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Abstract: This article presents a novel technique for a class 2 tensegrity robot, also classified as a
soft robot, to increase workspace by increasing the number of geometric equilibrium configurations
of the robot. The proposed modification, unlike the strategies reported in the literature, consists of
increasing the number of points where the flexible and rigid elements that make up the robot come
into contact without the need to increase the number of actuators, the number of flexible elements,
or modify the geometry of the rigid elements. The form-finding methodology combines the basic
principles of statics with the direct and inverse kinematic position analysis to determine the number
of equilibrium positions of the modified robot. In addition, numerical experiments were carried out
using the commercial software ANSYS®, R18.2 based on the finite element theory, to corroborate the
results obtained with them. With the proposed modification, an increase of 23.369% in the number of
geometric equilibrium configurations is achieved, which integrates the workspace of the modified
class 2 tensegrity robot. The novel technique applied to tensegrity robots and the tools developed to
increase their workspace apply perfectly to scale the robots presented in this paper.

Keywords: soft robotics; tensegrity robot; FEM-ANSYS; form-finding

1. Introduction

The term tensegrity was used for the first time by Buckminster Fuller et al. in 1975 [1]; it
comes from the combination of the words “tensional” and “integrity”, referring to structures
that maintain their shape when subjected to internal tension and compression loads by
all the elements that comprise them. One of the most accepted definitions for tensegrity
systems is the one proposed by A. Pugh [2], where he defines them as a set of discontinuous
elements subject to compression loads that interact with a set of continuous elements subject
to tension loads, forming a stable volume in space; the discontinuous elements are called
bars, and the continuous ones are denominated flexible elements. Incorporating various
types of actuators, such as McKibben artificial muscles [3], which enable the variation of
the length of flexible elements into a tensegrity structure, creates tensegrity robots. The
actuators incorporated into tensegrity robots can be powered by various sources of motion,
such as EHD pumps [4], piezoelectric materials [5], and cable–pulley systems [6], among
others. Several robots designed based on the concept of tensegrity systems have been
reported in the literature. A notable example is a robot with a fundamental tensegrity
structure known as the Snelson Cross, proposed by J. Begay et al. [7]. Additionally, robots
inspired by more intricate tensegrity structures have been documented. These include
an arm-type tensegrity robot with multiple elementary tensegrity structures connected
in series [8,9]. Worm-like mobile robots with multiple movement modes and minimal
actuators have also been proposed, as demonstrated by Y. Jin et al. [10]. Furthermore, there
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are reports of mobile robots equipped with wheels inspired by the dynamics of the human
spine for duct inspection, such as the one developed by F. Carreño and M.A. Post [11].
Also, a platform-type robot based on a structure with variable stiffness and deployable
capabilities has been developed by D. Zappetti et al. [12], among others.

C.G. Manríquez-Padilla et al. [13] proposed a new robot based on a tensegrity structure,
which, according to the classification proposed by R. E. Skelton et al. [14], is classified as a
tensegrity class 2 structure. The proposed robot comprises two rigid substructures joined
at one of their ends by a universal joint and, at the remaining ends, using four flexible
elements, marked as C1, C2, r1, and r2, as shown in Figure 1.

Figure 1. Class 2 tensegrity robot.

In Figure 1, the flexible elements marked as r1 and r2 represent tension springs, while
the flexible elements marked as C1 and C2 represent cables. The cable lengths are variable
and are controlled by turning a pulley attached to a servomotor.

A form-finding analysis must be performed to determine the workspace of the robot,
that is, the set of possible geometric configurations that the robot can reach or between
which one can migrate without collapsing. Several strategies have been reported in the
literature that aim to solve the form-finding analysis; among them, there are some based on
neural networks [15], the Levenberg–Marquardt method [16], methods based on force den-
sity matrix [17], some others based on optimization algorithms [18], and genetic algorithms
combined with potential energy minimization [19]. For the class 2 tensegrity robot reported
in [13] and illustrated in Figure 1, C.G. Manríquez-Padilla et al. [20] proposed a solution
strategy for the form-finding analysis based on a combination of the fundamental princi-
ples of statics and the direct and inverse kinematic position analysis using the geometric
parameters proposed by Denavit–Hartenberg [21]. In the same study, a case was presented
wherein 14,641 geometric configurations were analyzed, and only 215 were classified as
equilibrium geometric configurations.

Tensegrity-structures-based robots, by combining soft materials with rigid materials,
present considerable challenges when designing and building them, especially when it
is necessary to modify their workspace. As outlined in the previously mentioned litera-
ture, the modification of the workspace for tensegrity structures composed of elementary
tensegrity structures (tetrahedra, dodecahedra, icosahedra, etc.) is accomplished by con-
necting several elementary structures at their ends, thereby increasing the number of
elements that compose the robot. The methodology mentioned above cannot be applied to
tensegrity robots with more complex structures that are not composed of elementary tenseg-
rity structures because the base structure lacks a homogeneous distribution of elements.
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Consequently, the strategies to modify the workspace of intricate tensegrity-structures-
based robots have not been fully defined due to the complexity of the interaction of the
elements [22]. Therefore, based on the outcomes presented in [20], this paper introduces
a redesign of the class 2 tensegrity robot. The redesign involves altering the mode of
interaction between the flexible and rigid elements comprising the class 2 tensegrity robot,
as depicted in Figure 1. The novelty of this proposed redesign aims to augment the number
of equilibrium geometric configurations and, thereby, enhance the workspace of the robot,
all without requiring an increase in the number of servomotors or flexible elements.

To achieve this goal, in Section 2.1, a brief description of the modified class 2 tensegrity
robot is presented, followed by the description of the Denavit–Hartenberg parameters used
to develop the kinematic position analysis. Section 2.4 introduces the development of the
kinematic position analysis for the modified robot and the methodology corresponding
to the inverse kinematic position analysis. Subsequently, the static analysis and the form-
finding analysis are presented. Sections 3 and 4 present the numerical experiments of a
study case using commercial software based on finite element theory, ANSYS® R18.2. The
results from the numerical experiments are used to corroborate the proposed redesign of
the class 2 tensegrity robot.

2. Methodology

This section presents a detailed description of the novel technique proposed to increase
the workspace of a class k tensegrity robot. To achieve this, the modification proposed
for the class 2 tensegrity robot shown in Figure 2 and the technique developed to solve
the form–finding problem are detailed. Unlike the strategies to increase the workspace
reported in the literature, the proposed technique does not require increasing the number
of actuators, modifying the kinematic structure of the robot, or increasing the number of
elastic elements that compose it.

Figure 2. Proposed class 2 tensegrity robot.

2.1. Description of the Modified Class 2 Tensegrity Robot

The following argument is presented as a hypothesis to increase the number of equi-
librium geometric configurations for a class 2 tensegrity robot: “The increase in the number of
points where the flexible elements come into contact with both the fixed base and the mobile platform
is proportional to the increase in the number of equilibrium geometric configurations”.
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To increase the contact points between the flexible and rigid elements of the class 2
tensegrity robot, it is necessary to attach a pulley system that allows the cables with variable
lengths, C1 and C2, shown in Figure 1, to be in contact with the moving platform and the
fixed base at multiple points. The proposed design of this pulley system is shown in
Figure 2.

Figure 2 depicts the flexible elements highlighted in blue and red, corresponding to
cables with variable lengths C1 and C2, respectively. Furthermore, the flexible elements
labeled as r1 and r2 represent tensional springs with constant stiffness. Points M1 and M2,
marked on the mobile platform, define the original interaction points between the rigid and
flexible elements found in both robots; the robot is shown in Figure 1, and the proposed
robot is shown in Figure 2. In the same way, points labeled Si_1, Si_2, Si_3, and Si_4 represent
the points of interaction between the rigid and flexible elements that were added to increase
the workspace. Similarly, on the fixed base, points labeled B1, B2, B3, B4, Bi_2, and Bi_4,
represent all the points where the cables with variable lengths C1 and C2 come into contact
with the fixed base. The pulley systems are located on the points described above. For the
present work, the pulley system is considered a friction-free system, designed to allow the
free interaction between the flexible elements, cables with variable lengths C1 and C2, and
the rigid elements of the mobile platform and the fixed base.

2.2. Kinematic Position Analysis of the Modified Class 2 Tensegrity Robot

For the proposed class 2 tensegrity robot, shown in Figure 3, the methodology described
in [13] was implemented, which consists of performing a kinematic decoupling of the robot
to carry out the direct and inverse kinematic position analysis for both the flexible and
rigid elements independently. Decoupling the tensegrity robot is carried out in two parts:
the rigid elements shown in Figure 4b and the flexible elements shown in Figure 4c; the
joint variables of the universal joint can be related with the variation in the lengths of
the flexible elements.

2.2.1. Denavit–Hartenberg Parameters

For the modified class 2 tensegrity robot, the Denavit–Hartenberg distal parame-
ters [23] establish the reference frames shown in Figure 3, coloring the axes x, y, and z as
red, green, and blue, respectively.

Figure 3. Coordinate reference systems attached to the proposed robot.
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Table 1 shows the Denavit–Hartenberg distal parameters of the proposed class 2
tensegrity robot, where

• di is the distance measured from the xi−1 axis to the xi axis along the zi−1 axis.
• θi is the angle between the xi−1 axis and the xi axis measured around the zi−1 axis,

following the right-hand convention.
• ai is the distance measured from the zi−1 axis to the zi axis along the xi axis.
• αi is the angle between the zi−1 axis and the zi axis measured around the xi axis,

following the right-hand convention.

Table 1. Denavit–Hartenberg parameters for the robot.

i di θi ai αi
mm rad mm rad

1 0 θ1 0 −π/2
2 0 θ2 a2 π/2

For the kinematic position analysis, it is necessary to define ten auxiliary reference
frames, as shown in Figure 3, where the reference frame ΣW is called the reference frame of
the fixed base, and the reference frame ΣM is considered the terminal organ of the modified
class 2 tensegrity robot. The remaining reference frames are used to describe the position of
the points where the flexible elements are in contact with the mobile platform of the robot
with respect to ΣW. To accomplish this, the origin of the reference frames, ΣM1 , ΣM2 , ΣSi_1 ,
ΣSi_2 , ΣSi_3 , ΣSi_4 , Σr1 , and Σr2 , must be in the same position as the points M1, M2, Si_1, Si_2,
Si_3, Si_4, r1, and r2, respectively, as shown in Figure 2.

By design criteria, the coordinates of the points B1, B2, B3, B4, Bi_2, and Bi_4 are known
with respect to ΣW. Considering the displacement of the fixed base as non-existent, it can
be said that the coordinates of all points located on it are known and invariant in time.

2.2.2. Direct Kinematic Position Analysis

The kinematic analysis of the proposed class 2 tensegrity robot, shown in Figure 4a,
serves to describe the position and orientation of the mobile platform of the tensegrity
robot with respect to the ΣW reference frame as a function of the variable joints that show
the variations in the lengths of cables C1 and C2. Considering the above, it is necessary to
define the variations in the cable lengths, C1 and C2, as a function of the degrees of rotation
of joints 1 and 2 described by the variables θ1 and θ2.

(a) (b) (c)

Figure 4. Decouple class 2 tensegrity robot. (a) Modified robot. (b) Rigid part. (c) Flexible part.
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To analyze the rigid elements, the distal Denavit–Hartenberg parameters contained in
Table 1 are used in combination with the homogeneous transformation matrix for the distal
variant [23], described by

i−1Ti =


Cθi −CαiSθi SαiSθi aiCθi
Sθi CαiCθi −SαiCθi aiSθi
0 Sαi Cαi di
0 0 0 1

 (1)

where Cθi ≡ cos(θi), Sθi ≡ sin(θi), Cαi ≡ cos(αi), Sαi ≡ sin(αi). Substituting the values of
Table 1, in the Equation (1), the homogeneous transformation matrices 0T1 and 1TM are
obtained and defined by

0T1 =


Cθ1 0 −Sθ1 0
Sθ1 0 Cθ1 0
0 −1 0 0
0 0 0 1

 (2)

1TM =


Cθ2 0 Sθ2 a2Cθ2
Sθ2 0 −Cθ2 a2Cθ2
0 1 0 0
0 0 0 1

 (3)

In addition, the auxiliary reference frames described in Figure 3 are used to obtain
the homogeneous transformation matrices that define the position and orientation of the
points located on the mobile platform shown in Figure 2 using

W T0 =


1 0 0 l1
0 1 0 0
0 0 1 0
0 0 0 1

 (4)

MTM2 =


1 0 0 0
0 1 0 −l∗2
0 0 1 l∗2
0 0 0 1

 (5)

MTR2 =


1 0 0 0
0 1 0 −l∗2
0 0 1 −l∗2
0 0 0 1

 (6)

MTSi_2 =


1 0 0 0
0 1 0 −l∗2
0 0 1 0
0 0 0 1

 (7)

MTSi_4 =


1 0 0 0
0 1 0 l∗2
0 0 1 0
0 0 0 1

 (8)

MTM1 =


1 0 0 0
0 1 0 l∗2
0 0 1 −l∗2
0 0 0 1

 (9)
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MTR1 =


1 0 0 0
0 1 0 l∗2
0 0 1 l∗2
0 0 0 1

 (10)

MTSi_1 =


1 0 0 0
0 1 0 0
0 0 1 −l∗2
0 0 0 1

 (11)

MTSi_3 =


1 0 0 0
0 1 0 0
0 0 1 l∗2
0 0 0 1

 (12)

where W T0 ∈ R4×4 describes the homogeneous transformation matrix that relates the
reference frame Σ0 with respect to ΣW; conversely, the homogeneous transformation ma-
trices MTM1 , MTM2 , MTR1 , MTR2 , MTSi_1 , MTSi_2 , MTSi_3 , MTSi_4 ∈ R4×4 relate the auxiliary
reference frames ΣM1 , ΣM2 , Σr1 , Σr2 , ΣSi_1 , ΣSi_2 , ΣSi_3 , ΣSi_4 with the reference frame ΣM.
The variables l1 and l2 represent the distance between the axis zW and z0 measured along
the axis xW and the length of the mobile platform measured along the axis y as shown in
Figure 1, respectively. Also, l∗2 = l2

2 is defined.
By multiplying (2)–(4), the homogeneous transformation matrix W TM is obtained, and

it describes the position and orientation of the reference frame ΣM with respect to ΣW,
i.e., [24],

W TM = W T0
0T1

1TM

=


Cθ1Cθ2 −Sθ1 Cθ1Sθ2 l1 + a2Cθ1Cθ2
Sθ1Cθ2 Cθ1 Sθ1Sθ2 a2Cθ2Sθ1
−Sθ2 0 Cθ2 −a2Sθ2

0 0 0 1

 (13)

Similarly, by multiplying (9)–(13), the position and orientation of the reference frames
located on the mobile platform of the robot are obtained, Figure 3, relative to ΣW, i.e.,

W TM1 = W TM
MTM1 (14)

W TM2 = W TM
MTM2 (15)

W TR1 = W TM
MTR1 (16)

W TR2 = W TM
MTR2 (17)

W TSi_1 = W TM
MTSi_1 (18)

W TSi_2 = W TM
MTSi_2 (19)

W TSi_3 = W TM
MTSi_3 (20)

W TSi_4 = W TM
MTSi_4 (21)

Considering the above, as shown in Figure 5, the total lengths of cables C1 and C2 are
defined as

LC1 =
6

∑
i=1

LC1_i (22)

LC2 =
6

∑
i=1

LC2_i (23)
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where LC1_i and LC2_i represent the individual lengths of each of the six segments that
make up cables C1 and C2, respectively. To determine the individual lengths of the cable
segments Ci_j, the coordinates of the contact points B1, B2, B3, B4, Bi_2, Bi_4, with respect to
ΣW, are assumed to be known based on the dimensions of the tensegrity robot, provided by

W PB1 =
[

B1x B1y B1z

]T
(24)

W PB2 =
[

B2x B2y B2z

]T
(25)

W PB3 =
[

B3x B3y B3z

]T
(26)

W PB4 =
[

B4x B4y B4z

]T
(27)

W PBi_2 =
[

Bi_2x Bi_2y Bi_2z

]T
(28)

W PBi_4 =
[

Bi_4x Bi_4y Bi_4z

]T
(29)

(a) (b)

Figure 5. Segmentation of cables C1 and C2: (a) cable segments C1; (b) cable segments C2.

Then, the position vectors of the homogeneous transformation matrices (14)–(21) with
respect to the fixed base reference frame ΣW are provided by

W PMj =
[

W PMjx
W PMjy

W PMjz

]T
(30)

W PSi_k =
[

W PSi_kx
W PSi_ky

W PSi_kz

]T
(31)

where j = 1, 2 and k = 1, 2, . . . , 4. Using the position vectors described in (24)–(29), the
position vectors describing the cable segments are obtained as

C1_1 =

C1_1x

C1_1y

C1_1z

 =

(
W PSi_1x

− B4x )

(W PSi_1y
− B4y)

(W PSi_1z
− B4z)

 (32)
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C1_2 =

C1_2x

C1_2y

C1_2z

 =

(
W PSi_1x

− B1x )

(W PSi_1y
− B1y)

(W PSi_1z
− B1z)

 (33)

C1_3 =

C1_3x

C1_3y

C1_3z

 =

(
W PM1x

− B1x )

(W PM1y
− B1y)

(W PM1z
− B1z)

 (34)

C1_4 =

C1_4x

C1_4y

C1_4z

 =

(
W PM1x

− Bi_4x )

(W PM1y
− Bi_4y)

(W PM1z
− Bi_4z)

 (35)

C1_5 =

C1_5x

C1_5y

C1_5z

 =

(
W PSi_4x

− Bi_4x )

(W PSi_4y
− Bi_4y)

(W PSi_4z
− Bi_4z)

 (36)

C1_6 =

C1_6x

C1_6y

C1_6z

 =

(
W PSi_4x

− B3x )

(W PSi_4y
− B3y)

(W PSi_4z
− B3z)

 (37)

C2_1 =

C2_1x

C2_1y

C2_1z

 =

(
W PSi_3x

− B3x )

(W PSi_3y
− B3y)

(W PSi_3z
− B3z)

 (38)

C2_2 =

C2_2x

C2_2y

C2_2z

 =

(
W PSi_3x

− B2x )

(W PSi_3y
− B2y)

(W PSi_3z
− B2z)

 (39)

C2_3 =

C2_3x

C2_3y

C2_3z

 =

(
W PM2x

− B2x )

(W PM2y
− B2y)

(W PM2z
− B2z)

 (40)

C2_4 =

C2_4x

C2_4y

C2_4z

 =

(
W PM2x

− Bi_2x )

(W PM2y
− Bi_2y)

(W PM2z
− Bi_2z)

 (41)

C2_5 =

C2_5x

C2_5y

C2_5z

 =

(
W PSi_2x

− Bi_2x )

(W PSi_2y
− Bi_2y)

(W PSi_2z
− Bi_2z)

 (42)

C2_6 =

C2_6x

C2_6y

C2_6z

 =

(
W PSi_2x

− B4x )

(W PSi_2y
− B4y)

(W PSi_2z
− B4z)

 (43)

Using (32)–(43), the length of the individual segments of each cable as a function of
the joint variables, θ1 and θ2, is defined as

LCi_j =
√
(Ci_jx

)2 + (Ci_jy)
2 + (Ci_jz)

2 (44)

Finally, using (44) for i = 1, 2 and j = 1, 2, 3, . . . , 6 and substituting in (22) and (23) ,
the total length of the wires C1 and C2 are obtained based on the variables θ1 and θ2.
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2.2.3. Inverse Kinematic Position Analysis

The objective of the inverse kinematic position analysis is to be able to describe the
variations in the lengths of cables C1 and C2 given a desired configuration of the tensegrity
robot. Therefore, the above is possible once the solutions for the variables θ1 and θ2 are
obtained, corresponding to the desired robot configuration.

Considering that the position and orientation of the reference frame ΣM, shown in
Figure 3, is defined by the known homogeneous transformation matrix:

W TM =


t11 t12 t13 xm
t21 t22 t23 ym
t31 t32 t33 zm
0 0 0 1

 (45)

where (45) is related to the symbolic matrix provided in (13), the variables θ1 and θ2 can be
obtained by

θ1 = atan2
(

t23

t13

)
(46)

θ2 = atan2
(
−t31

t33

)
(47)

Then, variables θ1 and θ2, obtained through (46) and (47), respectively, are substituted
into (44) and evaluated for i = 1, 2 and j = 1, 2, 3, . . . , 6. Finally, (22) and (23) are substituted
into (44) to determine the lengths of the individual cable segments, providing the total
lengths of cables C1 and C2, respectively.

2.3. Static Analysis for the Class 2 Tensegrity Robot

Static analysis is the set of operations to calculate the magnitude of the internal forces, f⃗i,
that act on the i–elements that make up the tensegrity robot, whose input data are the values
of the variables, θ1 and θ2. Static analysis is particularly useful to determine if a specific
geometric configuration can be considered as an equilibrium geometric configuration, that is,
a geometric configuration where the center of mass of the robot does not present movement.

For analysis purposes, consider the geometric configuration of the class 2 tensegrity
robot shown in Figure 6.

Figure 6. Reference frames used in the static analysis of the modified class 2 tensegrity robot.
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It is considered that the weight of the mobile platform is concentrated in its centroid,
G. As a reference point for the calculation of displacements, forces, and moments, frame
Σ0 is used; furthermore, the position and orientation of the reference frame ΣM is used to
describe the desired geometric configuration.

Notice that the following data are known:

• Total lengths, LC1 and LC2 , corresponding to cables C1 and C2, respectively.
• The lengths, Lr1 and Lr2 , corresponding to the springs r1 and r2, respectively.
• The position and orientation of the reference frames, ΣM, ΣM1 , ΣM2 , ΣSi_1 , ΣSi_2 , ΣSi_3 ,

ΣSi_4 , ΣR1 , and ΣR2 , with respect to the ΣW reference frame.

Furthermore, as design parameters are known:

• The lengths of the undeformed springs, Lr10
and Lr20

, corresponding to the tension
springs r1 and r2, respectively.

• The position of the centroid, G, corresponding to the moving platform with respect to
the reference frame ΣW.

• The total mass of the robot.

Then, through the static analysis of the tensegrity robot, the values of the stiffness
constants that ensure an equilibrium position, k1, and k2, can be established, corresponding
to the springs r1 and r2, respectively.

Using the methodology proposed in [13], the fixed base and the flexible elements
are replaced by the forces and moments exerted on the mobile platform, obtaining the
free-body diagram shown in Figure 7.

Figure 7 shows all the moments and forces acting upon the mobile platform; the force
labeled as f⃗C1_i and f⃗C2_i with i = 1, 2, . . . , 6 represents the loads applied by the cables
C1 and C2 over the mobile platform of the robot; the forces f⃗R1 and f⃗R2 express the loads
applied by the tension springs r1 and r2, respectively; the force f⃗W represents the force
exerted by gravity on the moving platform applied to its centroid, G. Likewise, the force-
couple equivalent system composed of the force f⃗ joint and the moment m⃗joint constitute the
force and the moment of reaction that the universal joint exerts on the mobile platform.

Figure 7. Free body diagram of the mobile platform.
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The forces and moments exerted by the flexible elements on the mobile platform are
defined as follows:

f⃗C1_i =
∣∣∣ f⃗C1

∣∣∣Ĉ1_i, f⃗C2_i =
∣∣∣ f⃗C2

∣∣∣Ĉ2_i

f⃗R1 =
∣∣∣ f⃗R1

∣∣∣r̂1, f⃗R2 =
∣∣∣ f⃗R2

∣∣∣r̂2

f⃗ joint =
∣∣∣ f⃗ joint

∣∣∣X̂1, m⃗joint =
∣∣m⃗joint

∣∣X̂0

f⃗W =
∣∣∣ f⃗W =

∣∣∣X̂0 (48)

where the unit vectors, Ĉ1_i and Ĉ2_i with i = 1, 2, 3, . . . , 6, are obtained following the order
shown in Figure 5 and from the direct kinematic position analysis provided by (32)–(43);
the unit vectors r̂1 and r̂2 are calculated using the distribution of points shown in Figure 2;
the unit vector X̂1 indicates the direction of the axis X1 belonging to the reference frame Σ1,
observed from the reference frame Σ0 obtained from the matrix 0TM defined by multiplying
the matrices (2) and (3), while X̂0 =

[
1 0 0

]T .
Then, the equivalent force-couple system according to the forces and moments (48) is

provided by [25]

f⃗e = f⃗C1_1 + f⃗C1_2 + f⃗C1_3 + f⃗C1_4 + f⃗C1_5 + f⃗C1_6 + . . .

f⃗C2_1 + f⃗C2_2 + f⃗C2_3 + f⃗C2_4 + f⃗C2_5 + f⃗C2_6 + . . .

f⃗R1 + f⃗R2 + f⃗W + f⃗ joint (49)

m⃗eO = r⃗Si_1/0 × f⃗C1_1 + r⃗Si_1/0 × f⃗C1_2 + r⃗M1/0 × f⃗C1_3 + . . .

r⃗M1/0 × f⃗C1_4 + r⃗Si_4/0 × f⃗C1_5 + r⃗Si_4/0 × f⃗C1_6 + . . .

r⃗Si_3/0 × f⃗C2_1 + r⃗Si_3/0 × f⃗C2_2 + r⃗M2/0 × f⃗C2_3 + . . .

r⃗M2/0 × f⃗C2_4 + r⃗Si_2/0 × f⃗C2_5 + r⃗Si_2/0 × f⃗C2_6 + . . .

r⃗R1/0 × f⃗R1 + r⃗R2/0 × f⃗R2 + r⃗G/0 × f⃗W + m⃗joint (50)

where r⃗Si_1/0 , r⃗M1/0 , r⃗Si_4/0 , r⃗Si_3/0 , r⃗M2/0 , r⃗Si_2/0 , r⃗R1/0 , r⃗R2/0 , and r⃗G/0 represent the distance
vectors measured from the origin of the reference frame Σ0 to the points Si_1, M1, Si_4, Si_3,
M2, Si_2, R1, R2 and G, respectively.

The conditions that guarantee that the equivalent force-couple system described by
(49) and (50) is in equilibrium are provided by

f⃗e = 0⃗

m⃗eO = 0⃗
(51)

By substituting the equivalent force-couple system provided by (49) and (50), under
equilibrium conditions (51), a system of six equations with six unknowns is obtained. The
solution of this system of equations provides the magnitudes of the forces and the moment,
i.e., | f⃗C1 |, | f⃗C2 |, | f⃗R1 |, | f⃗R2 |, | f⃗ joint| and |m⃗joint|.

On the other hand, the magnitudes of the forces, f⃗R1 and f⃗R2 , exerted by the springs
on the mobile platform, can also be expressed as

| f⃗R1 | = k1 · δ1 (52)

| f⃗R2 | = k2 · δ2 (53)
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where δ1 and δ2 are the longitudinal deformations of the springs r1 and r2, respectively,
when they are subjected to an axial force. The longitudinal deformation of the springs is
calculated by

δ1 = Lr1 − Lr10
δ2 = Lr2 − Lr20

(54)

Using the obtained numerical values of (54) with the magnitudes of the spring
forces | f⃗R1 | and | f⃗R2 |, the stiffness constants of the springs k1 and k2 are calculated using
(52) and (53), respectively, guaranteeing the static analysis of the proposed class
2 tensegrity robot.

2.4. Form-Finding Analysis

For the form-finding analysis of the proposed class 2 tensegrity robot, the methodology
presented in [20] is applied, where the set of all possible geometric configurations of the
robot provided by θ1 and θ2 are analyzed, and a subset of equilibrium configurations
provided by θe1 and θe2 is determined.

The set of all possible configurations is established as follows: for each θ1i ∈
{

θ1i , θ2i

}
a set Λi =

{
θ2j

}
with i = 1, 2, . . . , n and j = 1, 2, . . . , n is defined by

Λi =
{

θ21 , θ22 , θ23 , . . . , θ2n

}
(55)

Then, the subset of equilibrium configurations Ω is defined that must satisfy (51), and
they are expressed by

Ω =
{

θ1i , Λi : f⃗e = 0⃗, m⃗eO
∼= 0⃗

}
(56)

By solving the system of equations described in Equation (51), for each of the n-
geometric configurations Ω, a set of forces and moments, Ψ, can be obtained, composed by

Ψ =
{∣∣∣ f⃗C1i

∣∣∣, ∣∣∣ f⃗C2i

∣∣∣, ∣∣∣ f⃗R1i

∣∣∣, ∣∣∣ f⃗R2i

∣∣∣, ∣∣∣ f⃗ jointi

∣∣∣, ∣∣m⃗jointi

∣∣} (57)

where Ψ is the set of forces and the moment corresponding to the i-geometric configuration
analyzed. In addition to guaranteeing that the proposed class 2 tensegrity robot is in an
equilibrium geometric configuration, it must also be ensured that it fulfills the conditions
of a tensegrity robot according to [2]. With this purpose, the forces and the moment that
constitute the set Ψ must also satisfy the following conditions:∣∣∣ f⃗C1i

∣∣∣ ≥ 0,
∣∣∣ f⃗C2i

∣∣∣ ≥ 0∣∣∣ f⃗R1i

∣∣∣ ≥ 0,
∣∣∣ f⃗R2i

∣∣∣ ≥ 0∣∣∣ f⃗ jointi

∣∣∣ ≤ 0,
∣∣m⃗jointi

∣∣ ∼= 0 (58)

Then, considering (58), the set Ω in (56) is provided by

Ω =
{

θ1i , Λi :
∣∣∣ f⃗C1i

∣∣∣ ≥ 0,
∣∣∣ f⃗C2i

∣∣∣ ≥ 0,
∣∣∣ f⃗R1i

∣∣∣ ≥ 0,∣∣∣ f⃗R2i

∣∣∣ ≥ 0,
∣∣∣ f⃗ jointi

∣∣∣ ≤ 0,
∣∣m⃗jointi

∣∣ ∼= 0
}

(59)

In this way, the set of joint coordinates Ω, represented in (59), contains all the equilib-
rium geometric configurations of the proposed class 2 tensegrity robot.

3. Numerical Example

As a study case, it is proposed to find the set Ω that contains the equilibrium configu-
rations of the proposed class 2 tensegrity robot. The geometric specifications and initial
conditions for the robot are shown in Table 2.
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Table 2. Form–finding parameters.

Definition Variable Value

Distance from the common point of the axes θ1 and θ2 to the moving platform a2 210 mm
Distance from the fixed base to the common point of the axes θ1 and θ2 l1 190 mm
Width of the moving platform l2 220 mm
Initial condition of θ1 θ1,1 −1.5708 rad
Initial condition of θ2 θ2,1 −1.5708 rad
Joints coordinate increment ∆θ 0.0087 rad
Number of geometrical configurations analyzed n 131,044
Initial x coordinate of the centroid, G, with respect to the reference frame ΣW xce 354.0442 mm
Initial y coordinate of the centroid, G, with respect to the reference frame ΣW yce 0 mm
Initial z coordinate of the centroid, G, with respect to the reference frame ΣW zce 76.4886 mm
Mass of the moving platform m 0.4732 kg

Substituting the data from Table 2 into (3)–(21), the coordinates of the points, M, M1,
M2, Si_1, Si_2, Si_3, Si_4, R1, and R2 for the proposed class 2 tensegrity robot shown in
Figure 3, are obtained.

Evaluating (59) numerically with the data from Table 2 and the coordinates of the
points shown in Figure 2, the matrix of points shown in Figure 8 is generated, where
the blue points represent all possible geometric configurations of the proposed class 2
tensegrity robot, while the red dots represent all equilibrium geometric configurations that
satisfy (51) and (58). Therefore, the red dots constitute the workspace of the proposed
class 2 tensegrity robot.

Figure 8. Three-dimensional workspace of the proposed class 2 tensegrity robot.

Also, Figure 9 shows the geometric configurations analyzed in the Y–Z plane.

Figure 9. Workspace in the Y–Z plane of the proposed class 2 tensegrity robot.
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4. Numerical Experiments

This section compares the results of the numerical example with those obtained using
software based on the finite element method, ANSYS® R18.2.

Consider four geometric configurations located within the workspace of the proposed
class 2 tensegrity robot: equilibrium geometric configurations. Furthermore, they are
arbitrarily selected on the workspace boundaries, whose values are shown in Table 3.

Table 3. Arbitrarily selected positions.

Experiment Numbers θ1 (rad) θ2 (rad)

1 −0.5616 0.3432
2 −0.3441 1.5438
3 1.5612 0.0039
4 −1.0836 0.3258

To generate the kinematic and mechanical behavior of the mobile platform of the
proposed class 2 tensegrity robot, the following elements are used:

• The BEAM188 element is used to represent the rigid bars of the robot as they are
suitable elements to analyze thin structures in three dimensions. The BEAM188
element has two nodes and six degrees of freedom at each node.

• The COMBIN14 element is used to represent both the wire segments Ci_j, with i = 1, 2
and j = 1, 2, 3, . . . , 6, and the tension springs r1 and r2. The COMBIN14 element is
suitable for modeling bodies subjected to uniaxial tension–compression loads. With
proper constraints, the COMBIN14 element, having three degrees of freedom per node,
is also used to represent combined spring-damper systems.

All types of elements used for discretizing the mobile platform and the flexible el-
ements of the class 2 tensegrity robot in the simulation carried out in the commercial
software ANSYS® R18.2 are shown in Table 4.

Table 4. Types of elements.

Element Number Physical Element Element Type

1 Rigid elements BEAM188
2–7 Cable C1_i COMBIN14

8–13 Cable C2_i COMBIN14
14 Spring r1 COMBIN14
15 Spring r2 COMBIN14

The information in Table 4 is shown graphically in Figure 10a. Figure 10b shows
the nodes corresponding to the discretized elements. Nodes 1–8 represent the union of
the flexible elements with the rigid base of the robot, and they are constrained both in
translation and rotation in the three axes. Node 9 represents the universal joint whose
boundary conditions restrict translation in the three axes as well as rotation about the x-axis.
Node 10 represents the centroid of the mobile platform where the resultant of the external
forces corresponding to gravity is applied. Nodes 11–19 are declared with no constraints or
external forces applied to them.

Figure 11 shows the geometric configurations adopted by the platform of the robot
corresponding to the joint coordinates listed in Table 3.

Screenshots of the static analysis results obtained using the software ANSYS® R18.2 are
shown in Figure 12.
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(a) (b)

Figure 10. Class 2 tensegrity robot model in ANSYS® R18.2. (a) Element type. (b) Node numbering.

(a) (b)

(c) (d)

Figure 11. Geometric configurations analyzed. (a) Experiment 1. (b) Experiment 2. (c) Experiment 3.
(d) Experiment 4.
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(a) (b)

(c) (d)

Figure 12. Static analysis results obtained from ANSYS® R18.2. (a) Experiment 1. (b) Experiment 2.
(c) Experiment 3. (d) Experiment 4.

Moreover, Table 5 shows the comparison between the magnitudes of the forces,
∣∣∣ f⃗C1

∣∣∣,∣∣∣ f⃗C2

∣∣∣, ∣∣∣ f⃗R1

∣∣∣, ∣∣∣ f⃗R2

∣∣∣ ,
∣∣∣ f⃗ joint

∣∣∣, and
∣∣m⃗joint

∣∣, obtained analytically, and the magnitudes of the

same forces resulting from the simulation in the ANSYS® R18.2 software, corresponding to
the four selected geometric configurations.

It has to be noted that the errors of the analytical and experimental results of ANSYS®

R18.2 are relatively small, so it is guaranteed that the equilibrium geometric configurations
obtained satisfy the equilibrium conditions and the conditions that a tensegrity robot
must fulfill.



Micromachines 2024, 15, 197 18 of 20

Table 5. Comparison between analytical and software results.

Analytical ANSYS® R18.2 Error

Experiment 1∣∣∣ f⃗C1

∣∣∣ 0.52083 N 0.52080 N 0.0041%∣∣∣ f⃗C2

∣∣∣ 0.47178 N 0.47176 N 0.0024%∣∣∣ f⃗R1

∣∣∣ 1.85472 N 1.8546 N 0.0064%∣∣∣ f⃗R2

∣∣∣ 1.40022 N 1.4002 N 0.0014%∣∣∣ f⃗ joint

∣∣∣ 4.91739 N 4.9170 N 0.0079%∣∣∣m⃗joint

∣∣∣ 18.6549 N·mm 18.653 N·mm 0.0101%

Experiment 2∣∣∣ f⃗C1

∣∣∣ 0.40010 N 0.40037 N 0.0691%∣∣∣ f⃗C2

∣∣∣ 0.60663 N 0.60661 N 0.0030%∣∣∣ f⃗R1

∣∣∣ 0.98630 N 0.98625 N 0.0050%∣∣∣ f⃗R2

∣∣∣ 0.11156 N 0.11158 N 0.01792%∣∣∣ f⃗ joint

∣∣∣ 4.91584 N 4.9157 N 0.0028%∣∣∣m⃗joint

∣∣∣ 35.61024 N·mm 35.602 N·mm 0.0231%

Experiment 3∣∣∣ f⃗C1

∣∣∣ 0.18530 N 0.18529 N 0.0023%∣∣∣ f⃗C2

∣∣∣ 0.49770 N 0.49768 N 0.0030%∣∣∣ f⃗R1

∣∣∣ 1.24109 N 1.2411 N 0.0008%∣∣∣ f⃗R2

∣∣∣ 1.73608 N 1.7361 N 0.0011%∣∣∣ f⃗ joint

∣∣∣ 5.05786 N 5.0578 N 0.0011%∣∣∣m⃗joint

∣∣∣ 64.04513 N·mm 64.029 N·mm 0.0251%

Experiment 4∣∣∣ f⃗C1

∣∣∣ 0.51191 N 0.51189 N 0.0023%∣∣∣ f⃗C2

∣∣∣ 0.40380 N 0.40379 N 0.0041%∣∣∣ f⃗R1

∣∣∣ 1.74458 N 1.7445 N 0.0045%∣∣∣ f⃗R2

∣∣∣ 1.05128 N 1.0513 N 0.0019%∣∣∣ f⃗ joint

∣∣∣ 4.91154 N 4.9114 N 0.0028%∣∣∣m⃗joint

∣∣∣ 21.71365 N·mm 21.710 N·mm 0.0168%

5. Conclusions

In this paper, a hypothesis is presented where it is stated that, by increasing the
number of interactions between the flexible elements formed by the cables with variable
length, C1 and C2, and the rigid elements of the soft robot applied to a class 2 tensegrity
robot, integrated by the mobile platform and the fixed base, as a consequence, there
would be an increase in the number of equilibrium geometric configurations for the robot
presented in [13]. For this purpose, a redesign of the configuration of the flexible elements
in the class 2 tensegrity robot presented in [13] was proposed, remaining as shown in
Figure 2. Subsequently, the proposed class 2 tensegrity robot was analyzed using the same
methodology described in [13] to determine all the equilibrium geometric configurations
of the robot, thus defining the workspace shown in Figure 8.

For the class 2 tensegrity robot presented in [13], it was determined that its workspace
is composed of 215 equilibrium geometric configurations. Similarly, for the proposed
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class 2 tensegrity robot, it was found that the workspace, shown in Figure 8, comprises
50,223 equilibrium geometric configurations, representing an increase of 23,360% in the
number of equilibrium geometric configurations. The significant increase in the workspace
incurred by the class 2 tensegrity robot when integrating the modification in the interaction
between the flexible and rigid elements allows for corroborating the hypothesis stated at
the beginning of this research.

To verify the stability of the equilibrium geometric configurations found using the
abovementioned technique, the software ANSYS®, based on finite element theory, was
used to perform a series of numerical experiments. The results obtained showed that
the analyzed geometric configurations constitute equilibrium geometric configurations
that meet the definition of a tensegrity system [2]. Furthermore, the hypothesis of this
manuscript was proved by numerical experiments; that is, the authors demonstrated that
using the novel technique is an alternative to increasing the effective workspace in the class
2 tensegrity robot, which is different from the methods employed in [6–12], where their
strategies were based on the concatenation of elementary tensegrity structures to increase
the effective workspace and, consequently, the applications.

In future work, a mathematical model capable of describing the relationship between
interaction points and geometric equilibrium configurations is planned. This model will
consider variables such as point locations, inclination of flexible elements, and rigidity of
said elements, among others.
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