
Citation: Wei, B.; Liu, J.; Li, J.; Zhao,

Z.; Liu, Y.; Yang, G.; Liu, L.; Chang, H.

Research on an Online Monitoring

Device for the Powder Laying Process

of Laser Powder Bed Fusion.

Micromachines 2024, 15, 97. https://

doi.org/10.3390/mi15010097

Academic Editor: Shuting Lei

Received: 26 October 2023

Revised: 6 December 2023

Accepted: 13 December 2023

Published: 3 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Research on an Online Monitoring Device for the Powder Laying
Process of Laser Powder Bed Fusion
Bin Wei 1, Jiaqi Liu 1, Jie Li 2, Zigeng Zhao 1, Yang Liu 1, Guang Yang 1, Lijian Liu 1,* and Hongjie Chang 1,*

1 College of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
2 Shijiazhuang Information Engineering Vocational College, Shijiazhuang 050000, China
* Correspondence: liulijian2002@126.com (L.L.); sjzchj@126.com (H.C.)

Abstract: Improving the quality of metal additive manufacturing parts requires online monitoring
of the powder bed laying procedure during laser powder bed fusion production. In this article, a
visual online monitoring tool for flaws in the powder laying process is examined, and machine vision
technology is applied to LPBF manufacture. A multiscale improvement and model channel pruning
optimization method based on convolutional neural networks is proposed, which makes up for the
deficiencies of the defect recognition method of small-scale powder laying, reduces the redundant
parameters of the model, and enhances the processing speed of the model under the premise of
guaranteeing the accuracy of the model. Finally, we developed an LPBF manufacturing process laying
powder defect recognition algorithm. Test experiments show the performance of the method: the
minimum size of the detected defects is 0.54 mm, the accuracy rate of the feedback results is 98.63%,
and the single-layer laying powder detection time is 3.516 s, which can realize the effective detection
and control of common laying powder defects in the additive manufacturing process, avoids the
breakage of the scraper, and ensures the safe operation of the LPBF equipment.

Keywords: laser powder bed fusion; powder laying monitoring; convolutional neural networks;
model channel pruning

1. Introduction

The LPBF manufacturing process is a complex and dynamic interaction between a
high-energy laser and metal powder. It involves interactions between gas, liquid, and solid
phases [1]. The quality of parts manufacturing is influenced by many factors, including
material properties [2], optical path systems [3], scanning characteristics [4], geometry [5],
and mechanical structure [6]. The powder laying process is one of many contributing
elements, and as a significant factor impacted by material characteristics and mechanical
structure, it is a critical stage in the manufacturing of LPBF components. The efficacy of
powder laying has a direct impact on component production quality [7]. If the powder
laying layer is uneven, i.e., if there are faults in the powder laying layer, such as missing
powder, streaks, or piles of powder, the surface of the component, which will be cooled
and solidified by this layer following the high-energy laser melting, will be uneven [8].
The accumulation of metal powder laying powder defects over time will also result in
metallurgical flaws like spheroidization, porosity, cracks, and unmelted powder, which
ultimately affects the part’s manufacturing quality and, in extreme cases, can harm the
powder spreading scraper and LPBF molding machinery. In order to avoid powder laying
errors that result in part molding failure or damage to LPBF equipment, it is crucial to
ensure that the quality of each layer of powder laying corresponds to the manufacturing
needs of the part during the part manufacturing process.

In the LPBF parts manufacturing process, a squeegee performs the powder spreading
process, which causes the metal powder to be spread on the molded substrate, waiting for
the laser scanning process. The powder laying process is the first step in the manufacturing

Micromachines 2024, 15, 97. https://doi.org/10.3390/mi15010097 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi15010097
https://doi.org/10.3390/mi15010097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://doi.org/10.3390/mi15010097
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi15010097?type=check_update&version=1


Micromachines 2024, 15, 97 2 of 22

process to ensure that the parts are manufactured and is a critical step that has an impact on
the quality of the metal LPBF manufacturing. At present, the research on the detection of
powder laying quality mainly includes three stages in the molding process, which are the
detection of scraper state information in the powder laying process, the detection of powder
layer state after the completion of the powder laying action, and the detection of powder
layer state after laser scanning and processing. In the parts manufacturing process, when
the process parameters or manufacturing substrate heating temperature and other factors
are not set reasonably, it will lead to parts warping, surface spheroidization, and non-fused
defects, which affect the scraper spread powder, and cause serious damage to the scraper.
To monitor the movement state of the scraper, B. Reinarz et al. [9] installed piezoelectric
accelerometers on the powder spreading scraper, real-time monitoring of the acceleration in-
formation of the scraper in the process of powder spreading when the part exists ultra-high,
the powder spreading scraper will be an ultra-high part of the existence of a certain degree
of interference, resulting in different degrees of vibration, according to the speed change to
analyze the protruding of the molten cladding layer. S. Kleszczynski et al. [10] continued
to improve the research on this basis, the use of acceleration sensors to monitor the speed
change information of the scraper laying powder and the limit sensors at both ends of the
scraper operation as the start and end position of the information recording, to achieve the
accurate acquisition of acceleration information at different positions. Warpage, surface
spheroidization, super-high melted cladding layer, and other defects that occur during the
part molding process, however, are the result of continuous accumulation. If these defects
can be identified early on and appropriate action is taken to prevent the accumulation of
defects, interference between the scraper and super-high part of the part can be avoided,
ensuring the safe and stable operation of the LPBF manufacturing process. As a result, ma-
chine learning, machine vision, and deep learning technologies are widely used to monitor
the powder layer status during LPBF molding as a way to improve part-molding quality
and to avoid damage to the LPBF molding equipment. Many studies [11–17] have extracted
defects in the powder-laying process using devices such as industrial cameras and infrared
cameras coupled with image processing algorithms. For example, M. Abdelrahman [18]
and others, utilized a high-resolution optical imaging monitoring system to photograph
the powder bed before and after laser scanning, which used multiple light sources from
different directions to construct the image, and then created a binary template from a
sliced 3D model of the part, which was utilized to index the optical image data to the part
geometry, which ultimately allowed for the detection of defects in the part defects in the
area of the part; B. Shi et al. [19], proposed to build a powder bed inspection system using
an industrial camera and multiple illumination sources, and proposed a better illumination
strategy by investigating the expression of defective features under different illumination,
and also utilized image feature enhancement and adaptive threshold segmentation algo-
rithm based on the grayscale features of the powder bed image for separating defective
regions and based on the three convolutional neural network algorithms, namely, AlexNet,
RexNet50, and VGG16—three kinds of convolutional neural network algorithms on the
current powder layer exist in the stripe, ultra-high and incomplete powder laying three
types of defective regions were experimentally compared and analyzed, and the results
showed that the three kinds of defective data are prone to overfitting under the complex
model. Other scholars have identified and detected defects in the powder laying process by
using industrial cameras, infrared cameras, thermal cameras, and other devices combined
with depth algorithms [20–24]. The above research has realized the acquisition of scraper
motion signals and powder bed images in the powder spreading process by installing
piezoelectric accelerometers on the scraper, installing industrial cameras, etc. At the same
time, the combination of deep learning algorithms realizes the recognition of defects in the
powder spreading process, but there are still the following problems: (1) most of the studies
only focus on the detection and identification of single powder laying defects, whereas
the defects generated during the LPBF molding process are more complex, and multiple
defects are prone to occur in a single powder laying layer; (2) most of the research is to
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obtain the feature information of the powder bed and scraper in the powder laying process,
and then use image processing algorithms to identify, detect and analyze them, which
belongs to the offline analysis, and it is not possible to realize the real-time detection of the
powder laying defects in the LPBF molding process and to control the LPBF equipment to
perform the suspension of the printing when the powder laying defects are serious, and
other operations. A previous experimental study of the laser powder bed melting process
discovered that defects in the laying of powder occurred during the printing process and
staff did not detect the problem in time to deal with it in a timely manner. On the one hand,
this will lead to the laying process of each layer of metal powder thickness not meeting the
theoretical thickness and the manufacturing process of the metal powder over-melting or
not melting, causing damage to the squeegee rubber strip. It also leads to a waste of the raw
material and time costs for the metal powder. As shown in Figure 1, the JSJ100 equipment
printing process, due to the laying of powder defects not being dealt with in a timely
manner, then continue to accumulate, ultimately leading to the manufacturing failure.
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Figure 1. (a) Powder laying normal; (b) manufacturing failure; (c) squeegee tape condition before
manufacturing; (d) squeegee tape condition after manufacturing.

Therefore, it is imperative to develop a powder coating quality online monitoring
device with automatic real-time detection and result feedback function, which realizes
real-time detection and evaluation of the quality of each layer of powder coating by visual
detection technology, identifies a variety of powder coating defects, and intervenes in the
manufacturing process of LPBF manufacturing equipment according to the classification
results, to improve the quality of parts manufacturing and manufacturing efficiency. At
the same time, recording and saving the inspection results in each layer of powder laying
in the manufacturing process providing data support for subsequent parts quality tracing
and process research, which is of great significance for the future development of metal
additive manufacturing. In this paper, based on machine vision, deep learning, image
processing, and other methods, an online monitoring device for LPBF powder laying quality
is developed and deployed on the JSJ100 LPBF metal additive manufacturing equipment
developed by the team. Ultimately, the accurate identification and judgment of powder
laying defects are realized, and the online identification and monitoring of powder laying
defects is completed, which greatly saves the material cost, time cost, and personnel cost,
and at the same time ensures the safe operation of LPBF equipment.
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2. Program Design of Online Visual Monitoring Device for the LPBF Powder
Laying Process

The online visual monitoring device of the LPBF powder laying process is designed
based on the research and development of JSJ100 equipment, which has a maximum
molding size of 250 mm × 250 mm × 300 mm, and a single molding time between a few
hours to dozens of hours, JSJ100 equipment process conditions parameters, as shown in
Table 1. Through the preliminary experiments, it was found that the LPBF powder laying
process mainly includes six powder laying states: normal, a super-high fused cladding
layer, striped powder pile, a lumpy powder pile, a squeegee stripe, and an insufficient
powder laying, as shown in Figure 2. The program has the following requirements that
it can accurately identify: (1) the above six laying powder state defects; (2) the above
laying powder defects for common size parameters of more than 1 mm, and the online
monitoring system resolution of at least monitor 1 mm detail defects; (3) the equipment
in the processing of medium-sized parts in a single layer of the processing time of about
2–3 min, in a single layer of laying powder time of 15–20 s, to ensure that the efficiency
of the parts molding, the requirements of the system to lay a single layer of the quality
of detection of the powder is less than a single layer of the time of molding the time of
5 percent, so it is necessary to control the time to detect the detection time in less than
6 s. Hardware imaging system in the overall system parameters under the same premise,
when the coaxial installation of the camera when the imaging effect is the best, but taking
into account the JSJ100 equipment optical circuit modification difficulties, as well as JSJ100
equipment molding bin space is small, so the use of off-axis mounting program to lay the
powder process of image acquisition, off-axis camera mounting program schematic diagram
in Figure 3. The software system utilizes the OPC UA protocol to achieve communication.
The controller of the JSJ100 device selects the control platform of AMCP with the OPC
UA server, which supports the latest OPC UA protocol, and the nodes in the server can
be accessed and operated through the OPC UA client by using IDs and digital certificates.
The main functions of the software design include: (1) a software communication function,
mainly involved in the development of the OPC UA client function and the secondary
development of the industrial camera, in which the OPC UA client function is realized using
the C# language, and the OPC UA components for the development of the monitoring
system software and the camera’s communication is mainly through the form of the
secondary development of the camera control program embedded into the development of
the software, mainly including the camera’s opening and closing, triggering, the camera’s
exposure time, the image width and height parameters, and the camera mode, etc. to
achieve the automation function of the software; (2) An image automatic acquisition and
real-time correction function, used after it completes the powder spreading action, to
pause the printing process and carry out the powder spreading to complete the variable
identification. At the same time, the online monitoring software through the OPC UA
subscription function realizes the identification of the variable monitoring of the off-axis
installation of the camera to collect the powder spreading image as a real-time correction;
(3) The detection and feedback control function of powder spreading defects, the detection
and identification of defects in the collected powder spreading image and the identification
of the corrected powder spreading image in the area of identification and statistics of the
results, and the statistical results will be fed back to the controller of the JSJ100 equipment
through the OPC UA protocol, and the equipment will execute the relevant commands of
continuing to print, alarming or pausing according to the set control logic; (4) Process data
storage and database functions, online monitoring system including the name of the print
job, start time, the total number of layers, the image of each layer of the laying of powder,
and the identification of the results of the record and save for the operator to query.
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Table 1. The JSJ100 equipment process conditions parameters.

Laser spot diameter 0.07 mm

Laser power 0–400 W

Laser scanning speed 0–5000 mm/s

Layer thickness 0.05–0.1 mm

Inert protective gas Argon gas
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3. Construction of the LPBF Online Monitoring Device for the Powder Laying Process

According to the online visual monitoring program design, shown in Section 2, to
build the system according to the camera resolution requirements in the monitoring system,
we chose Daheng Group’s industrial camera model MER-630-16GM/C-P, whose maximum
resolution is 3088 (H) × 2064 (V) and frame rate is 16 fps. The selection of the lens is based
on the selected industrial camera, which is known to be a type of industrial camera with
a camera size of 1/1.8 inch and a target size of 7.18 mm × 5.32 mm. Due to the use of
off-axis shooting, which is affected by the size of the window glass, the actual distance
between the camera and the surface of the metal substrate is about 420–470 mm and taking
the object distance l = 450 mm, according to the formula for calculating the focal length
of the objective lens the focal length of 9.567 mm can be obtained. At the same time,
taking into account the adjustment of the camera interface type, the final choice is the
Japanese company Computar’s focal length of 8 mm, the model for the M0828-MPW2
lens. Taking into account the monitoring system camera is installed in the molding silo
outside of the glass, when obtaining the image of the paving powder, there is an easy
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reflective phenomenonthat can affect the image quality, therefore, the lens is installed
on the polarizer, with a light source with two perpendicular white ordinary LED lamps.
The paraxial monitoring system hardware system platform is shown in Figure 4. The
software system carries out the design of the human–computer interaction interface, as
shown in Figure 5, and realizes the communication between the camera and the AMCP
control platform.
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4. Research on the Defect Identification Algorithm of the LPBF Powder Laying Process
4.1. Data Set Construction and Evaluation
4.1.1. Tilted Image Correction

As the camera adopts the off-axis mounting scheme, resulting in aberration and per-
spective distortion in the acquired powder spread image, it is necessary to carry out camera
calibration and perspective correction for this. Camera calibration uses the pinhole imaging
principle to find the mathematical relationship between the points in the world coordinate
system and the pixel coordinate system and completes the data conversion between the
two. In this paper, we use a Halcon calibration assistant and a 7 × 7 dot calibration board to
solve the parameters of the acquired 20 calibration images; the calibration results are shown
in Table 2, and the image distortion correction is completed according to the obtained
camera parameters.

Table 2. Camera position.

X −149.196 mm X-direction rotation 322.433◦

Y −129.95 mm Y-direction rotation 358.278◦

Z 481.991 mm Z-direction rotation 355.92◦

4.1.2. Perspective Correction

The perspective transformation correction of the original metal powder laying image
actually maps the value of each pixel on the original metal powder laying image to the new
plane in turn, with the principle equation:

[x′ y′ w′] = [u v w] · H, (1)

where (u, v) are the coordinates of each pixel point in the tilted image of the original metal
powder laying powder, the parameter w = 1, and H is the transformation matrix required
for calibration, which is converted to chi-square coordinates and matrices in the form:

[x′ y′ w′] = [u v w]

 h11 h12 h13
h21 h22 h23
h31 h32 h33

. (2)

In the transformation matrix H (h11, h12, h21, h22) denote linear transformations, (h31,
h32) denote translation transformations, and (h13, h23) denote perspective transformations.
We obtain the H matrix using the hom_vector_to_proj_hom_mat2d (: : Px, Py, Pw, Qx, Qy,
Qw, method: H) operator.

The key parameter (Px, Py) is the set of coordinates of each point in the image before
correction, and (Qx, Qy) is the set of coordinates of the corresponding points after correction,
in which the coordinates of a certain point are set to be (x, y), which is normalized by making
h33 = 1:

x =
x′

w′ =
h11u + h21v + h31

h13u + h23v + 1

′
(3)

y =
y′

w′ =
h12u + h22v + h32

h13u + h23v + 1
(4)

According to Formulas (3) and (4), it can be seen that there are a total of eight unknown
parameters, and by a point corresponding to the x, y coordinates, it can be obtained from
the two solution equations, so only four points can be solved for the H matrix. To obtain the
perspective transformation matrix, this paper chooses to manufacture the substrate with
four mounting holes in the center of the coordinates of the solution. As shown in Figure 6,
the process of extracting the coordinates of the center point of the substrate mounting holes
is as follows: (a) draw the ROI region, which contains an image of a substrate mounting
hole; (b) process the drawn image of the ROI region by using an adaptive segmentation
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algorithm, and obtain the region of the mounting holes; (c) carry out the extraction of the
contour of the region of the mounting holes; and (d) fit a circle on the basis of the contour of
the region, and extract the coordinates of the circle’s center as the center coordinate of the
position of the mounting holes. The perspective transformation matrix can be obtained by
substituting the coordinates of the four points extracted by the above method into (3) and
(4). Meanwhile, since the bilinear difference algorithm is characterized by high quality and
strong continuity of pixel values, the bilinear interpolation method is used to supplement
some of the missing points on the image after perspective transformation. In order to
facilitate further processing of defects in the powder laying process, the region of interest,
the image of the manufacturing region of the part, is obtained through image cropping.
The original image and the final image of the manufacturing region are shown in Figure 7.
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4.1.3. Image Processing and Data Enhancement

Due to the complex lighting environment in the LPBF manufacturing silo and the long
manufacturing experimental period, in order to effectively enhance the diversity of the
powder laying data, the powder laying images under different lighting environments and
luminance were collected by interfering with the LPBF manufacturing process, respectively.
Cumulatively, 1794 images of powder laying were collected through the experimental
method of manufacturing molding process, including 221 effective images with common
defects, and some different image data of the powder laying defects are shown in Figure 8.
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At the same time, considering different paving defect size characteristics, classification
network recognition characteristics, and the small-scale region division recognition strategy
adopted in this paper, the acquired paving images are cropped. The size of the processed
powder laying defect image is 50 pixel × 50 pixel and the data annotation of the cropped
defect images is performed to produce a small-scale powder laying defect dataset, and
the annotation principle is shown in Figure 9. By cropping 221 valid images collected
from several manufacturing experiments, a total of more than 170,000 50 pixel × 50 pixel
images were obtained, but the normal image data were predominant among them, and
in order to enhance the diversity of the dataset, data augmentation was used to expand
the data in order to avoid the interclass imbalance phenomenon that exists in different
data. Considering also that the two types of defects, the strip powder stack and scraper
strips, have a fixed texture direction, three methods of contrast enhancement, rotation,
and image mirroring are applied to the images to expand the dataset. The originally
collected image data has been able to meet the training requirements of deep learning
after the cropping process and data expansion, the dataset includes 6 categories, 2050 data
images after cropping, and 5150 images have been added after data expansion, totaling
7200 images. For the normal powder layer, ultra-high sintered layer, strip powder stack,
insufficient powder laying powder, and scraper stripe, there are 200 pictures of each type
of metal powder laying powder state.
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4.2. Identification of Powder Laying Defects by Small-Scale Area Division

In order to verify the effect of different class models on the extraction and recognition of
features of various types of metal powder laying images, three models, AlexNet, ResNet50,
and SqueezeNet, are trained and analyzed using migration learning. The environment
used in this experiment is a 64-bit Windows 10 system, the processor model is Intel(R)
Core(TM) i5-10400F CPU @ 2.90 GHz, and the graphics card is NVIDIA brand GeForce RTX
3060 (12 GB), loaded with the Halcon Image Processing Algorithm Library and Halcon
21.11 Deep Learning Framework, which provides thousands of image processing operators
and commonly used pre-trained neural network models for image processing, training,
and recognition, as well as building customized models for image classification, target
detection, and image segmentation.

4.2.1. Model Training

This experiment contains a total of 6 types of data for normal and different defective
images, with a total of 7200 pieces of known training data, which are randomly divided
into training, validation, and test sets in the ratio of 6:2:24,320 pieces that are used for
model training, and 1440 pieces of each that are used for validation and evaluation of the
model. The CNN model is trained using the momentum-based SGD optimization algorithm
with hyper-parameters set as follows: the momentumwas 0.9, the learning rate was 0.001,
the iteration number epoch was 50, the batch size for training was 32, and the random
number seeds were set at the same time. The training results are shown in Figure 10. From
Figure 10, the training loss curves show that the loss values of the three models can be
stabilized after 30 rounds of training, in which the SqueezeNet model converges faster and
the ResNet50 model converges slower, and from Figure 10 the accuracy curves showed
that the AlexNet model had lower accuracy, and the ResNet50 and SqueezeNet models
had higher accuracies, and finally the training was completed. The final size of AlexNet,
ResNet50, and SqueezeNet models were 837 MB, 180 MB, and 5.63 MB, respectively.
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4.2.2. Evaluation of the Model

In order to judge the accuracy of the training model, it needs to be evaluated. Accord-
ing to the actual needs of the classification scenarios in this paper, the accuracy, precision,
recall, and F1 score are used as the evaluation indexes of the models’ effect on the recogni-
tion of laying powder defects. Another 20% of the test set data was used to evaluate the
models, and the results are shown in Figure 11a. The evaluation and assessment results
showed that the three models had more than an 80% recognition accuracy on the test data
set, and the performance was similar to the accuracy on the validation set. The AlexNet
model performed poorly, and the ResNet50 and SqueezeNet models performed better and
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were closer to each other. The recognition of each metal powder laying powder defect cate-
gory image on AlexNet, ResNet50, and SqueezeNet models were also exported to analyze
the recognition ability of different models for each category of defect images. As shown in
Figure 11b, from the table, it can be seen that the three models of AlexNet, ResNet50, and
SqueezeNet had more than a 70% recognition rate on each category of the defect data, and
it can be seen from the analysis that the two models, ResNet50 and SqueezeNet, had better
recognition results on the validation set, and the overall difference in the recognition rate
was smaller.
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4.2.3. Heat Map Visualization and Analysis

In order to more intuitively understand and analyze the identification of the above
three models for various types of powder laying defects, this paper utilizes the Gradient-
weighted Class Activation Mapping (Grad-CAM) technique to obtain a visual interpretation
of the heat map of some of the images from the deep network through gradient-based
localization, in order to analyze the distinguishing ability of the three models for the
image features of different powder laying defects, as well as the image regions that are
the main focus of attention when performing inference. As shown in Figure 12, the heat
map visualization results of different powder laying images in the three models of AlexNet,
ResNet50, and SqueezeNet are shown. Among them, the red and yellow regions indicate
the regions of interest for different categories of dusted images for inference under different
models. It can be observed that among the three trained models, the SqueezeNet model
was more accurate in focusing on the region of interest when performing image inference,
which is beneficial in accurately performing inference on the powder laying defects.
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4.3. SqueezeNet Model-Based Multiscale Improved Method for Identifying Powder Laying Defects

Through the comparative experimental analysis of the three models in Section 4.2, it
can be seen that the SqueezeNet model had better overall performance in order to further
improve the accuracy and recognition efficiency of the paving defects in a comprehensive
way, this section mainly focuses on the improvement and optimization of the small-scale
paving defect recognition method based on the SqueezeNet model. A multiscale method is
proposed to analyze the deficiencies in the recognition of defects in the small-scale pave-
ment images, and a multiscale pavement dataset is constructed for the method, followed
by model training, evaluation, and feature map visualization.

4.3.1. Multiscale Powder Laying Defect Identification Methods

The incorrectly identified powder laying image in Section 4.2 was analyzed, and it
was found that the main reason was due to the fact that part of the image contained only
the edge information of the defects during the 50 pixel × 50 pixel division, which resulted
in the unclear feature class of the defects represented in this image. Considering that the
small-scale pavement defect dataset will be consciously labeled according to the pavement
state of the surrounding area when performing the production of the small-scale pavement
defect dataset, the introduction of the influence of the pavement state of the surrounding
area on the recognition results when performing the training and recognition of the original
50 pixel × 50 pixel defect image can improve the shortcomings in recognition of the small-
scale pavement defects. In view of the analysis results and the CNN’s requirements on the
input data, a multiscale powder laying defect recognition method was proposed, which
mainly combined the original 50 pixel × 50 pixel region, the 100 pixel × 100 pixel, and
224 pixel × 224 pixel powder laying images centered on the region into a three-channel
image, and keeping the original defect labels unchanged, as the new model training set.
It added the ability to perceive the powdering state of the surrounding area in the model
training and classification process to improve the shortcomings that exist when using only
small-scale powdering image recognition, the principle of which is shown in Figure 13.
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4.3.2. Data Set Construction

The construction of the powder-laying defect dataset was carried out according to the
proposed multiscale powder-laying defect identification method. The construction of the
multiscale dataset was based on the whole LPBF molding process powder laying defect
image corrected in Section 4.1, and the original dataset and its surrounding areas were
cropped and channel-merged. The production principle is shown in Figure 14. Then the
image processing methods such as contrast enhancement, rotation, and mirroring with
the same parameters, as discussedin Section 4.1, were used to enhance the powder laying
image data.

Micromachines 2023, 14, x FOR PEER REVIEW 13 of 22 
 

 

 

Figure 13. The principle of recognizing multiscale powder laying defects. 

4.3.2. Data Set Construction 

The construction of the powder-laying defect dataset was carried out according to 

the proposed multiscale powder-laying defect identification method. The construction of 

the multiscale dataset was based on the whole LPBF molding process powder laying de-

fect image corrected in Section 4.1, and the original dataset and its surrounding areas were 

cropped and channel-merged. The production principle is shown in Figure 14. Then the 

image processing methods such as contrast enhancement, rotation, and mirroring with 

the same parameters, as discussedin Section 4.1, were used to enhance the powder laying 

image data. 

 

Figure 14. Principle of creating a multiscale image dataset of powder laying defects. 

4.3.3. Model Training 

The CNN model was trained using the momentum-based SGD optimization algo-

rithm, in which the hyperparameters were set as follows: the momentum was 0.9, the 

learning rate was 0.001, the iteration number Epoch was 50, the batch size of the training 

Batch Size was 32, and at the same time set the random number of seeds. The data of the 

training process is shown in Figure 15, which shows that the multiscale SqueezeNet model 

performs well on the multiscale powdered image dataset, and the loss value tends to be 

0.5 at 30 rounds of iteration. It can be seen that the multiscale SqueezeNet model performs 

better on the multiscale pavement image dataset, and from the loss function curve, the 

model tends to 0.5 loss value in 30 rounds of iteration and remains stable in the subsequent 

iteration process. Similar to the change rule of the loss curve, the accuracy curve of the 

model tended to stabilize after 30 rounds of iteration. 

Figure 14. Principle of creating a multiscale image dataset of powder laying defects.

4.3.3. Model Training

The CNN model was trained using the momentum-based SGD optimization algorithm,
in which the hyperparameters were set as follows: the momentum was 0.9, the learning rate
was 0.001, the iteration number Epoch was 50, the batch size of the training Batch Size was
32, and at the same time set the random number of seeds. The data of the training process
is shown in Figure 15, which shows that the multiscale SqueezeNet model performs well
on the multiscale powdered image dataset, and the loss value tends to be 0.5 at 30 rounds
of iteration. It can be seen that the multiscale SqueezeNet model performs better on the
multiscale pavement image dataset, and from the loss function curve, the model tends
to 0.5 loss value in 30 rounds of iteration and remains stable in the subsequent iteration
process. Similar to the change rule of the loss curve, the accuracy curve of the model tended
to stabilize after 30 rounds of iteration.
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4.3.4. Model Evaluation

The model needs to be evaluated at the end of model training to determine the training
quality of the model. The model was evaluated using another 20% of the test set data,
which had a total of 1440 images of six categories, including normal, squeegee stripe, bar
powder accumulation, block powder accumulation, underlayment, and fused cladding
layer ultra-high. The results are shown in Figure 16. From the figure, it can be seen that
the accuracy performance of the SqueezeNet model based on multiscale improvement was
better, and all evaluation indexes were improved. Its accuracy, precision, recall, and F1
score increased compared to before the improvement, as shown in Figure 16a, and the
recognition rate of each powder laying defect category in the test set was also increased, as
shown in Figure 16b.
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4.3.5. Feature Map Visualization

In order to better observe the learning of the improved multiscale SqueezeNet model
on the powder defect images, the feature channels of the first convolutional layer “Conv1”
and the fifth Fire module output layer “Fire5_concat” in the recognition process of the
powder defect images were selected and visualized [25]. The first convolutional product
layer had a total of 64 feature channels, and some of the channels were visualized, as shown
in Figure 17a. The fifth Fire module had a total merged output of 256 feature channels,
and again, some of the channels were selected for visualization, as shown in Figure 17b.
Different convolutional kernels differently characterized the multiscale SqueezeNet model
during forward propagation and some deep convolutional kernels were useless for normal
powdered areas in the defective image, which was considered because the normal pow-
dered image area cannot be used as an effective feature extraction area for distinguishing
between the six classes of images. As the convolutional layers deepened, the features
learned by the model became more abstract and visually uninterpretable, due to the fact
that deeper layers showed less visual information and more abstract information related to
image categories. At the same time, the sparsity of feature activation increased with the
deepening of the convolutional layer, such as the visualization results of the red border fea-
ture image indicate that the corresponding channel is not activated, which is due to the fact
that the feature pattern encoded by this channel was not found in the input image, and the
image features extracted from the feature channel corresponding to the blue border had less
influence on the final decision of this pavement image. Therefore, it is concluded that some
of the channels in the SqueezeNet model trained based on the multiscale pavement image
dataset were not activated when performing image inference, or the extracted features have
less influence on the final decision, and there is a certain amount of parameter redundancy,
which can be removed by pruning techniques to obtain a compact, less complex, and a
more targeted multiscale pavement defect recognition model.
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4.4. Channel Pruning Model Optimization Method

Through the visual analysis of the feature channels of the multiscale SqueezeNet
model, it can be seen that some of the channels in the SqueezeNet model trained on the
multiscale pavement image dataset were not activated when performing image inference,
or the extracted features had less influence on the final decision, and there was a certain
amount of parameter redundancy, so the model optimization method of channel pruning is
proposed to remove them, and to reduce the redundant parameters of the model to enhance
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the speed of the model under the premise of guaranteeing the accuracy of the model. In
order to prevent excessive pruning resulting in model performance degradation, this paper
adopts an iterative pruning strategy, i.e., removing part of the proportional convolution
kernel each time, realizing the pruning goal through multiple iterations, and counting the
changing relationship between the pruning rate and the various model performances.

Analysis of Pruning Results

(1) Changing patterns of model accuracy and storage space at different levels of pruning.

The variation of model accuracy and storage space in relation to different degrees of
pruning is shown in Figure 18, from which it can be analyzed that as the percentage of
pruning increases, both model accuracy and model size show an overall decreasing trend.
Among them, the model size decreases steadily with it, which is approximately linearly
correlated. The model accuracy changes less when the pruning percentage is less than
40% or less, and the accuracy loss is within 1% and shows an accelerated decreasing trend
when the pruning percentage is more than 40%. According to the data analysis, it can be
concluded that when the pruning percentage is 40% or less, the multiscale SqueezeNet
model pruning based on Oracle pruning standard can reduce the model channel redun-
dancy under the premise of guaranteeing the model accuracy, so the multiscale SqueezeNet
model with a pruning percentage of 40% is considered as the optimal model for monitoring
powder laying defects of metal powders in this paper, MC-SqueezeNet.
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(2) Changes in reasoning speed before and after model pruning.

Through inference experiments on the model after pruning at each stage, it is con-
cluded that traditional convolutional neural network can improve the inference speed of
the model to a certain extent after channel pruning. As Figure 19 shows, the relationship
between the inference speed of the multiscale SqueezeNet model and the percentage of
pruning, where the inference time was the average of the time required for the model to
perform inference on 5000 multiscale images of powder laying defects five times. From the
figure, it can be seen that the initial network for the 5000 multiscale paving powder defect
image prediction time consumed 12.27 s, with the increase of the total pruning percentage
of the model, the recognition model inference time shows a general trend of reduction,
when the percentage of pruning was greater than 10%, the inference time began to have a
significant decrease, and it can be seen that the image inference time of the MC-SqueezeNet
model was 11.31 s, compared to the 7.8% reduction before pruning.
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(3) Change in the number of convolution kernels in each layer of the model before and
after pruning.

The changes in the number of convolutional kernels in each layer of the multiscale
SqueezeNet model when the pruning percentage is 40% are shown in Table 3. The number
of convolutional kernels in the Fire module was combined, and the table shows that the
percentage of convolutional kernel removal shows an overall increasing trend with the
increase of network depth, which is also consistent with the analysis results of the feature
map visualization.

Table 3. Changes in the number of convolution kernels in each layer before and after optimization.

Hierarchy
Number of Convolution Kernel

Removal Ratio
Multiscale SqueezeNet MC-SqueezeNet

Conv1 64 62 3%
Fire2 144 124 14%
Fire3 144 127 12%
Fire4 288 222 23%
Fire5 288 219 24%
Fire6 432 243 44%
Fire7 432 258 40%
Fire8 576 290 50%
Fire9 576 251 56%

Conv10 6 6 0%

5. Experimental Validation of Defect Identification Algorithms for Metal Powder
Spreading Process
5.1. Experimental Equipment and Materials

The experimental equipment is the JSJ100 LPBF molding equipment mentioned in
Section 3 and the online monitoring device designed and developed in this paper, of which
the structure of each part is shown in Figure 20.

For this experiment, Renishaw 316L stainless steel powder was used as the raw
material, and the particle size of the powder was between 15–45 µm. Before conducting
the experiment, the impurities were first screened out using a sieving machine and dried
at 200 ◦C for 2 h. At the same time, in the molding experiment process the molding bin
provided an argon gas environment to prevent high-temperature oxidation on the parts
manufacturing process.
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5.2. Manufacturing Experiment and Analysis

Through a specific part of the manufacturing experiment for this paper LPBF mold-
ing metal powder laying powder quality online monitoring device verification, for the
part a total of two printing experiments, in order to obtain the experimental effect, the
experimental process will be monitoring the system’s feedback control function is set to
pop-up window prompts, by the manual judgment of whether to implement the feedback
control, experiments set the detection of various types of defects threshold of 3, that is,
the identification of the results of a certain type of defects in the number of 3 and above,
recognized as a valid category of defects in the detection of the results.

(1) The first experiment

In order to obtain the laying powder defects and to verify this paper’s online mon-
itoring system defect detection and feedback function to meet the requirements set, we
conducted the first manufacturing experiment, with the results shown in Figure 21a. It
can be clearly seen that there was a serious phenomenon of the part being too high, and
when the 59th layer of the laying powder action is too high, as well as the interference with
the squeegee, therefore the experiments were stopped. The 58th layer of powder image
is shown in Figure 21b. The manufactured part shows an area of ultra-high area damage
to the scraper adhesive strip, so that the process of spreading the powder produced with
its side of the movement of the scraper stripe caused defects, ultra-high serious areas, and
the scraper body collision jitter, resulting in defects perpendicular to the direction of its
movement of the collision stripe.

(2) Second manufacturing experiment.

In order to verify the stability of the online monitoring system in this paper over a
long period of time, the original 316L process parameter package was invoked during the
second molding experiment to finalize the part fabrication with a total duration of more
than 20 h. Insufficient powder during the manufacturing process led to the 648th to 657th
layer of the right side of the region There was insufficient powder spreading defects. The
part molding results are shown in Figure 22a, where it can be clearly seen that there is a
gap in the red box area, corresponding to the 654 layers of the powder image state shown
in Figure 22b. As shown in Figure 22c, it shows the recognition effect of the 654th layer of
powder state and in Figure 22d, for the layer of powder detection results.
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Figure 22. (a) Part fabrication results; (b) the 654th layer of metal powder laying image; (c) the 654th
layer of laying image defect recognition effect; (d) the 654th layer of laying image inspection results.

(3) Online detection accuracy and detection time.

In order to verify whether the detection accuracy and detection speed of the single-
layer powder laying quality of the online monitoring device meets the requirements of
the system, the feedback results of the identification of each layer of powder laying and
the time-consuming detection of defects in the experimental process are statistically and
analytically analyzed. Table 4 shows the above experimental process for each layer of
powder laying quality of the feedback results and the real powder laying situation of the
comparison results. As can be seen from the table, in the above two experiments, for a
total of 1460 layers of powder laying quality detection, the system’s feedback accuracy was
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98.63%. The analysis of the wrongly identified layers was mainly due to the fact that various
types of defects were not obvious at the initial stage, and the number of certain types of
defects detected did not exceed the set threshold value of 3, which were not recorded as
valid defects.

Table 4. Online inspection results of metal powder laying quality.

The First Print Experiment The Second Printing Experiment
System

AccuracyTotal Number
of Layers

Identify the
Correct Number

of Layers
Accuracy Rate Total Number

of Layers

Identify the
Correct Number

of Layers
Accuracy Rate

58 54 93.1% 1402 1386 98.89% 98.63%

Table 5 shows the time-consuming data for three different stages of the online inspec-
tion of the quality of 50 layers of powder laying. The average time consumed in the three
stages of image acquisition, tilt correction and storage, and partition and identification was
0.795 s, 0.159 s, and 2.562 s, totaling 3.516 s, meeting the time-consuming requirements for
testing set in Section 2. After the above two manufacturing experiments and recognition
effect analysis, it can be seen that by setting various types of defect thresholds, we can effec-
tively avoid the influence of part of the powder laying area misdetection on the recognition
results of the whole layer. When the threshold value of all kinds of defects was set to 3,
the feedback accuracy rate of the two molding experiments was 98.63% for the cumulative
quality of 1460 layers of paving powder, among which the average time consumed in the
online detection of the quality of 50 layers of paving powder was 3.516 s. At the same time,
the monitoring system did not show any abnormality when it worked continuously for
more than 20 h and recognized the paving powder image of 1402 layers and the multiscale
paving powder block for more than 1,090,000 times, which is characterized by a good
recognition stability.

Table 5. Time-consuming data for different detection stages.

Phase Image
Acquisition

Tilt Correction
and Storage

Partition and
Identification Total

Average time consuming (s) 0.795 0.159 2.562 3.516

6. Conclusions

Through the study of the metal powder laying state in the LPBF molding process, an
online monitoring device for the laying process was built, and the algorithm for identifying
the laying defects was developed, and finally experimental validation was carried out,
and better results were obtained. It is shown that this online monitoring system for laying
powder is suitable for both simple and complex parts. The effective identification of powder
laying defects by this monitoring device has the following significance: on the one hand, it
reduces the manufacturing defects of the parts and improves the manufacturing quality
and mechanical properties of the parts; on the other hand, it avoids the damage of the
scraper and ensures the safe operation of the LPBF equipment, which greatly saves the
time cost and labor cost. The specific conclusions of this paper are as follows.

We propose a recognition method of small-scale regional division of powder laying
defects, the division of the image size of 50 pixel × 50 pixel, the construction of a small-scale
powder laying defects dataset for the method, and the experiments and analyses of three
different complexity models, namely, AlexNet, ResNet50, and SqueezeNet, have been
completed. The results show that the method can be used for the detection of common
powder laying defects, in which the SqueezeNet model had the best performance.

Aiming at the shortcomings of the small-scale powder laying defect detection method,
a multiscale improvement method based on SqueezeNet model is proposed. The original
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small-scale region and the 100 pixel × 100 pixel and 224 pixel × 224 pixel powder laying
images centered on the region were combined into a three-channel image, which was used
as a multiscale dataset for the model training in order to increase the model’s ability to
perceive the powder laying state around the original small-scale region. The results show
that the method improved the recognition accuracy of three types of defects, namely, lumpy
power stacks, insufficient powder laying power, and ultra-high fusion cladding layers.

For the parameter redundancy problem of the multiscale SqueezeNet model, an
iterative pruning method is proposed to prune the model channels under the premise of
guaranteeing the accuracy of the model, and better results are obtained.

The deployment of MC-SqueezeNet model and the development of online monitoring
device system software were completed using OPC UA development components and
.Net Framework platform, and experimental verification was conducted. The results show
that the system can recognize the minimum size of defects is 0.54 mm, the accuracy of the
feedback results is 98.63%, the recognition speed is 3.516 s, and it works online for more
than 20 h, and all the indexes meet the design requirements.
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