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Abstract: A MEMS gyroscope is a critical sensor in attitude control platforms and inertial navi-
gation systems, which has the advantages of small size, light weight, low energy consumption,
high reliability and strong anti-interference capability. This paper presents the design, simulation
and fabrication of a Y-axis gyroscope with out-of-plane detection developed using CMOS-MEMS
technology. The structural dimensions of the gyroscope were optimized through a multi-objective
genetic algorithm, and modal, harmonic response and range simulation analyses were carried out to
verify the reasonableness of the design. The chip measured 1.2 mm × 1.3 mm. The simulation results
indicate that the driving and detecting frequencies of the gyroscope were 9215.5 Hz and 9243.5 Hz,
respectively; the Q-factors were 83,790 and 46,085; the mechanical sensitivity was 4.87 × 10−11 m/◦/s;
and the operational range was ±600◦/s. Chip testing shows that the static capacitance was consistent
with the preset value. The error between the measured frequency characteristics and the simulation
results was 1.9%. This design establishes a foundation for the integration of the gyroscope’s structure
and circuitry.

Keywords: out-of-plane gyro; chip testing; finite element analysis; CMOS-MEMS

1. Introduction

Micro Electro Mechanical System (MEMS) technology combines miniaturization, in-
tegration, intelligence and high reliability [1,2]. In recent years, with the continuous
advancements in MEMS, its applications have expanded across various fields, including
aerospace, military, transportation and healthcare [3]. In the field of inertial instrumenta-
tion, traditional mechanical components are increasingly being replaced by MEMS inertial
devices. MEMS inertial devices can meet the demands of modern navigation, guidance
and control systems by virtue of the advantages of small size, light weight, low energy
consumption, high reliability and strong anti-interference ability [4,5].

Traditional MEMS gyroscopes require separate fabrication of the sensors and control
circuits, followed by integration through packaging technology, which increases the system
size and complexity [6,7]. In recent years, the CMOS-MEMS process, which combines com-
plementary metal–oxide–semiconductor (CMOS) technology with MEMS technology, has
enabled the integration of CMOS circuits and MEMS devices on a single chip, significantly
reducing packaging costs [8]. This process merges the advantages of bulk micromachining
and surface micromachining, facilitating mass production and improving system integra-
tion, while maintaining low parasitic capacitance and compact dimensions [9]. Additionally,
CMOS-MEMS technology ensures flexible internal wiring and offers advantages such as
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variable structural thicknesses, low parasitic capacitance, three-dimensional electrostatic
actuation and capacitive sensing [10].

In 2002, Hao Luo and colleagues designed a Z-axis MEMS gyroscope using the UMC
0.18 µm copper CMOS-MEMS process, which operated at 1 atm of environmental pressure
without relying on Q-factor enhancement [11]. This work highlighted the advantages of
copper CMOS-MEMS, including a higher mass density and low stress. The device measured
410 µm × 330 µm, with a resonance frequency of 8.8 kHz in drive mode and a sensitivity of
0.8 pV/◦/s. In 2001, Xie Huikai and colleagues reported a laterally vibrating film gyroscope
compatible with standard CMOS processes, utilizing an integrated comb drive for out-of-
plane actuation [12]. The packaged gyroscope operated at atmospheric pressure, with a
resonance frequency of 4.2 kHz in drive mode and a sensitivity of 0.12 mV/◦/s. In 2003,
Xie Huikai and colleagues designed a gyroscope using interconnected metal layers as an
etching mask for the structure [13]. Manufactured using post-CMOS micromachining, this
gyroscope combined a 1.8 µm thick film structure and a 60 µm thick bulk silicon structure,
which improved the rigidity and detection accuracy. The characteristic frequency in drive
mode was 5.3 kHz. In 2009, Shih-Wei Lai and colleagues designed a biaxial gyroscope
using the TSMC 0.18 µm 1P6M process, with angular velocity sensitivities of 0.087 mV/◦/s
in the X-axis direction and 0.017 mV/◦/s in the Y-axis direction [14]. In 2017, Cheng Yu
Ho proposed a new CMOS-MEMS gyroscope design based on pure oxide and symmetric
metal–oxide films [15]. The device occupied an area of 500 µm × 470 µm, with resonance
frequencies of 5.7 kHz and 5.9 kHz in drive and detection modes, respectively, and an
angular rate sensitivity of 4 µV/◦/s. Vacuum sealing further enhanced the performance.
Most gyroscopes fabricated using CMOS-MEMS processes employ film structures, with
resonators consisting solely of metal–oxide layers. While the fabrication steps are simple
and the structural release is easy, the stiffness is generally low, and the film structure is
prone to warping due to residual stress. Moreover, the gyroscopes are lightweight and
easily affected by air damping. This paper proposes introducing a silicon layer for resonator
fabrication to prevent structural warping, enhance device flatness and improve gyroscope
stability. Furthermore, to increase the mechanical sensitivity of the gyroscope, this study
performed modal matching of the drive and detection frequencies. Due to the varying
thickness of the designed beams, the top metal layer needed to be sacrificed as a mask, and
a process flow was developed for structural release.

This paper presents the development and evaluation of a Y-axis gyroscope based
on a CMOS-MEMS process, utilizing in-plane drive and out-of-plane detection methods.
Section 2 describes the structural design of the gyroscope, establishes the dynamics model
of this gyroscope and optimizes the parameters of the resonant beam based on a multi-
objective genetic algorithm. Section 3 describes the simulation of the gyroscope, verifies
the optimization results through modal simulation, and performs harmonic response and
range simulation analyses. Section 4 describes the fabrication of the gyroscope, which was
processed by CMOS-MEMS process, where the detection beam’s structure was processed
through the top metal as a mask, and the other structures were etched through the second
metal as a mask.

2. Gyro Design and Optimization
2.1. Gyro Structure Design

The operating principle of the MEMS gyroscope is based on the energy conversion
between two vibration modes—drive and detection—induced by the Coriolis force [16]. The
design is mainly decoupled by the beam and the frame structure. Mass blocks connected
to the frame or to the substrate via a beam with a single degree of freedom are the least
likely to cause cross-coupling between the actuated and detected modes. According to the
structural form, gyroscopes can be classified into internally sensed, externally driven (ISOD)
and internally driven, externally sensed (IDOS) [14]. The ISOD type typically offers a larger
available drive comb space compared with the IDOS type, as the structural dimensions of
the internal mass block are significantly smaller than those of the externally driven frame.
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As shown in Figure 1, this study designed a gyroscope for out-of-plane detection,
with an overall ISOD-type structure to detect the angular velocity input in the Y-axis.
The driving frame in the structure was connected to the anchor point frame through U-
shaped beams, which were much longer than wide and provide degrees of freedom only
in the X-axis direction. In this study, the drive comb capacitor was driven by a bilateral
push–pull method, where the gyro realized vibration along the length of the forked comb
(X-axis direction) under electrostatic force when different voltages were applied to the drive
electrodes. The electrostatic force was proportional to the amplitude of the applied DC
and AC components, and the electrostatic driving force could be adjusted by changing the
driving voltage with the structural parameters determined.
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Figure 1. Out-of-plane detection gyro structure design.

As shown in Figure 2, when the Y-axis angular velocity was input, the Z-axis
component of the mass block motion drove the detection mass block to make an out-
of-plane simple harmonic motion due to the Coriolis effect. And the amplitude of
vibration was proportional to the angular velocity. The displacement of this vibration
was converted into a capacitive signal by detecting the comb capacitance, and then the
physical quantity that characterized the input angular velocity information was extracted
by the subsequent circuit.
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The horizontal axis drive and vertical axis detection were achieved through multiple
metal layers within the comb structure. As shown in Figure 3a, the metal layers of the
fixed combs were electrically connected to the corresponding metal layers on the moving
combs, which ensured that the CMOS combs functioned comparably to polysilicon combs.
The number of metal layers affected the capacitance range, and using more metal layers
increased the comb thickness, which expanded the capacitance detection area, and thus,
enhanced the detection signal and improved the gyro’s sensitivity [17]. The M1–M4 layers
were connected through vias and served as the driving combs. The differential drive
design between the moving comb and the fixed combs on the left and right sides improved
the driving efficiency and interference resistance. Opposite voltages were applied to the
opposing combs to generate a greater net driving force. To prevent electrode curling due to
residual stresses during the manufacturing process, a silicon base was integrated into the
comb structure as a supporting element.
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Figure 3. Design of drive and detection combs: (a) in-face drive combs; (b) out-of-face detec-
tion combs.

If all the metal layers of the moving comb are electrically connected, and metals 1 and
2, as well as metals 3 and 4 in the stator, are connected separately as shown in Figure 3b, two
sidewall capacitors, C1 and C2, will form. When the moving comb is displaced upward or
downward by an external force, C1 and C2 will change in opposite directions, allowing the
design to function as a differential signal for detecting Z-axis motion. To avoid a large DC
offset, the modulation voltages should remain balanced during operation. Any resulting
DC offset can be compensated for the flexible wiring capabilities of the CMOS-MEMS
process [18].

2.2. Theoretical Analysis
2.2.1. Dynamical Equation

The physical model of this gyroscope is shown in Figure 4:
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The out-of-plane detected Y-axis gyroscope has degrees of freedom only in the
X- and Z-directions. The motion of the two modes can be described by the following
dynamical model: {

m
..
x + cx

.
x + kxx = Fdx

m
..
z + cz

.
z + kzz = −2mΩy

.
x

(1)

where m represents the mass; x, y and z represent the displacements; kx and kz represent
the stiffness coefficients; cx and cy represent the damping coefficients; Ωy represents the
angular velocity input; and Fd represents the electrostatic force. The mechanical sensitivity
of the silicon micromechanical gyroscope structure can be obtained by further simplifying:

Smachanical =
Az

Ωy
=

−2FdQx

mωd

√(
ω2

z − ω2
d
)2

+
ω2

z ω2
d

Q2
z

≈ −FdQx

mω2
d(ωz − ωd)

=
−Ax

∆ω
(2)

where ωx, ωz, Qx and Qz are the resonant angular frequency and quality factor of the
driving and detecting modes, respectively.

ωx =

√
kx

m
, ωz =

√
kz

m
, Qx =

mωx

cx
, Qz =

mωz

cz
(3)

∆ω is the difference between the angular frequencies of the driving and detecting
modes. The resonant frequencies of the drive and detection modes should be matched to
achieve a higher sensitivity. However, due to manufacturing defects and environmental
variations, the two vibration frequencies may not match.

2.2.2. Design of Supporting Elastic Beams

The structural configuration of the elastic beam in a micro-mechanical gyroscope is
closely related to the performance parameters of the entire device, including the driving
frequency, detection frequency and sensitivity. Two structural forms of elastic beams are
presented in this paper, as shown in Figure 5:
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Figure 5. Key beam construction: (a) U-shaped beam; (b) straight beam.

The straight beam structure is the simplest configuration, with one end fixed to the
frame and the free end connected to a mass block. The width of the straight beam along the
x-axis is w2, the length along the y-axis is L2 and the thickness along the z-axis is h2. The
stiffness of the straight beam in the Z-axis direction is defined as follows:

Kz = E
w2h2

3

L2
3 (4)

where E is the modulus of elasticity with a magnitude of 169 GPa. Straight beams have a
simple structure and are easier to machine.

The structure of the U-shaped beam is similar to that of a straight beam and can
be considered as the parallel configuration of two straight beams. The stiffness in the x-
direction can also be regarded as the result of the parallel combination of two straight beams.
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Where Kx is the straight beam stiffness, if the length of the U-shaped beam connecting
block is neglected, the stiffness of the U-shaped beam in the x-direction is

KUx = E
w1

3h1

2L1
3 (5)

The structural form can effectively eliminate the residual stress generated in the
process and suppress the unstable change in the resonance frequency; the symmetry of the
structure in the form itself can effectively reduce the impact of dimensional errors in the
process and reduce the coupling between the driving and detecting modes.

2.3. Multi-Objective Genetic Algorithm Optimization

The mechanical tuning of a gyro is achieved by changing the structural parameters of
the gyro to adjust its resonant frequency so that the drive frequency matches or is close to
the detection frequency. This adjustment enhances the gyroscope’s response to the angular
velocity, thereby improving its sensitivity [19]. The resonant frequency can be modified by
increasing or decreasing the mass of the vibrating block or by adjusting the dimensions of
the primary beams to alter its stiffness.

The NSGA-II (Non-dominated Sorting Genetic Algorithm II) is a commonly used
multi-objective optimization algorithm that handles multiple conflicting objectives and
generates a solution set of Pareto frontiers, helping the designer to find the optimal trade-off
between multiple objectives [20]. The NSGA-II employs techniques such as non-dominated
sorting and crowding distance, among other techniques, to provide advantages such as fast
convergence, maintaining population diversity and optimization robustness [21]. Limited
by the process, and especially by the thickness of the metal-oxide layer, the operating
frequency of the gyro designed in this study was set to approximately 9 kHz.

A multi-objective genetic algorithm (NSGA-II) was employed to optimize the beam
widths of the gyro structure, with the aim to achieve the desired eigenfrequency. The
widths and lengths of the two types of beams were treated as geometrically variable pa-
rameters, where the first- and second-order frequencies, along with the displacements,
served as the objective functions. By parametrically scanning the simulation design points,
the relationship between the sensitivity to the operating frequency and the beam width
was determined, as shown in Figure 6. In the figure, F1 and F2 represent the first-order
and second-order modal frequencies, respectively, and D1 and D2 represent the first-order
modal drive frame displacement and the second-order modal detection mass block dis-
placement, respectively. It is important to note that the displacements here only characterize
the shapes of the modes and cannot represent the amplitude of any physical vibration. If
the size of the actual vibration mode needs to be determined, it still needs to be determined
by applying excitation and damping. A higher rectangle in the graph indicates that the
objective function is more influenced by this parameter. By optimizing these parameters,
the eigenfrequency and frequency response can be accurately controlled [22].

As shown in Figures 7 and 8, the process and results of the iterative optimization
search for the target parameters under the given constraints are presented. During the
optimization, the eigenfrequencies of the operating modes gradually approached the
preset target by adjusting the beam width. The final critical beam width ensured that the
frequencies of the first-order and second-order modes were approximately 9 kHz, which
met the design specifications. The iterative optimization not only achieved the desired
modal order but also ensured that the modal frequencies fell accurately within the required
range. This process demonstrated the effectiveness of the optimization method for complex
structure design, particularly in the flexible control of modal parameters.
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Figure 8. Iteration of the objective parameters of the optimization process.

The mechanical sensitivity of a gyroscope is influenced by the difference between the
intrinsic frequencies of the driving and detecting modes. A smaller frequency difference
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results in a higher maximum amplitude of the detected vibration, and thus, greater sensi-
tivity. However, as this difference decreases, the bandwidth of the gyroscope also narrows.
To maintain optimal performance, the frequency difference between the detecting and
driving modes in this study was set to approximately 30 Hz. After iterative optimization,
the software produced three sets of optimized parameters, as shown in Figure 9. Validation
was then performed to select the appropriate parameters for further simulation.
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Figure 9. Optimization results.

The optimization results for the structural and electrical parameters are shown in
Table 1.

Table 1. Results after beam optimization.

Parameter Value

L1 (µm) 144.94
W1 (µm) 4.37

kux (N/m) 101.90
L2 (µm) 352.50
W2 (µm) 11.93
kz (N/m) 50.52

Structural thickness (µm) 40
Detecting beams thickness (µm) 6

Capacitive gap (µm) 4
Chip size (µm) 1200 × 1300

Drive static capacitor (F) 3.75 × 10−14

Detecting static capacitance (F) 1.62 × 10−14

3. Simulation Analysis of Vibration Characteristics
3.1. Modal Simulation

Modal analysis is critical for determining the eigenfrequencies, vibration shape and
vibration stability of a structure, which play significant roles in its design and performance
optimization [23]. A finite element model was developed using COMSOL 6.1, followed by
a modal simulation of the iteratively optimized Y-axis gyroscope structure. After applying
fixed constraints in the solid mechanics module, the first six eigenfrequencies were extracted.
The modal vibration shapes and corresponding intrinsic frequencies obtained from the
simulation are shown in Figure 10.
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First mode: driving mode, where the resonant mass undergoes horizontal reso-
nant motion;

Second-order mode: detection mode, where the intermediate detection mass under-
goes out-of-plane resonant motion;

Third-order mode: interference mode, detecting out-of-plane torsion of the mass block
around the X-axis;

Fourth-order mode: interference mode, detecting out-of-plane torsion of the mass
block around the Y-axis;

Fifth mode: interference mode, driving the frame to undergo out-of-plane reso-
nant motion;

Sixth mode: interference mode, driving the frame to undergo torsional motion around
the X-axis.

In structural design, the frequency difference between the operational and interfering
modes should be maximized to minimize cross-mode interference. When the intrinsic
frequencies of the driving and sensing modes are equal, the gyroscope achieves maxi-
mum sensitivity, but this also reduces the bandwidth. Therefore, the driving and sensing
frequencies must maintain a certain frequency difference. As shown in Figure 10, the
minimum frequency difference between the working mode and the interference mode of
the gyroscope structure was 2229.5 Hz, which was greater than 20% of the working mode.
Even if the third and fourth modes are excited, the capacitance will not change due to
the consistent potential of the left and right detection comb teeth, so it will not affect the
working mode. The frequency difference between the driving and sensitive modes was
28 Hz, and the two modes matched well. In the optimization design of gyroscopes, it
is necessary to reasonably select the working frequency difference of the gyroscope. On
the premise of ensuring the stability of the gyroscope’s working state, a smaller working
frequency difference should be designed to achieve greater sensitivity, which is of great
significance for improving the performance of the gyroscope [24]. The eigenfrequencies,
calculated based on the stiffness and Coriolis mass, show that the driving and sensing
mode frequencies were 9374 Hz and 9334 Hz, respectively, with errors of 1.72% and 0.98%
compared with the simulation values.

3.2. Harmonic Response Analysis

The harmonic response analysis (HRA) method verifies the behavior of a gyroscope at
its designed operating frequency, ensuring stable operation within the expected frequency
range [25]. As a special time-domain analysis method, HRA is specifically designed
to analyze the sustained cyclic response produced by a structural system under cyclic
loading. It determines the steady-state response when the load varies according to a
simple harmonic law. The primary objective of harmonic response analysis for gyroscopic
structures is to calculate the displacement response under electrostatic forces and obtain
amplitude–frequency response curves [26]. This analysis ensures that the system avoids
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resonance points within the operating frequency range. Based on the analysis results,
design parameters, such as the structural geometry and support structures, can be adjusted
to eliminate unfavorable resonance effects or improve the system stability.

A sweep simulation was conducted to determine the resonator’s response characteris-
tics at various frequency points. The gyroscope structure was observed at the frequency
points where resonance peaks occurred, as well as the magnitudes of these peaks. Building
on the modal simulation, an electrostatic force and Y-axis rotational angular velocity were
applied to simulate the actual working environment. A frequency domain perturbation was
introduced in the range of 100 Hz around the structure’s driving frequency for harmonic
response analysis, as shown in Figure 11. By observing the X-axis displacement of the
driving combs and the Z-axis displacement of the detecting combs, a peak was observed
only at 9217 Hz, consistent with the expected results from the modal simulation. No
additional peaks were observed near the driving frequency, indicating that the gyroscope
demonstrated good stability within this frequency range.
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Figure 11. Harmonic response simulation results: (a) harmonic response simulation; (b) Q-
factor calculation.

The Q-factor of the gyroscope is an essential parameter that describes the energy loss
of the resonator during vibration [27], reflecting energy loss when the system oscillates
near the resonance frequency. It directly impacts the gyroscope’s sensitivity, noise level
and signal processing effectiveness. Based on the resonance frequency and bandwidth, the
quality factors of the drive and detection modes were calculated to be 83,790 and 46,085,
respectively. The low energy loss of the gyroscope allows for high sensitivity and a high
signal-to-noise ratio, making it suitable for high-precision and high-reliability applications.

3.3. Range Simulation Analysis—Mechanical Sensitivity

The range simulation of the gyroscope helped to determine the maximum and mini-
mum angular velocity values for accurate measurement so that the gyroscope can work
stably and accurately within the range, as shown in Figure 12; the displacement in the figure
represents the response displacement of the detection mode when the angular velocity was
input. The analysis of the range simulation curve concluded that the gyroscope had a good
linearity within the range of ±600◦/s; outside ±600◦/s, the gyroscope response began
to deviate from the fitted curve. The degree of response of the output signal to the input
angular velocity change is the mechanical sensitivity of the gyro, which was calculated
according to the fitting curve to be 2.43 × 10−10 m/◦/s, with a nonlinearity of 3.6 ppm.
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Figure 12. Range and mechanical sensitivity simulation.

In practice, however, the scale factor nonlinearity was affected by many factors, includ-
ing the nonlinearities in the suspension geometry, parallel plate capacitance, electrostatic
stiffness due to the tuned voltage carrier signal, and mode coupling phenomena between
the driving and sensing modes [28,29]. All these may have an effect on the scale factor.
And the range needs to be decided specifically based on the back-end measurement and
control circuitry. Here is just a simulation result in an ideal case, where the purpose was to
verify the error between the simulated and calculated values of the scale factor.

At the time of the design, the gyroscope’s Coriolis mass was 1.42 × 10−8 kg, according
to Formula (5), the mechanical sensitivity of the gyro was 2.14 × 10−10 m/◦/s. By consid-
ering the capacitance parameters of the comb structure, the capacitance sensitivity was
determined to be 8.83 × 10-4 pF/◦/s. The difference between the calculated mechanical
sensitivity and the simulation result was 11.9%.

4. Processing and Characterization

The CMOS-MEMS process is an advanced manufacturing process that integrates
MEMS and complementary metal–oxide semiconductor (CMOS) technologies [9,30]. This
allows sensors and electronic processing circuits to be integrated on a single silicon wafer,
significantly reducing the chip size and assembly costs while enhancing the signal process-
ing efficiency and response speed. The standard CMOS process enables the integration
of multiple metals (e.g., ME1–ME6) and dielectric layers. This structure improves the
electrode and wiring flexibility and increases the range of the capacitance variation. Deep
reactive ion etching (DRIE) is used to fabricate comb electrodes with high aspect ratios and
release resonant structures.

The TSMC (Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan) 0.18 µm
1P6M technology was used for the CMOS foundry fabrication [31]. The MEMS post-
processing was performed on wafers with standard CMOS processes. As shown in
Figure 13, PO1 represents the polysilicon layer, and the metal layer was interleaved with
the passivation layer deposited on the surface of the silicon substrate. The subsequent
MEMS process flow is shown in Figure 14a–f.
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1. First, DRIE local back-engraving was used to thin the resonant structure to a specified
thickness, as shown in Figure 15;

2. Metal layer 6 was used to expose the detected straight beam region, and the dielectric
layer SiO2 was vertically etched using RIE with metal layer 6 as a mask until the
silicon surface layer was stopped;

3. The top metal layer ME6 was removed using plasma etching;
4. Isotropic etching was used to etch through the bottom of the silicon structure to release

the detected resonant beam structure;
5. A secondary RIE was performed to etch the dielectric layer SiO2 to expose regions

other than the detection beams, where M5 was used as a mask to accurately define
the microstructure of the gyro;

6. DRIE etching was performed again to form a high depth-to-width ratio that overhung
the structure composed of single crystal silicon and composite layers.



Micromachines 2024, 15, 1484 13 of 19

Micromachines 2024, 15, x FOR PEER REVIEW 14 of 21 
 

 

 

 
Figure 15. Photographs of processing. 

A step profiler is a contact-based surface-topography-measuring instrument used to 
accurately determine the step height or surface profile of materials, with a wide range of 
applications in groove-etching processes. Its working principle involves the stylus making 
direct contact with the surface of the object being measured. As the stylus slides along the 
surface, small peaks and valleys cause it to move up and down, reflecting the surface con-
tour. The sensor then converts the stylus displacement into an electrical signal, which is 
subsequently transformed into a digital signal and analyzed by software to generate de-
tailed surface contour data. As shown in Figure 16, the step gauge was ideal for measuring 
regular surfaces with unidirectional layouts and is typically used to measure low-hard-
ness material samples, requiring a minimal measurement force to avoid damaging the 
surface. 

 
Figure 16. Stair tester testing platform. 

In the experiment, this was equivalent to measuring the longitudinal depth. Due to 
the inability of in-plane testing to determine the depth in all longitudinal directions, i.e., 
whether the etching effect was consistent in all longitudinal directions, the step meter test-
ing method had certain limitations. According to the test results of the stair step meter, 
the structural thickness could be obtained, as shown in Table 2. 

Figure 15. Photographs of processing.

A step profiler is a contact-based surface-topography-measuring instrument used to
accurately determine the step height or surface profile of materials, with a wide range
of applications in groove-etching processes. Its working principle involves the stylus
making direct contact with the surface of the object being measured. As the stylus slides
along the surface, small peaks and valleys cause it to move up and down, reflecting
the surface contour. The sensor then converts the stylus displacement into an electrical
signal, which is subsequently transformed into a digital signal and analyzed by software to
generate detailed surface contour data. As shown in Figure 16, the step gauge was ideal for
measuring regular surfaces with unidirectional layouts and is typically used to measure
low-hardness material samples, requiring a minimal measurement force to avoid damaging
the surface.
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In the experiment, this was equivalent to measuring the longitudinal depth. Due
to the inability of in-plane testing to determine the depth in all longitudinal directions,
i.e., whether the etching effect was consistent in all longitudinal directions, the step meter
testing method had certain limitations. According to the test results of the stair step meter,
the structural thickness could be obtained, as shown in Table 2.
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Table 2. Etching thickness result.

Parameters Dimensions (µm)

Anchor frame thickness 317.0
Resonant structure thickness 40.07

Detecting beam thickness 5.84

The gyro structure obtained after the MEMS post-processing based on CMOS standard
wafers is shown in Figure 17. The surface of the mass block was flat, without cracks or
damage, and the combs and the beam structure were completely etched according to the
design, with no structural breaks or deformations, which ensured the subsequent testing
of the vibration and the sensitivity of the test. The comb metal and oxide layer were not
delaminated to produce warping and other irregular deformations.
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When designing the drive detection comb, in order to ensure the linearity of the drive
displacement and capacitance change, a small spacing of 3.5 µm was set to alternate with
the large spacing of 4.5 µm. However, the manufacturing results show that the lower side
of the drive detection comb was shifted to the left, and the upper side of the comb gap was
shifted to the right, with an offset amount of 0.3 µm–0.5 µm, which resulted in the decrease
in the difference between the upper side of the large spacing and the small spacing and the
increase in the lower side of the large spacing and the small spacing. After the calculation,
the change in the drive-detection capacity was much smaller than expected and may have
been nonlinear. The deviation of the comb teeth was considered to be due to the rotation of
the inner detection mass block by gravity through the detection beam and the outer drive
frame, which resulted in a deviation of the comb teeth gap. It is possible to set up corrective
combs to suppress the displacement of the detection mass block by gravity. Alternatively,
the deflection movement can be suppressed by considering a change in the type of beam.

The CMOS-MEMS process has multiple metal layers for easy wiring. Because metal
can be flexibly used as a mask, an appropriate process design can ensure that subsequent
processing does not require customizing additional mask plates. Introducing a silicon
substrate for structural support can avoid curling and delamination of the structure. In
addition, due to the thickness limitation, only five metal layers are used for capacitor
driving and detection. The effective capacitance size used for driving is much smaller than
that of conventional MEMS gyroscopes, and an insufficient driving force limits the size
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and quality of the gyroscope. However, in the future, electrode isolation can be established
between the comb teeth and the resonant mass, and the comb teeth can be suspended
through the joint of the metal oxide structure layer, which can further enhance the driving
force of the gyroscope.

5. Test
5.1. Static Capacitance Test

The capacitance values between the electrodes and the resonator of the MEMS gyro
were tested separately in the room temperature environment of the clean room, and the
capacitance values in the stationary state were obtained, as shown in Table 3.

Table 3. Static capacitance test results.

Inter-Electrode Capacitance Calculated Value (F) Test Value (F)

M-D1 3.75 × 10−14 3.24 × 10−14

M-D2 3.75 × 10−14 3.28 × 10−14

M-S1 1.64 × 10−14 1.48 × 10−14

M-S2 1.64 × 10−14 1.51 × 10−14

M-DS1 3.76 × 10−14 3.31 × 10−14

M-DS2 3.76 × 10−14 3.27 × 10−14

M-SS1 1.64 × 10−14 1.47 × 10−14

M-SS2 1.64 × 10−14 1.49 × 10−14

In this study, a semiconductor parameter analyzer (Keithley 4200A-SCS semiconductor
parameter analyzer, Keysight Technologies, Santa Rosa, CA, USA) was used to detect the
capacitance signal, which could be measured in a wide frequency range of 20 Hz to 1 MHz.
The static capacitance test operating platform is shown in Figure 18.
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After the testing, it was found that there was a certain deviation between the test
values and the calculated values. After the analysis, it was considered that the main reason
was that the AOE caused damage to the metal layer sidewall during the SiO2 etching
process, which resulted in an increase in the spacing between the capacitors and a decrease
in the capacitance. At the same time, due to the influence of gravity, the movement of the
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mass block may have caused changes in the gap between the comb teeth, which may have
also led to changes in the size of the capacitance.

5.2. Modal Response Testing

Modal response testing focuses on testing the frequency and Q-factor of the two
operating modes of a gyro. The operating modes of a gyro are usually the resonant
vibration characteristics of the drive and detection modes. By applying a sinusoidal
excitation (drive force) to the gyro and gradually adjusting the input frequency, the system
will resonate and vibrate to its maximum amplitude when the input frequency is close to
its intrinsic frequency. The Q-factor is used to measure the energy loss of a gyro-vibration
system. A high Q-value indicates that the system has low energy loss, good resonance and
a more sensitive system response. By observing the response of the system at the point of
resonance and measuring the two frequency points when the amplitude decays by 3 dB
from its maximum value, the Q-factor is then calculated and used to assess the energy loss
and stability of the vibration system.

To test the MEMS gyroscope’s modal response, a sinusoidal signal was applied to
the drive mode. The experimental principle is shown in Figure 19, where the test circuit
was the gyro driving circuit, and the test equipment contained a regulated power supply
(GPS-2303C, GWINSTEK, Taipei County, Taiwan), a mixed-signal oscilloscope (Tektronix
MSO/DPO4000B, Tektronix, Beaverton, OR, USA) and a signal generator (Keysight 33220A,
Keysight Technologies, Santa Rosa, CA, USA).
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The swept signal output from the generator was fed into the drive feedback signal
input test terminal of the test circuit board and loaded onto the drive electrode ED1 of the
resonant gyro, and the other was fed into the mixed-signal oscilloscope for observation;
two signals were output from the sensitive terminals of the drive feedback electrodes EDS1
and EDS2 of the test circuit board, where one was fed into the digital multimeter to read
the output voltage value, and the other was outputted to the mixed-signal oscilloscope for
observation. The frequency of the alternating signal was gradually increased from 8000 Hz
to 10,000 Hz, the frequency of the applied signal and the amplitude of the voltage detected
by the multimeter were recorded, and the frequency of the signal corresponding to the
maximum voltage value was the resonant frequency of the gyro drive mode. Applying the
same method to the gyro detection electrode ES2, the applied frequency gradually increased
the alternating voltage, which was amplified by the instrumentation amplifier using a
digital multimeter in the detection of the feedback electrode ESS1 and ESS2 to detect the
voltage value and then recorded. The experimental principle is shown in Figure 20.
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The MEMS gyroscope was tested with a DC component of 5 V and an AC amplitude
of 100 mV. The resulting frequency response curve for both the drive and detection modes
is shown in Figure 21.
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Figure 21. Experimental results of gyro modal response experiment.

The resonant frequency of the gyro drive mode was 9043 Hz, and the quality factor
of the drive mode was 475.89. From the figure, the resonant frequency of the MEMS gyro
drive mode was 9075.9.4 Hz, and the Q-factor of the drive mode was calculated to be 349.03.

According to Table 4, from the modal response test, it was obtained that there was a
certain error between the simulation analysis and experimental test values of the resonance
frequencies of the driving and detection modes, which was mainly due to the theoretical
modeling error of the sensitive structure, the processing error and the material properties.
However, these two kinds of errors were fully considered in the material selection and
overall structural design, and the test results could still meet the design requirements.

Table 4. Comparison of modal response test values with theoretical values.

Frequency Drive Mode (Hz) Detecting Mode (Hz)

Simulation values 9215.5 9243.5
Experimental test values 9043.0 9075.9
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6. Conclusions

The single-axis gyro designed in this study used an ISOD-type structure for in-plane
driving and out-of-plane detection. The gyro in the study adopted a multi-objective genetic
algorithm to optimize the key beams of the resonant structure in order to achieve the fre-
quency optimization of the driving and detecting modes. The modes and eigenfrequencies
of the gyro were verified by using finite element analysis software COMSOL 6.1, and the
harmonic response simulation was carried out for the gyro, where the simulation results
show that, ideally, the gyro operated at 9 kHz, the frequency difference between the driving
mode and the detecting mode was at 28 Hz, and the Q-value was 83,790. The mechanical
sensitivity of 2.43 × 10−10 m/◦/s could be obtained from the range simulation, which
was 11.9% different from the calculated error. And the gyro had a low nonlinearity of
0.036% at ±600◦. However, the nonlinearity of the gyro’s scale factor in the actual working
condition was affected by many other factors, such as the nonlinearity of the suspension
geometry, parallel plate capacitance, electrostatic stiffness caused by the tuned voltage
carrier signal, and the phenomenon of mode coupling between the driving mode and the
sensing mode. The gyro was post-processed through the MEMS process on CMOS standard
wafers, supported by a silicon substrate to improve the overall stiffness, the completed
gyro structure was completely released, and the multi-layer metal stacked comb and beam
structure were not fractured and deformed. The gyro structure designed by this process
could greatly improve the integration degree to reduce costs. The gyro chip was tested,
and its static capacitance value was in error relative to the design value. Considering the
influence factor of the capacitance, the error was caused by the damage of AOE etching on
the metal sidewall. The frequency characteristics had an error of 1.9% from the simulation
results, which was due to the stiffness of the beam caused by the machining error. The
Q-values of the driving and detection modes under atmosphere were 475.89 and 349.03,
respectively. The gyro will be subsequently tested in a vacuum package to further improve
the performance of the gyro, and other performance parameters of the gyro will be tested
and investigated. Since the silicon substrate in this study is only used as a support and
does not provide any electrical quantities, in order to improve the performance of the gyro,
it is considered that the electrode isolation is added in the next step of the design, and
the silicon substrate is introduced into the design of the driving electrodes to increase the
driving force of the gyro.
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