutional
layers is activated by standard ReLU function f as follows:

F(ul , wl) = f
(

Ml
ijk(t)

)
=

(
0, Ml

ijk(t)
)

(4)

The output of the RRCL unit could be calculated as follows:

ul+1 = ul + F(ul , wl) (5)

where ul is an RRCL layer input sample. The output of the down-sampling layer in the
encoding path and the output of the up-sampling layer in the decoding path are both
represented by ul+1, respectively. Figure 3a depicts the fundamental unit of autoencoder
convolution, while Figure 3b shows the RRCL block’s structure.

Equations (4) and (5) depict the dynamic properties of recurrent convolutional layers.
By extending the recurrent convolutional layers to T time steps, we can obtain a feedforward
subnetwork with a depth of T + 1. In this study, we expand recurrent convolutional layers
to two steps, denoted as T = 2. The structure of the expanded recurrent convolutional
layers consists of a convolutional layer and two subsequent recurrent convolutional layers.
Figure 4 shows the structure of the recurrent convolution layer.
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3.2. Discrminator Network

The primary responsibility of the discriminative network is to discern between au-
thentic and counterfeit data. In GAN, a global discriminator is typically employed by the
discriminator to assess the disparity between the generated image and an authentic sample.
However, relying solely on global information to evaluate the authenticity of an image
prevents the producing network from effectively restoring local image details. In order to
make following the target detection tasks easier, it is important to restore complex image
elements as much as possible for raindrop removal. Consequently, existing discrimination
networks cannot be directly utilized. Hence, both global and local discriminators are
combined in this study to collectively ascertain whether output samples from the generator
are true or false.

The local discriminator is employed by taking advantage of the information on the
locations of the raindrops in the image. The attention map solves the problem of raindrop
placements by being formed in the attention cycle network during the image restoration
step. Consequently, the local discriminator could be guided to automatically recognize
and pinpoint areas containing raindrops in a picture by adding the attention map into
the discriminator network. Convolutional neural networks (CNNs) are used to extract
features from the generator’s raindrop images as well as the discriminator’s inner layers.
These extracted features are then combined with attention images to form a loss function
for training the local discriminator. By introducing an attention map, it directs more
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focus towards discriminating raindrop regions within an image. In order to determine
authenticity, a fully connected layer is utilized in conjunction with other layers in this
discrimination network architecture as depicted in Figure 1’s lower section.

3.3. Loss Function

The generator and discriminator loss functions are contained in the MARR-GAN
network. The generator loss function includes attention recurrent loss, raindrop-removal
loss, and vgg perceptual loss. Both the global discriminator loss function and the attention
map loss are included in the discriminator loss function.

Two images of the same backdrop scene, one with a raindrop and the other without,
are fed into the generator. The loss function for each attention recurrent module is defined
as the average squared difference between the output attention map and the binary mask,
M. In the case of a recurrent network, a smaller weight is assigned to the loss function of
the front module, while a larger weight is given to the back module’s loss function. The
specific formulation of this loss function named La could be observed in Equation (6).

La({ A} , M) =
N

∑
t=1

θN−tLMSE(At, M) (6)

where At represents an attention graph produced by a cyclic network at time step t. A
represents the output attention map. At = attentiont(Ft−1, Ht−1, Ct−1), Ft−1 denotes merging
of raindrop-infused image and previous recurrent unit’s output attention map. Function
attentiont represents the attentive-recurrent network at time step t. With this recurrent
network architecture, increasing value of N leads to the generation of more detailed
attention maps; however, it also requires greater memory capacity for storing intermediate
parameters. Optimal network efficiency has been observed when N = 4 and θ = 0.8.

There are two types of loss functions employed in the raindrop-removal loss, namely
multiscale loss and perceptual loss. The multiscale loss function effectively utilizes image
information from various decoder layers to enhance the model optimization process and
generate raindrop free images with improved clarity. The multiscale loss function is
defined as:

LS({ Ic} , {S} ) =
M

∑
i=1

λiLMSE(Ici, Si) (7)

where S represents the output of ARRG. Si represents the image characteristics that were
extracted from the ARRG i-th layer, Ic represents the input raindrop free image, and Ici
indicates the ground truth that has the same scale as that of Si. {λi}M

i=1 is the weight
of different scales. Large-scale picture feature extraction is given more consideration in
the design of the loss function, whereas smaller images have less information and hence
minimal bearing on model optimization. The last layer, third layer, and fifth layer of the
decoder have output picture sizes of 1/4, 1/2, and 1 of the original sizes, respectively. The
weights λ associated with these sizes are set to 0.6, 0.8, and 1.0.

In addition to the loss based on pixels, perceptual loss is also incorporated in this study,
to assess the overall difference between the output of an automatic context encoder-decoder
and its corresponding clear image. Perceptual loss evaluates how similar a raindrop-free
image is to its real counterpart from a global perspective, thereby bringing it closer to reality.
The VGG16 model could extract global information from images but requires pretraining on
an ImageNet dataset beforehand. The definition of perceptual loss function is as follows:

Lp(Id, Ic) = LMSE(VGG16(Id), VGG16(Ic)) (8)

where the VGG16 model is a pre-trained convolutional neural network (CNN) that performs
feature extraction on an input image. Id represents the output image generated by the
automatic encoder, denoted as Id = G(Ir), while Ir refers to a real-image sample devoid
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of raindrops. In summary, the generator network’s loss function could be explained
as follows:

LG = 10−2LGAN(Id) + La({ A}, M ) + LS({S}, { A} ) + LP(Id, Ic) (9)

where LGAN(Id) = log(1 − D(Id)).
The whole loss function of the discrimination network could be expressed as

LD(Id, Ir, At) = − log(D(Ir))− log(D(ID)) + αLmap(Id, Ir, At) (10)

where α is 0.05, the global discriminator’s loss function is represented by the first two
components of the formula, the local discriminator’s loss function is represented by Lmap,
and the local discriminator’s loss function is displayed as follows:

Lmap(Id, Ir, At) = LMSE
(

Dmap(Id), At
)
+ LMSE

(
Dmap(Ir), 0

)
(11)

where Dmap is a 2D attention mask function generated by the discriminator, while Ir, Id
represents a pair of image samples extracted from the database. A value of 0 in the attention
map indicates the absence of raindrops in the real image, hence no guidance is needed for
feature extraction. The discriminator architecture in this study comprises eight convolution
layers with a core size of (3, 3), followed by a fully connected layer with 1024 neurons that
employ Sigmoid activation.

4. Memristive Circuit Design of MARR-GAN

In this section, a memristor circuit implementation scheme for MARR-GAN is pro-
posed. To reduce training time costs, we pre-determine the network parameters using
existing training and then map them onto the crossbar array. We utilize linear mapping to
convert input data into an analog voltage signal that is scaled by an operational amplifier
with a factor of 1000 to adjust the voltage from V to mV. This ensures that all feature
information of the input circuit meets the memristor’s voltage threshold. Based on the
VTEAM memristor’s threshold characteristic, when reading signals that are lower than
writing-threshold voltage, there is minimal change in memristor resistance, thus, ensuring
stable storage of network parameters in the crossbar array during the de-raining pro-
cess. Finally, pixel-value information is recovered by reconstructing output results from
the memristive neural network. In this section, we will provide further details regard-
ing implementing three foundational components of MARR-GAN using a memristive
circuit approach.

4.1. Convlution Calculation Implementation

In order to preserve the input edge information and avoid a decrease in output
size, it is common practice in software programs to employ the same padding technique.
This involves padding the input feature maps with zeros before performing convolution
operations, ensuring that the output size remains unchanged. In terms of implementing
crossbar arrays, this can be achieved by adding zero values to the input signals. As
convolution kernel weights can encompass positive, negative, and zero values, whereas
meminductance is restricted to non-negative values only, it is not feasible to directly
represent negative values using a single memristor. Hence, two memristors are needed to
store a single weight value. Assuming m and n represent the count of input and output
channels, respectively, while k represents the dimension of convolution kernels. The
corresponding memristive circuit configuration for this purpose is illustrated in Figure 5.
The matrices of mk*1 and mk*2 are used to represent the inputs and convolution kernel
matrices, respectively. The input voltage signals are transmitted horizontally and multiplied
by the conductance. By leveraging Ohm’s law for multiplication and Kirchhoff’s current
law for accumulation, the total currents are collected vertically. The two collected vertical
currents are first passed through an amplifier to increase the amplitude of the signal,
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making the summed output more obvious, and then the two amplified currents are collected
through the summing amplifier (blue block). The circuit in Figure 5 could be described
using Equation (12). Each input-feature map undergoes n convolution operations, followed
by m*n convolution operations on m maps. Consequently, n groups of m output maps
need to be merged together to obtain the final n result maps. In other words, two columns
perform single feature extraction.

YN = RL

[
∑

m=1
∑
k=1

xk,m•
(

σ+
k+k(m−1),2n−1 − σ−

k+k(m−1),2n

)]
(n = 1, 2, 3 . . .) (12)
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Figure 5. Template for implementing a memristive circuit to perform convolution calculations.

The input voltage signal is denoted as xk,m, while σ+ and σ− correspond to the
conductance of a pair of memristors. It should be noted that all instances of σ− have
predetermined fixed values for their conductance. Therefore, by adjusting the value of σ+

through calibration, we can effectively represent the convolution kernel weights associated
with positive, negative, and zero.

The input to the network in this paper is an RGB, three-channel image with dimensions
of W × H and a convolution kernel size of 3 × 3. Consequently, the image is transformed
into an output vector of size W × H × 1, and each time a 3 × 3 field is added. This
vector is then sent to the convolution kernel for the convolution operation. During this
process, the convolution kernel continuously slides over the input image with a fixed
step size. The convolution operation involves calculating the sum of products between
shared weights associated with the convolution kernel and the generated input image. This
operation could be decomposed into parallel multiply-accumulate operations, making it
suitable for memristor-based in-memory computing architectures. To facilitate hardware
implementation, the input image is expanded into a nine-dimensional vector, which drives
a corresponding nine pulse channels to provide simultaneous access to nine-bit lines. The
weights are represented by two differential conductances of 1T1R memristors, mapping
positive and negative rows, respectively, for each weight value within a given convolutional
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kernel. By doing so, we calculate differences between cumulative flowing currents on two
relevant source lines as weighted sums of both convoluted inputs and their respective
kernel weights.

4.2. RRCL Network

MARR-GAN consists of the RRCL module and the global average pooling layer
attention gate. Each RRCL module is followed by a BN processing by each convolution
kernel, and the nonlinearity is introduced by ReLU activation function, after which it is
passed to the next convolution layer.

4.2.1. Global Average Pooling Module

The global average pooling layer module (GAP) pools feature maps of different input
sizes into 1 × 1 feature maps. The module will perform a global average pooling operation
on images of size C*H*W. Therefore, instead of using memristors with varying resistance
values, a resistor is used instead. Memristors are used in the summation circuit, and
average pooling is implemented by a column parallel memristor cross array. All feature
information within the pool window (one pool) is fed to the parallel cross array, which
could be expressed as:

VAt = ∑
r

(
VC,HW × R

Mt

)
, t = 1, 2, 3 . . . n (13)

The schematic diagram of the GAP is illustrated in Figure 6. Assuming the pooling
window size is k, The memristor’s significance within the module for an average pooling
circuit Mt = k × R, where R represents resistance. It should be noted that R is set to 1 kΩ.
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Figure 6. Realization of the memristive circuit for calculating GAP.

Since the GAP layer does not require training weights in its computation, it takes a
simplified approach to processing data. Specifically, it utilizes resistors instead of memris-
tors that require training weights, which are determined during the manufacturing process
and do not need to be trained or adjusted at runtime. This design greatly simplifies the
complexity of the circuit and improves computational efficiency.

However, the summation circuit part is different. Here, the nonlinear nature of the
memristor plays a key role. Due to this property of the amnesia, it can efficiently handle
massively parallel computing tasks, which is crucial when dealing with large amounts of
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data. By applying the amnesia to the summation circuit, we can achieve fast and accurate
data processing, which is crucial for the operation of neural networks.

In summary, the design of the GAP layer using a cross array of amnesia on the circuit
as well as a simple summation circuit is an innovative approach. It skillfully combines the
memory properties of the memristor and the stability of the resistor, making the whole
circuit both simple and efficient.

4.2.2. Batch Normalization (BN)

The operation of the BN layer can be simplified as a linear transformation of the input
x. The calculation method is as follows:

y = ax + b (14)

A circuit for achieving a linear variation in input x can be realized by integrating an
operational amplifier with two memristors.

The schematic diagram of the BN layer is illustrated in Figure 7. The op amp on the
right functions as an inverting adder circuit, generating the output signal as follows:

ybn =
Rbn

Mbn1
xj −

Rbn
Mbn2

xb (15)
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The primary function of the BN is to adjust the distribution of input feature data x.
Therefore, it is essential for the transformation coefficient a of the BN layer to be positive.
Rbn, Mbn1, and Mbn2 are greater than 0, if and only if xb > 0, b < 0.

Of the inputs xj and xb, xj is the input data, xb is the bias input, where xj and xb are
input into two memristors, and then input into the inverting operational amplifier circuit
to perform linear transformation to obtain the output ybn. The principle of this design is
to use the memristors to store xi, and then through the inverting operational amplifier
circuit to perform the linear transformation to realize the linear amplification or reduction
in the input signal. The principle of this design is to use a memristor to store xj, and
then perform a linear transformation through an inverting operational amplifier circuit
to linearly amplify or reduce the input signal. By changing the conductance value of the
memristor and adjusting the behavior of the BN layer, this design can improve the training
efficiency and stability of the neural network and reduce the sensitivity of the model to the
initial weights.

4.2.3. Sigmoid

Based on the exponential circuit, we have successfully developed circuits for imple-
menting the activation functions sigmoid. The resulting outputs could be mathematically
represented as follows:

Vs =
Vb

Vb + exp(Vi)
(16)
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where Vb represents a bias voltage with a fixed size of 1 V.
As the circuit shown in Figure 8, Vb represents the bias voltage, Vi represents the input

voltage, and Vs represents the output voltage, which is realized by three inverting amplifier
circuits, an adder, and a multiplier. A bias voltage of 1 V is added to the input of this
circuit, as the sigmoid function changes its output slowly when the input is close to zero.
By adding a bias voltage of 1 V, the input voltage can be made to vary over a wider range,
which improves the linearization of the sigmoid function and extends the linearization
range of the sigmoid function. In the neural network designed in this paper, this helps to
improve the linear response of the network to the inputs, allowing the network to better
learn and recognize the features of various raindrops.
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5. Experiments

The performance and superiority of MARR-GAN are validated on various artificial
datasets and real-world images affected by raindrops, with qualitative and quantitative
comparisons conducted against different state-of-the-art (SOTA) techniques.

5.1. Implementation Details
5.1.1. Datasets

There are two types of datasets utilized in the experiment. One dataset was obtained
by Qian et al. [14] through the manual application of water droplets on the camera lens
followed by capturing photos. A total of 861 pairs of training data constitutes this dataset,
comprising images with raindrop effects and their corresponding clean versions. The test
dataset comprises Testa and Testb, containing a total of 58 and 249 samples, respectively.
The other dataset that Quan et al. [52] constructed is a comprehensive dataset of real
raindrop images, consisting of 1000 high-resolution photographs captured with a single-
lens reflex (SLR) camera. A total of 250 pairs of raindrop images are encompassed by this
dataset, covering diverse environmental settings such as parking lots, parks, and urban
areas. Moreover, data collection were conducted at different times of the day morning,
noon, and afternoon to capture raindrop images under varying lighting conditions in
authentic scenes.

5.1.2. Training Details

The proposed network is trained and tested on Ubuntu 20.04, 128 GB host memory,
32 GB GPU, CUDA 11.6, CUDNN 8.5, Python 3.9, and NVIDIA RTX-3090. The experimental
condition is based on Pytorch-GPU 1.12.0. The size of the input image pair is 720 × 480.
We used the Adam optimizer with a learning rate of 0.0001 and a decay rate of 0.90. The
model was trained for 500 epochs, and the entire training time of the proposed model was
approximately 30 h.
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5.2. Experimental Results

The Raindrop and RainDS datasets are utilized in this experiment to evaluate the
performance of the network, which is then compared with state-of-the-art raindrop removal
networks including AGAN [14], ATT [53], A2Net [54], DURN [48], and TMN [55]. By
comparing the above networks, the raindrop removal performance is evaluated from SSIM,
PSNR indicators, and visual effects.

5.2.1. Quantitative Evaluation

The evaluations on the Raindrop dataset of our approach are presented in Table 1 in
comparison with AGAN [14], ATT [53], A2Net [54], DURN [48], and TMN [55].

Table 1. Results of Raindrop dataset provided by Qian et al. [14].

Dataset Metric AGAN ATT A2Net DURN TMN MARR-
GAN

Testa
PSNR (dB) 29.569 30.808 27.961 30.1008 30.062 30.956

SSIM 0.905 0.917 0.911 0.912 0.905 0.900
PHah 3 1 4 2 2 1

Testb
PSNR (dB) 24.228 -- 1 25.081 24.322 24.313 25.478

SSIM 0.786 -- 1 0.793 0.802 0.787 0.807
PHah 4 -- 1 2 3 4 2

1 “--”: results are not released.

From the comparison in Table 1, it can be seen that in contrast to the previous best
approach, MARR-GAN improves 0.005 of SSIM on Testb; MARR-GAN improves 0.148 dB
of PSNR on Testa and improves 0.397 dB of PSNR on Testb; MARR-GAN improves 1 of
PHah on Testa.

The evaluations on the RainDS dataset of our approach are presented in Table 2 in
comparison with AGAN [14], ATT [53], A2Net [54], DURN [48], and TMN [55].

Table 2. Results of RainDS dataset provided by Quan et al. [52].

Dataset Metric AGAN ATT A2Net DURN TMN MARR-
GAN

RainDS
PSNR (dB) 24.298 -- * 24.461 23.882 24.151 24.484

SSIM 0.819 -- * 0.842 0.818 0.828 0.847
PHah 4 -- * 3 4 4 3

* “--”: results are not released.

From the comparison in Table 2, it can be seen that in contrast to the previous best
approach, MARR-GAN improves 0.023 dB of PSNR and 0.023 of SSIM.

5.2.2. Qualitative Evaluation

The visual comparison results of various raindrop removal methods are depicted in
Figures 9 and 10. It can be observed that AGAN [14] has a color shift. The methods ATT [53]
and DuRN [48] are associated with the presence of conspicuous distortions in terms of both
artifacts and color accuracy. Although A2Net [54] and TMN [55] demonstrate satisfactory
performance in overall perception, they lack consistency when it comes to restoring local
structures from pristine samples. On the contrary, our approach guarantees the retention
of authentic background details without any visually perceptible distortions. Moreover,
Figure 11 presents a comparative analysis showcasing raindrops exhibiting reflected colors
at different transparency levels. It becomes apparent that existing techniques yield restored
images containing undesirable artifacts or incomplete semantic information. In contrast, our
method enables more dependable image reconstruction while effectively accommodating
various raindrop morphologies.
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5.3. Ablation Study

This section develops an ablation study to investigate the importance of various
MARR-GAN components. All of the approaches’ ablation experiments are carried out on
Raindrop. In particular, we created the four variation experiments listed below:

Experiment I: In this experiment, we will exclude the recurrent convolutional unit
and add a connection line in RRCL, instead utilizing the conventional convolution layer
depicted in Figure 3b for image rain removal processing.

Experiment II: For this experiment, we will replace the attention gate connections in
RRCL with skip connection blocks.
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Experiment III: For this experiment, we will change the number of residual blocks to
three in the recurrent attention network.

In experiments I to III, we examined the impact of incorporating recurrent convolu-
tional units and adding connection lines, attention gate connections in RRCL, and varying
the number of residual blocks in the recurrent attention network on image de-raining
outcomes. To ensure reproducibility and minimize training randomness, we calculated
average result values using Raindrop datasets. Table 3 presents a quantitative comparison
of these three variations. It is evident that our MARR-GAN consistently achieves higher
PSNR and SSIM scores compared to the other variants. Conversely, our overall model
effectively enhances structural details in the restored images.

Table 3. Ablation results of Raindrop dataset provided by Qian et al. [14].

Dataset Metric Experiment I Experiment II Experiment III MARR-GAN

Testa
PSNR (dB) 29.358 29.941 28.692 30.956

SSIM 0.896 0.884 0.865 0.900
PHah 3 3 4 1

Testb
PSNR (dB) 24.376 25.310 25.327 25.478

SSIM 0.792 0.801 0.783 0.807
PHah 2 2 2 2

6. Conclusions

A novel image de-raining network, named MARR-GAN, which combines software
and hardware design, is presented in this study. The proposed network utilizes an attention
recurrent residual generative adversarial network to effectively remove raindrops from im-
ages. Additionally, we introduce a cyclic raindrop feature extraction module that facilitates
the analysis and interpretation of pixel relationships within the raindrop feature image.
Then, a raindrop removal module is designed to handle image areas with complex texture
details. Based on this premise, a memristor-based hardware implementation scheme is put
forward, offering an advantageous hardware resolution for accelerating DCNN and ensur-
ing real-time and dependable processing of intricate images. Experimental results show
that the MARR-GAN algorithm proposed in this article has good application prospects in
removing raindrops and restoring image details.
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