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Abstract: A 6500 V SiC trench MOSFET with integrated unipolar diode (UD-MOS) is proposed to
improve reverse conduction characteristics, suppress bipolar degradation, and reduce switching loss.
An N type base region under the trench dummy gate provides a low barrier path to suppress hole
injection during the reverse conduction operation. The reverse conduction voltage VON is reduced
to 1.11 V, and the reverse recovery charge (QRR) is reduced to 1.22 µC/cm2. The gate-to-drain
capacitance (CGD) and gate-to-source capacitance (CGS) of the UD-MOS are also reduced to improve
switching loss due to the thick oxide layer between the trench gate and dummy gate. The proposed
device exhibits an excellent loss-related figure of merit (FOM). It provides a high-voltage SiC MOSFET
prototype with potential performance advantages for voltage source converter-based high voltage
direct current applications.

Keywords: SiC trench MOSFET; bipolar degradation; integrated unipolar diode; low switching loss

1. Introduction

The voltage source converter-based high-voltage direct current (VSC-HVDC) trans-
mission with high flexibility and controllability is a key approach to the construction of
a high-proportion clean energy grid. The high-voltage (6500 V and above) SiC MOSFET
is a promising candidate for VSC-HVDC transmission to increase power efficiency and
reduce the volume of the system [1–3]. In the VSC, the freewheeling diode of SiC MOS-
FET operates during the dead time period. However, the utilization of the integrated PN
body diode causes potential issues. Firstly, the reverse recovery charge QRR and reverse
conduction voltage VON considerably increase loss. Secondly, the basic plane dislocations
(BPDs) generate stacking faults (SFs) in the drift region by absorbing the energy from
charge recombination [4], which degrades the VON and leakage current of SiC MOSFET [5].
For the 6500 V SiC MOSFET with a thicker drift region, many more SFs could be generated
based on same initial BPDs density, spelling more serious bipolar degradation issues [6].

To prevent SiC MOSFET bipolar degradation issues, a common solution is utilizing
the externally antiparallel Schottky barrier diode (SBD) for freewheeling operation [7], but
this increases the parasitic parameters and size of the MOSFETs-based power module [8].
However, for the monolithic integrated diode schemes, SBD-integrated MOSFETs have
been reported [9–11] and the source-controlled channel-diode-embedded SiC MOSFETs
have been demonstrated [12,13], whereas Schottky contact and the uneven gate oxide
layer-related reliability issues have yet to be introduced [14–17]. Gate-controlled channel-
diode-embedded SiC MOSFETs have also been fabricated [18–20], which allow the forward
and reverse conduction currents to share the same MOS-channel path. However, this brings
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a huge challenge to achieving a better trade-off between low reverse conduction voltage
and reasonable threshold voltage [18].

In this paper, a 6500 V SiC trench MOSFET with integrated unipolar diode (UD-MOS)
is proposed to improve reverse conduction characteristics, suppress bipolar degradation
issue, and reduce switching loss. Compared with the asymmetric trench MOSFET (C-MOS),
the performance with its operation mechanism of UD-MOS is demonstrated by numerical
simulations, involving doping-dependent mobility, high-field saturation mobility, Shockley–
Read–Hall (SRH) recombination, Auger recombination, incomplete ionization of impurities,
and impact ionization models.

2. Device Structure and Mechanism

The schematic cross-section view of the 6500 V SiC C-MOS and UD-MOS is shown
in Figure 1. Compared with the C-MOS, the polysilicon gate of UD-MOS splits into two
parts with a thick oxide layer. The left one is the true gate electrically connected to the
gate electrode, while the right one is the dummy gate electrically connected to the source
electrode. An N type region (i.e., N base region) beneath the dummy gate for electrons
from the CSL region to N+ region, forms a unipolar diode (UD) as illustrated in Figure 1b.
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Figure 1. Schematic cross-section view of the 6500 V SiC (a) C-MOS and (b) UD-MOS. 

For the zero-bias condition, the potential barrier distribution of the integrated unipo-
lar diode of UD-MOS is shown in Figure 2. Compared with the body diode of C-MOS, the 
decrease of potential barrier from the P+ region to the SiC/SiO2 interface (i.e., along line 
A′-A of Figure 1) makes a relatively low potential barrier (i.e., VUD) for electrons trans-
ported from the CSL to N+ region. It should be noted that the VUD is still relatively higher 
than the potential barrier of the CSL region and the N+ region as shown in Figure 2d. In 
other words, the electrons cannot flow through the N base region to the N+ region under 
this condition. 

Figure 1. Schematic cross-section view of the 6500 V SiC (a) C-MOS and (b) UD-MOS.

For the zero-bias condition, the potential barrier distribution of the integrated unipolar
diode of UD-MOS is shown in Figure 2. Compared with the body diode of C-MOS, the
decrease of potential barrier from the P+ region to the SiC/SiO2 interface (i.e., along line
A′-A of Figure 1) makes a relatively low potential barrier (i.e., VUD) for electrons transported
from the CSL to N+ region. It should be noted that the VUD is still relatively higher than the
potential barrier of the CSL region and the N+ region as shown in Figure 2d. In other words,
the electrons cannot flow through the N base region to the N+ region under this condition.

When in blocking condition, although the increasing VDS lowers the barrier of the
CSL region and N base region due to the drain-induced barrier lowering effect, the VUD is
still high enough to ensure blocking capability, as shown in Figure 3a. When in the reverse
conduction condition, the potential barrier of the CSL region is raised by the negative VDS.
Once the potential barrier of the CSL region exceeds VUD, the electrons from the CSL region
can flow through the N base region to the N+ region, as shown in Figure 3b. Therefore, the
potential height of the N base region determines both the blocking and reverse conduction
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characteristics of UD-MOS. Furthermore, a barrier height analysis model is given here to
inform the design of the VUD as follows,

VUD = VP −
φSi,SiC + VGS −

qNCHt2
CH

2εSiC
εSiCtox
εoxtnch

+ 1
−

qNCHt2
CH

2εSiC
(1)

where VP is the potential barrier height of P+ region, φSi,SiC is the work function difference
between N-type polysilicon and the P+ region, εSiC is the dielectric constant of SiC, εox is
the dielectric constant of oxide, q is the elementary charge, tCH is the thickness of the N base
region, and NCH is the doping concentration of the N base region, respectively. According
to (1), even though the negative VGS can enhance blocking capability by increasing the VUD,
it also results in a high reverse conduction voltage VON of UD-MOS. Moreover, the positive
VGS even reduces the VUD to make the unipolar diode turn on, causing the UD-MOS to
lose gate control when in the forward conduction condition [17]. Therefore, the dummy
gate not controlled by the gate electrode is introduced to guarantee both the forward and
reverse conduction capability. Furthermore, the thickness tCH and doping concentration
NCH of the N base region also affect the VUD. With the increase of tCH and NCH, the VUD
decreases, as shown in Figure 4. The influence of breakdown voltage (BV) and VON on tCH
and NCH is discussed further in the following section.
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Figure 2. Potential barrier distribution at zero-bias (VGS = 0 V and VDS = 0 V) condition. (a) Along line 
A-A′ of the SiC C-MOS, (b) along line A-A′ of the SiC UD-MOS, (c) along line B-B′ of the SiC C-MOS, 
and (d) along line B-B′ of the SiC UD-MOS. 
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Figure 2. Potential barrier distribution at zero-bias (VGS = 0 V and VDS = 0 V) condition. (a) Along
line A-A′ of the SiC C-MOS, (b) along line A-A′ of the SiC UD-MOS, (c) along line B-B′ of the SiC
C-MOS, and (d) along line B-B′ of the SiC UD-MOS.
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3. Results and Discussion

With the increase of tCH and NCH, the VON (@VGS = 0 V, IDS = −3 A/cm2) and BV
(@IDS = 1 × 10−8 A/cm2) of UD-MOS decrease, as shown in Figure 5. It should be noted
that the VON is mainly the voltage drop of the UD (i.e., VUD) and the thick epi-layer.
The thicker tCH and higher NCH bring lower VON, but also lead to premature breakdown.
Therefore, considering both the VON and BV of the UD-MOS, the tCH and NCH are designed
to be 170 nm and 8 × 1016 cm−3, respectively. The key structural parameters of the C-MOS
and UD-MOS are shown in Table 1.
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Table 1. Key Structure Parameters of the SiC C-MOS and UD-MOS.

Parameters UD-MOS C-MOS

cell pitch (µm) 3.35 3.15
drift region thickness (µm) 60 60
drift region doping (cm−3) 1.2 × 1015 1.2 × 1015

polysilicon width (µm) 0.8 0.8
trench depth (µm) 0.9 0.9
trench width (µm) 1.1 0.9

oxide thickness (nm) 50 50
CSL doping (cm−3) 3 × 1016 3 × 1016

JFET width (µm) 1.3 1.3
P+ region thickness (µm) 1.7 1.7
P+ region doping (cm−3) 1 × 1019 1 × 1019

N base length (µm) 0.35 −
N base thickness (nm) 170 −
N base doping (cm−3) 8 × 1016 −

The effect of the N base length LCH on VUD is also discussed. With the narrowness of
LCH, the potential of the N+ region influences the potential barrier of the N base as shown
in Figure 6a. Although the lower VUD helps to reduce the VON, the BV is weakened at the
same time, as shown in Figure 6b.

Micromachines 2024, 15, x 5 of 10 
 

 

No premature breakdown

Premature breakdown

In this work

In this work

(a) (b)  
Figure 5. Effects of tCH and NCH on (a) VON and (b) BV of UD-MOS. 

(a) (b)

1.6 1.8 2.0 2.2 2.4 2.6
0.0

0.5

1.0

1.5
 LCH=0.25 μm
 LCH=0.35 μm

x (μm)

Po
te

nt
ia

l b
ar

ri
er

 h
ei

gh
t (

V
)

CSL N base N+

0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.95

1.00

1.05

1.10

1.15

1.20

LCH (μm)

V O
N

 (V
)

BV
 (V

)

7000

7500

8000

8500

 
Figure 6. (a) Potential distribution in different LCH and (b) effect of LCH on VON and BV. 

Table 1. Key Structure Parameters of the SiC C-MOS and UD-MOS. 

Parameters UD-MOS C-MOS 
cell pitch (µm) 3.35 3.15 

drift region thickness (µm) 60 60 
drift region doping (cm−3) 1.2 × 1015 1.2 × 1015 

polysilicon width (µm) 0.8 0.8 
trench depth (µm) 0.9 0.9 
trench width (µm) 1.1 0.9 

oxide thickness (nm) 50 50 
CSL doping (cm−3) 3 × 1016 3 × 1016 
JFET width (µm) 1.3 1.3 

P+ region thickness (µm) 1.7 1.7 
P+ region doping (cm−3) 1 × 1019 1 × 1019 

N base length (µm) 0.35 − 
N base thickness (nm) 170 − 
N base doping (cm−3) 8 × 1016 − 

3.1. Static Characteristics 
Based on optimized tCH and NCH, the SiC C-MOS and UD-MOS have a similar BV, as 

shown in Figure 7. The peak electric field in the gate oxide is less than 3 MV/cm, which 
ensures the long-term reliability of the gate oxide, as shown in the insets of Figure 7. 

Figure 6. (a) Potential distribution in different LCH and (b) effect of LCH on VON and BV.

3.1. Static Characteristics

Based on optimized tCH and NCH, the SiC C-MOS and UD-MOS have a similar BV, as
shown in Figure 7. The peak electric field in the gate oxide is less than 3 MV/cm, which
ensures the long-term reliability of the gate oxide, as shown in the insets of Figure 7.
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Moreover, the VON of UD-MOS is −1.1 V, while the C-MOS is −2.8 V, as shown in
Figure 8a. It should be noted that the integrated unipolar diode makes for lesser hole
injection into the drift region when in the reverse conduction condition, as shown in
Figure 8b, which effectively avoids the risk of bipolar degradation.
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Figure 8. (a) Reverse conduction characteristics and (b) hole density distribution of the SiC C-MOS
and UD-MOS at VGS = 0 V and ISD = 50 A/cm2.

Even though the cell pitch of the UD-MOS is slightly larger than that of the C-MOS,
the conduction capability of the UD-MOS is not degraded, because its channel density no
longer dominates for high voltage SiC MOSFETs. The RON of UD-MOS and C-MOS are
35.48 mΩ·cm2 and 35.00 mΩ·cm2, respectively (@IDS = 50 A/cm2), as shown in Figure 9a.
The transfer characteristic of the UD-MOS is also not degraded, which shows nearly the
same VTH as the C-MOS, as shown in Figure 9b.
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3.2. Dynamic Characteristics

The reverse recovery characteristics of the body diode in the SiC C-MOS and UD-
MOS are compared, as shown in Figure 10. Thanks to no extraction of minority carrier
during the reverse recovery process, the peak reverse recovery current (IRRM) and reverse
recovery charge (QRR) of UD-MOS are 54 A/cm2 and 1.04 µC/cm2, which are significantly
reduced by 76% and 81%, respectively, compared to the C-MOS (IRRM =176 A/cm2 and
QRR =5 µC/cm2).
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Moreover, the dummy gate of the UD-MOS reduces the effective overlapping area
between gate and drain terminals, so that the gate-to-drain capacitance (CGD) is 4.01 pF/cm2

(@VDS = 3600 V), which is reduced by 9.5% compared with the C-MOS. Meanwhile, due to
the thick oxide layer between the trench gate and dummy gate as well as a slightly smaller
overlapping area, the gate-to-source capacitance (CGS) of the UD-MOS is 18.1 nF/cm2,
which is reduced by 52%. Accordingly, thanks to the smaller CGD and CGS, the UD-MOS
has a lower gate charge (QG) of 566 nC/cm2 (@VGS = 0 V–18 V) and gate-to-drain charge
(QGD) of 109 nC/cm2, as shown in Figure 11. Furthermore, considering conduction and
dynamic capability, the UD-MOS exhibits a better loss-related figure of merit (FOM, i.e.,
RON × QGD [21]) of 3.87 mΩ·µC, which is 8.7% lower than that of the C-MOS.
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One feasible process flow of the UD-MOS is presented, including (a) epitaxial grow-
ing, P body implantation, N+ source region implantation, trench etch and P+ region im-
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ysilicon gate deposition, (d) polysilicon etch, (e) isolated oxidation deposition and (f) met-
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SiC UD-MOS and the C-MOS. The SiC UD-MOS exhibits superior performance due to 
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EOFF (mJ/cm2) 3.36 4.38 

Figure 11. (a) Capacitance characteristics at VGS = 0 V, f = 1 MHz and (b) QG for the SiC C-MOS
and UD-MOS.

The switching waveforms of the SiC C-MOS and DP-MOS are as shown in Figure 12.
Benefitting from the reduced capacitances, the UD-MOS has lower turn-on loss (EON) and
turn-off loss (EOFF) of 3.80 mJ/cm2 and 3.36 mJ/cm2, which are 34% and 17% lower than
that of the C-MOS, respectively.
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Figure 12. (a) Turn-on and (b) turn-off waveforms of the C-MOS and UD-MOS at VDS = 3600 V and
IDS = 50 A/cm2.

One feasible process flow of the UD-MOS is presented, including (a) epitaxial growing,
P body implantation, N+ source region implantation, trench etch and P+ region implanta-
tion, (b) N+ region and N base region implantation, (c) thermal oxidation and polysilicon
gate deposition, (d) polysilicon etch, (e) isolated oxidation deposition and (f) metalliza-
tion, as shown in Figure 13. Finally, Table 2 compares the main characteristics of the SiC
UD-MOS and the C-MOS. The SiC UD-MOS exhibits superior performance due to the
unipolar diode.
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Figure 13. Brief fabrication process flow of the SiC UD-MOS. (a) Epitaxial growing, P body implanta-
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Table 2. Performance Comparison of the SiC C-MOS and UD-MOS.

Parameters UD-MOS C-MOS

RON (mΩ·cm2) 35.48 34.99
VON (V) −1.11 −2.77
BV (V) 8317 8217

VTH (V) 5.2 5.2
IRRM (A/cm2) 54 176
CGS (nF/cm2) 18.1 37.9
CDS (pF/cm2) 149 149
CGD (pF/cm2) 4.01 4.43
QRR (µC/cm2) 1.22 5.01
QG (nC/cm2) 566 970

QGD (nC/cm2) 109 121
RON × QGD (mΩ·µC) 3.87 4.24

EON (mJ/cm2) 3.8 5.71
EOFF (mJ/cm2) 3.36 4.38

4. Conclusions

A novel 6500 V SiC trench UD-MOS is proposed with improved reverse conduction
and switching characteristics. The grounded dummy gate causes the unipolar diode of
the SiC UD-MOS to reduce VON to 1.1 V, which avoids the risk of bipolar degradation
and reduces the parasitic capacitances with lower switching loss. The proposed UD-MOS
provides a promising device prototype in VSC applications for HVDC transmission.
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