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Abstract: NiFe2O4 material is grown on carbon paper (CP) with the hydrothermal method for use
as electrocatalysts in an alkaline electrolyzer. NiFe2O4 material is used as the anode and cathode
catalysts (named NiFe(+)/NiFe(−) hereafter). The results are compared with those obtained using
CP/NiFe as the anode and CP/Ru as the cathode (named NiFe)(+)/Ru(−) hereafter). During cell
operation with NiFe(+)/Ru(−), the current density reaches 500 mA/cm2 at a cell voltage of 1.79 V,
with a specific energy consumption of 4.9 kWh/m3 and an energy efficiency of 66.2%. In comparison,
for NiFe(+)/NiFe(−), the current density reaches 500 mA/cm2 at a cell voltage of 2.23 V, with a
specific energy consumption of 5.7 kWh/m3 and an energy efficiency of 56.6%. The Faradaic efficiency
is 96–99%. With the current density fixed at 400 mA/cm2, after performing a test for 150 h, the cell
voltage with NiFe(+)/Ru(−) increases by 0.167 V, whereas that with NiFe(+)/NiFe(−) decreases by
only 0.010 V. Good, long-term stability is demonstrated.

Keywords: alkaline water electrolysis; hydrothermal method; electrocatalyst; NiFe; Ru

1. Introduction

High fossil fuel consumption has resulted in a rapid increase in the carbon dioxide
concentration in the air, causing serious hazards such as global warming, climate change,
and air pollution [1–3]. To mitigate these problems, the development of green energy
has become an important goal [4]. Hydrogen energy is a clean fuel. It can be used in
combination with solar energy, wind energy, hydropower, and other renewable energy
sources to convert excess electricity into hydrogen [5–9]. Further, it involves a reversible
reaction that converts hydrogen into electricity [10–12]. The redox reactions do not emit
harmful gases, making hydrogen a future energy source with great potential [13–19].

In hydrogen energy technology, fuel cells are important power generation devices.
Fuel cells are the result of the reverse reaction of water electrolysis, using hydrogen and
oxygen to produce electricity and water. Fuel cells do not produce harmful gases during the
power generation process and are very friendly to the environment. This power generation
method is much cleaner than those using fossil fuels. The power generation efficiency of
fuel cells can reach 60%. If the waste heat generated via power generation can be recovered,
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the efficiency can even exceed 80%. The hydrogen, generated via water electrolysis with
green energy, supplied to fuel cells can reduce carbon dioxide emissions [20,21].

An alkaline water electrolysis system is used for electrolytic hydrogen production. In
this system, the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER)
occur at the anode and cathode, respectively [22–26]. In alkaline water electrolysis, the
reactions that occur at the cathode and anode are as follows [27]:

Cathode: 2 H2O + 2 e− → H2 + 2 OH−

Anode: 4 OH− → 4 e− + 2 H2O + O2

Overall: H2O → H2 +
1
2

O2

Compared to HER, OER involves more complex reaction pathways and is gener-
ally considered a process with higher thermodynamic and kinetic requirements in water
electrolysis [28].

Precious metals such as Ir, Pt, and Ru are excellent high-efficiency electrocatalysts [29–34];
however, they are expensive and unsuitable for large-scale modules. In addition, electricity
consumption usually accounts for more than 50% of the cost of the water electrolysis
system [35,36]; therefore, the electrocatalysts must minimize the overpotential of the elec-
trolysis reaction to reduce costs [37–39]. In this light, the development of high-performance
and low-cost catalytic materials has become an important goal [40–43]. Ni is an abundant
3D transition metal on earth and has the characteristics of corrosion resistance, high stability,
and high electrocatalytic activity [44]. At the same time, Fe is also an abundant transition
metal in the earth’s crust. Its toxicity and cost are lower than those of cobalt and nickel,
and it has rich redox properties and excellent electrocatalytic properties [45]. Therefore, Ni-
and Fe-based materials were used to greatly reduce the overpotential of the OER reaction,
thereby improving the performance of the overall system [46–58]. Moreover, many types of
nanomaterials, like metal–organic frameworks (MOF) and metal oxides, have been widely
investigated in recent research for alkaline water electrolysis. MOF is a material structure
that has attracted much attention in recent years. In MOF, the metal central atoms are
bonded by organic ligands [59–61]. Depending on the combination of different metals and
ligands, it can form a one-dimensional, two-dimensional, or three-dimensional structure.
This kind of structure features a large specific surface area, adjustable pores, and adjustable
central characteristics [61]. On the other hand, due to their low cost, high abundance, and
excellent corrosion resistance in alkaline environments, transition metal oxides have been
extensively developed as OER (oxygen evolution reaction) catalysts [28]. Ni- and Fe-based
metal oxides, like NiFe2O4, have been demonstrated as an efficient OER catalyst for anion
exchange membrane water electrolysis modules [62,63]. In our synthesized material, it
contains NiFe2O4 with a small proportion of NiFe-MOF.

In alkaline water electrolysis, compared to traditional powdered electrocatalysts, self-
supported electrodes with catalytically active phases grown in situ on conductive substrates
are more favored because they have the following advantages: Firstly, the use of a solvother-
mal method simplifies the electrode preparation process and reduces costs [64]. Secondly,
the preparation of the electrode makes it easier to achieve surface hydrophilic/hydrophobic
engineering. Hydrophilic electrodes can accelerate bubble detachment, enhance the contact
between the electrocatalyst and electrolyte, and facilitate charge and ion transfer [65,66].
These advantages contribute to enhancing the catalytic activity and long-term stability of
self-supported electrodes in practical high-current-density electrolysis [66]. On the other
hand, carbon paper, one of the carbon materials with the advantages of porous structure,
high surface area, and low cost, is currently widely used in many energy devices [28,67–69].
In this work, the NiFe2O4 material with a small portion of NiFe-MOF material is obtained
through a hydrothermal method, which allows the oxide crystal to be directly deposited on
the carbon paper substrate [70].
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Among the various current hydrogen production technologies through water electroly-
sis, alkaline water electrolysis (AWE) for hydrogen production is still the most widely used
technology for large-scale hydrogen production. AWE technology is currently relatively sta-
ble and mature, and it can use non-noble metal-based materials as catalysts. However, the
operating current density is relatively low, and based on safety considerations, the pressure
on both sides of the cathode and anode also needs to be controlled [27,71]. On the other
hand, the proton exchange membrane water electrolysis (PEMWE) technology has high
energy conversion efficiency and high purity of the output gas, and the electrolyzer can also
achieve a compact stacked design [27]. The commercialization of PEM water electrolysis
has encountered some significant drawbacks. For instance, PEM electrolyzers often require
the use of precious metals such as Pt as the cathode catalyst and Ru/Ir-based oxides as the
anode catalyst due to their corrosion resistance in acidic environments. The use of precious
metal catalysts significantly increases costs and limits the widespread application of PEM
water electrolysis [72]. In recent years, new concepts for alkaline water electrolysis, such as
anion exchange membrane water electrolysis and alkaline zero-gap water electrolysis, have
been developed to reduce the consumption of alkaline electrolyte and enhance operating
current density [73,74]. With the benefit of alkaline water electrolysis and proton exchange
membrane water electrolysis, the anion exchange membrane water electrolysis (AEMWE)
technology has attracted lots of attention recently. The AEMWE allows the non-precious
metal catalyst to operate in a relatively noncorrosive electrolyte at low temperatures and
with a lower cost of equipment setup [70,75,76]. However, AEMWE is currently mostly in
the experimental research and development stage. Aside from the design and fabrication
of the electrocatalyst, further investigation of the power efficiency and stability is still
required to improve the AEMWE system [76]. Consequently, in this work, not only has the
NiFe-based electrocatalyst been studied, but also the system performance of the AEMWE
system has been investigated.

In recent years, there have been many studies on the electrocatalytic layer, but most of
them focus more on conducting material analysis on the electrocatalyst. Compared with
electrochemical measurement, there are relatively few studies on complete electrolysis
modules. Furthermore, during the manufacturing process, we try to use low-cost, low-toxic
materials and simple manufacturing methods to achieve the goal of being environmentally
friendly while investigating the possibility of applying the AEMWE technology on a com-
mercial scale. In this study, we used carbon paper (CP) as a substrate for the deposition of
electrocatalysts. NiFe2O4 material electrocatalysts are used in an alkaline water electrolysis
system. A NiFe2O4 material is used for both the anode and cathode of the water electrolysis
system (named NiFe(+)/NiFe(−) hereafter). The results are compared with those of a
water electrolysis system containing NiFe as the anode and Ru as the cathode (named
NiFe(+)/Ru(−) hereafter).

2. Experimental
2.1. Electrolyzer

Figure 1 shows the components of the electrolyzer. The system was symmetric, with
the same structure on the anode and cathode sides. From the outer to the inner layer, the
system consisted of an aluminum side plate, polypropylene gasket, copper electrode with
gold coating, flexible graphite sheet, graphite bipolar plate, and VITON rubber gasket.
Electrocatalysts on CP with a dimension of 5 cm × 5 cm were placed in the VITON rubber
gaskets and covered with a 6 cm × 6 cm anion exchange membrane (Sustainion® X37-50
Grade RT Membrane, Dioxide Materials, Boca Raton, FL, USA).

We tested the performance of the alkaline water electrolyzer at room temperature.
The system was fed with 1 M KOH into both the anode and cathode using two peristaltic
pumps at a flow rate of 10 mL/min. Before the system test, the X37-50 membrane was
activated by soaking in 1 M KOH for 24 h.
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Figure 1. Components of electrolyzer.

2.2. Preparation of NiFe Solution and Ru Solution for Hydrothermal Process

In a NiFe solution, 25 mmol of FeCl3·6H2O (purity: >99%, Sigma-Aldrich, St. Louise,
MO, USA), 25 mmol of Ni(NO3)2·6H2O (purity: 99.999%, Sigma-Aldrich), 7 mmol of 2-
aminoterephthalic acid (H2BDC-NH2) (purity: 99%, Sigma-Aldrich), 160 mL of ethanol
(purity: 95%, Echo Chemical, Miaoli County, Taiwan), and 2.5 mL of acetic acid (purity:
>99.5%, AUECC, Hsin-Chu City, Taiwan) were added in a Teflon autoclave reactor. The
mixture solution was stirred at 200 rpm at room temperature for 30 min.

In the Ru solution, 5 mmol of RuCl3·3H2O (purity: 99.98%, Sigma-Aldrich, St. Louise,
MO, USA), 80 mL of ethylene glycol (purity: 99%, Show-wa, Tokyo, Japan), and 80 mL
of deionized (DI) water were added in a Teflon autoclave reactor. Then, the solution was
stirred at 200 rpm at room temperature for 30 min.

2.3. Deposition of Electrocatalysts on CP

CP (thickness: 0.43 mm, CeTech, Taichung City, Taiwan) was cut into a 5 cm × 5 cm
square as the substrate for electrocatalyst deposition. Next, it was treated in a plasma
cleaner with Ar plasma at a power of 11 W, a flow rate of 5 sccm, and a chamber pressure
of 0.6 torr for 1 min. Plasma treatment cleans the surface and makes CP hydrophilic.

Two pieces of CP were placed into a Teflon autoclave reactor with Ru and NiFe
solutions, respectively. The autoclaves were heated in the oven at 160 ◦C for 16 h. After the
hydrothermal processes, the samples were cleaned with DI water and dried in the oven at
80 ◦C.

2.4. Characterization of Electrocatalysts on CP

Scanning electron microscopy (SEM; JSM-IT100, JEOL, Tokyo, Japan) was used to
examine the surface morphology of the electrocatalysts. An optical goniometer (model
100SB, Sindetake, Taipei City, Taiwan) was used for water contact angle measurements.
A power supply (SPS-1230, GWInstek, New Taipei City, Taiwan) and a multimeter (15B,
FLUKE, Everett, WA, USA) were used to measure the current and voltage of the electrolyzer.
X-ray photoelectron spectroscopy (XPS; K-Alpha, Thermo Fisher Scientific, Waltham, MA,
USA) with an Al-Kα X-ray source was used to analyze the chemical surface structure of the
electrocatalysts. Further, X-ray diffraction (XRD; D8 Discover, Bruker, Billerica, MA, USA)
was used to analyze the structure of the electrocatalysts.
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3. Results and Discussion
3.1. Performance of Alkaline Water Electrolyzer

To test the performance of an alkaline water electrolyzer, we adjust the current value
output by the power supply to observe the voltage under different current densities.
During the test, the current density was adjusted upwards from zero by 100 mA/cm2 at
each step, and each current value was held for 20 s to make sure that the voltage value
was in a stable state. Figure 2 shows the performance of the electrolyzer. NiFe(+)/Ru(−) is
better than NiFe(+)/NiFe(−). For NiFe(+)/Ru(−), the electrolysis reaction starts at 1.49 V,
and the electrolyzer shows a current density of 500 mA/cm2 at a cell voltage of 1.79 V.
In comparison, for NiFe(+)/NiFe(−), hydrogen and oxygen production are observed at
1.81 V, and the electrolyzer shows a current density of 500 mA/cm2 at a cell voltage of
2.23 V. Bare CP without electrocatalysts was tested for comparison. A comparison of the
performance curves revealed that the electrocatalysts are indeed functioning. CP/Ru as a
cathode electrocatalyst has better performance than that of CP/NiFe. This shows that Ru is
indeed a highly efficient electrocatalyst in the HER reaction [77,78]. At the same current
density, the cell voltage of the NiFe(+)/NiFe(−) system was 0.3–0.4 V higher than that of
the NiFe(+)/Ru(−) system. CP/NiFe electrocatalysts can be a feasible option without the
use of precious metal, and this can reduce the material cost in a practical alkaline water
electrolysis system [51].
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Figures 3 and 4 and Table 1 show the Faradaic efficiency (FE) and energy efficiency
of the electrolyzer. FE is the ratio of the experimental hydrogen production rate to the
theoretical hydrogen production rate. In this study, FE is 96–99%, indicating that most
electrons were used to electrolyze water with little side reaction. The specific energy
consumption of the electrolyzer of the NiFe(+)/Ru(−) system was 4.9 kWh/m3, and that
of the NiFe(+)/NiFe(−) system was 5.7 kWh/m3 at 500 mA/cm2.

The energy efficiency (η) is calculated as follows:

η =
EH2

Q
=

PH2 ∗ 11.7J
I ∗ Vps

in which EH2 is the chemical energy of the produced hydrogen, Q is the total energy
consumption of the electrolytic reaction, PH2 is the experimental hydrogen production
rate, 11.7 J is the heating value of hydrogen per cm3 (heating value of hydrogen is
141.8 MJ/kg [79]), I is the electrolyzer current, Vps is the voltage of the power supply,
and η of the NiFe(+)/Ru(−) system is 66.2% whereas that of the NiFe(+)/NiFe(−) system is
56.6% at 500 mA/cm2. In addition, the sum of the wire and contact resistance in the system
was approximately 33 mohm, which inevitably caused some additional energy loss.
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Table 1. Efficiency of electrolyzer.

Electrocatalysts Current
Density

Cell
Voltage

Power
Supply
Voltage

H2 Production
Rate

(Theoretical)

H2 Production
Rate

(Experimental)

Specific
Energy

Consumption

Faradaic
Efficiency

(FE)

Energy
Efficiency

(η)

unit mA/cm2 V V mL/min mL/min kWh/m3 % %

NiFe(+)/Ru(−)

100 1.60 1.68 19.0 18.5 3.8 97.6 86.0

500 1.79 2.21 94.9 93.8 4.9 98.8 66.2

1000 1.98 2.84 189.8 181.8 6.5 95.8 49.9

NiFe(+)/NiFe(−)

100 2.02 2.08 19.0 18.5 4.7 97.5 69.4

500 2.23 2.59 94.9 94.0 5.7 99.1 56.6

1000 2.39 3.11 189.8 188.0 6.9 99.1 47.2

In electrolysis systems, an important indicator is the Faradaic efficiency. Faradaic
efficiency describes the efficiency of converting electrical charge in the external circuit into
the production of hydrogen/oxygen molecules through the electrolysis of water. In other
words, Faradaic efficiency is the ratio of the actual gas produced to the theoretical gas
produced [80]. The higher the Faradaic efficiency, the higher the proportion of electrolysis
current used for the electrolysis of water. The ideal Faradaic efficiency should be 100%,
which means that there are no side reactions in the system and all electrons are used for the
electrolysis of water.
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The Faradaic efficiency (FE) is calculated as follows:

FE =
Experimental hydrogen production rate

Theoretical hydrogen production rate

Figure 5 and Table 2 show the stability of the electrolyzer. In addition to having
excellent catalytic performance, long-term stability is also a crucial factor to consider when
manufacturing practical electrolyzers. The current density was fixed at 400 mA/cm2 to
test the lifetime of the electrolyzer. After performing the test for 150 h, the cell voltage
of NiFe(+)/Ru(−) increased by 0.167 V. This might be caused by the degradation of the
catalysts. In comparison, NiFe(+)/NiFe(−) showed almost no decline after performing a
test for 150 h. The cell voltage decreased slightly by 0.010 V.

Micromachines 2024, 15, x FOR PEER REVIEW 7 of 14 
 

 

Table 1. Efficiency of electrolyzer. 

Electrocatalysts 
Current 
Density 

Cell 
Voltage 

Power 
Supply 
Voltage 

H2 Production 
Rate 

(Theoretical) 

H2 Production 
Rate  

(Experimental) 

Specific  
Energy  

Consumption 

Faradaic 
Efficiency 

(FE) 

Energy 
Efficiency 

(η) 
unit mA/cm2 V V mL/min mL/min kWh/m3 % % 

NiFe(+)/Ru(−) 
100 1.60 1.68 19.0 18.5 3.8  97.6 86.0 
500 1.79 2.21 94.9 93.8 4.9  98.8 66.2 
1000 1.98 2.84 189.8 181.8 6.5  95.8 49.9 

NiFe(+)/NiFe(−) 
100 2.02 2.08 19.0 18.5 4.7  97.5 69.4 
500 2.23 2.59 94.9 94.0 5.7  99.1 56.6 
1000 2.39 3.11 189.8 188.0 6.9  99.1 47.2 

Figure 5 and Table 2 show the stability of the electrolyzer. In addition to having ex-
cellent catalytic performance, long-term stability is also a crucial factor to consider when 
manufacturing practical electrolyzers. The current density was fixed at 400 mA/cm2 to test 
the lifetime of the electrolyzer. After performing the test for 150 h, the cell voltage of 
NiFe(+)/Ru(−) increased by 0.167 V. This might be caused by the degradation of the cata-
lysts. In comparison, NiFe(+)/NiFe(−) showed almost no decline after performing a test for 
150 h. The cell voltage decreased slightly by 0.010 V. 

 
Figure 5. Stability of electrolyzer. 

Table 2. Stability of electrolyzer. 

Electrocatalysts Time Cell Voltage Increment 
unit h V V 

NiFe(+)/Ru(−) 

0 1.833  

50 1.936 0.103 (+5.6%) 
100 1.975 0.142 (+7.7%) 
150 2.000 0.167 (+9.1%) 

NiFe(+)/NiFe(−) 

0 2.203  

50 2.197 −0.006 (−0.3%) 
100 2.201 −0.002 (−0.1%) 
150 2.193 −0.010 (−0.5%) 

  

Figure 5. Stability of electrolyzer.

Table 2. Stability of electrolyzer.

Electrocatalysts Time Cell Voltage Increment

unit h V V

NiFe(+)/Ru(−)

0 1.833

50 1.936 0.103 (+5.6%)

100 1.975 0.142 (+7.7%)

150 2.000 0.167 (+9.1%)

NiFe(+)/NiFe(−)

0 2.203

50 2.197 −0.006 (−0.3%)

100 2.201 −0.002 (−0.1%)

150 2.193 −0.010 (−0.5%)

3.2. Material Loading

Table 3 shows the material loading on CP [81]. This could be affected by the deposition
of H2BDC-NH2 on the wall of the Teflon autoclave reactor. H2BDC-NH2 was used as the
ligand for MOF. In this study, we used ethanol as an ecofriendly solvent instead of dimethyl
formamide (DMF). CP is hydrophobic, with a water contact angle of 130.78◦. Before the
hydrothermal process, plasma treatment was used to make CP hydrophilic. This improves
the contact between CP and the processing solutions. In this fashion, more material could
be deposited on the CP.



Micromachines 2024, 15, 62 8 of 14

Table 3. Material loading on CP.

Electrocatalysts Material Loading Standard Deviation

CP/NiFe 2.03 mg/cm2 0.37 mg/cm2

CP/Ru 1.19 mg/cm2 0.14 mg/cm2

3.3. SEM Inspection of Electrocatalysts

Figure 6 shows SEM images of the CP-based electrocatalysts to investigate the surface
morphology and distribution of metal ions. In the image of CP/NiFe, the SEM images
show nanosheets grown on the CP. The nanoscale structure is a widely adopted strategy to
enhance the performance of transition metal-based electrocatalysts [82,83]. The catalyst’s
unique nano-pore array structure results in a larger active surface area and the ability
to rapidly remove oxygen bubbles through the spatial confinement effect, both of which
contribute to the catalytic effectiveness [84]. In the SEM images of grown Ru, many Ru
particles still remain on the CP.
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Figure 6. SEM images with 100×, 1000×, and 10,000× magnification. (a-1)–(a-3) CP, (b-1)–(b-3) CP/
NiFe, and (c-1)–(c-3) CP/Ru.

3.4. XRD Results of Electrocatalysts

XRD was used to analyze the crystal structure of the material. Figure 7 shows the
XRD spectra of electrocatalysts. CP is mainly made of graphite, and it showed two primary
peaks at 26.6◦ and 54.6◦ (JCPDS card no. 00-012-0212) [85]. Cui et al. showed that a new
characteristic peak will appear at 8.8◦ when the NiFe-layered double hydroxide (NiFe-LDH)
layer is completely turned into NiFe-MOF. A tiny peak at 8.8◦ corresponds to the (200)
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plane of NiFe-MOF [86]. CP/NiFe mainly exhibits a NiFe2O4 phase. The XRD spectra of
CP/NiFe show five diffraction peaks at 17.8◦, 30.1◦, 35.6◦, 58.1◦, and 63.2◦ corresponding
to the (111), (220), (311), (511), and (440) planes, respectively, of NiFe2O4 (JCPDS card no.
86-2667) [87]. In CP/Ru electrocatalysts, the XRD spectra show the hexagonal structure of
Ru. The three diffraction peaks at 38.4◦, 43.9◦, and 69.5◦ corresponding to the (100), (101),
and (110) planes, respectively, can be observed clearly (JCPDS card no. 89-3942) [88,89].
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3.5. XPS Results of Electrocatalysts

XPS was used to identify the elements on the CP surface. Figure 8a–c show the wide-
scan spectrum, and Figure 8d–f show the fine-scan spectra of Ni, Fe on CP/NiFe, and Ru on
CP/Ru. Ni2p3/2 and Ni2p1/2 peaks were seen at 855.9 eV and 873.5 eV, respectively [90,91].
Fe2p3/2 and Fe2p1/2 peaks were seen at 712.4 eV and 725.4 eV, respectively [91]. Ru3p3/2
and Ru3p1/2 peaks were seen at 461.9 eV and 484.3 eV, respectively [92]. The XPS results
indicated that NiFe and Ru were successfully attached to the CP. Interestingly, although Ru
was not clearly observed under SEM, the XPS results still show that Ru covers the CP. Ru has
a significant intensity in Ru3p. The performance of the electrolyzer also strongly supported
this observation. In the performance test, using CP/Ru as a cathode electrocatalyst resulted
in a higher current density than using CP/NiFe, implying that Ru plays a significant role
in the HER.
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4. Conclusions

NiFe material and Ru were grown on CP as electrocatalysts in an alkaline water
electrolysis system. For the NiFe catalyst, most of the phase is NiFe2O4, with a very small
proportion of NiFe-MOF. In the NiFe(+)/Ru(−) electrolysis system, the current density
reached 500 mA/cm2 at a cell voltage of 1.79 V, with a specific energy consumption of
4.9 kWh/m3 and an energy efficiency of 66.2%. In the NiFe(+)/NiFe(−) electrolysis system,
the current density reached 500 mA/cm2 at a cell voltage of 2.23 V, with a specific energy
consumption of 5.7 kWh/m3 and an energy efficiency of 56.6%. FE was 96–99% in both
systems. The stability of NiFe(+)/NiFe(−) was high and did not decrease after running for
150 h under 400 mA/cm2. In this research, Ru material is used as the cathode catalyst to
compare the performance differences between precious metals and non-precious metals.
Although the performance of NiFe material is slightly poorer than Ru, the material cost
in the laboratory is less than 10% of Ru. This indicated that NiFe2O4 material could be an
option for low-cost, non-precious electrocatalysts for an alkaline water electrolysis system.
This could be a key to effectively promoting large-scale applications of alkaline water
electrolysis in the future.
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