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Abstract: In recent times, the utilization of three-dimensional (3D) printing technology, particularly
a variant using digital light processing (DLP), has gained increasing fascination in the realm of
microfluidic research because it has proven advantageous and expedient for constructing microscale
3D structures. The surface wetting characteristics (e.g., contact angle and contact angle hysteresis) of
3D-printed microstructures are crucial factors influencing the operational effectiveness of 3D-printed
microfluidic devices. Therefore, this study systematically examines the surface wetting characteristics
of DLP-based 3D printing objects, focusing on various printing conditions such as lamination (or
layer) thickness and direction. We preferentially examine the impact of lamination thickness on
the surface roughness of 3D-printed structures through a quantitative assessment using a confocal
laser scanning microscope. The influence of lamination thicknesses and lamination direction on
the contact angle and contact angle hysteresis of both aqueous and oil droplets on the surfaces of
3D-printed outputs is then quantified. Finally, the performance of a DLP 3D-printed microfluidic
device under various printing conditions is assessed. Current research indicates a connection between
printing parameters, surface roughness, wetting properties, and capillary movement in 3D-printed
microchannels. This correlation will greatly aid in the progress of microfluidic devices produced
using DLP-based 3D printing technology.

Keywords: three-dimensional printing technology; digital light processing; microfluidics; contact
angle; contact angle hysteresis

1. Introduction

The advent of three-dimensional (3D) printing technology, which originated from the
process of building up three-dimensional structures layer by layer with computer-aided
design (CAD) drawings, has had a notable and beneficial influence on various aspects of
everyday life [1,2] and in several industrial sectors, such as aerospace [3], automotive [4],
and medical applications [5,6]. This can be attributed to its remarkable capacity for produc-
ing sophisticated structures, speedy development, and mass customization in contrast to
conventional manufacturing methods [1,2].

There has recently been a significant increase in interest regarding the implications of
3D printing technology for the fabrication of microfluidic systems in place of traditional
lithography methods, primarily using poly(dimethylsiloxane) (PDMS) [7,8]. This is be-
cause 3D printing allows automated, assembly-free 3D fabrication, offering rapid cost
reduction as well as rapidly increasing resolution and throughput [7]. Several 3D printing
techniques have been used in the field of microfluidics and its applications, including
fused deposition modeling (FDM) [9], binder jet 3D printing [10], digital light process-
ing (DLP) [11–13], stereolithography (SLA) [14,15], and selective laser sintering [16]. In
particular, photopolymerization-based 3D printing technologies, such as SLA and DLP,
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have shown better print accuracy and print quality when printing chips and making 3D
microchannels, even those with complex structures [17]. SLA and DLP are 3D printing
techniques that utilize a laser beam (or UV light) and a digital light projector, respectively,
to progressively expose liquid photosensitive material, causing it to gradually solidify into
the desired object [17].

To create microfluidic systems with these 3D printing technologies and achieve the
desired performance, fundamental research on the mechanical and physicochemical prop-
erties of photopolymerization-based printed products, based on the printing conditions,
remains essential [18,19]. Several researchers have focused on the relationship between
printing conditions and the mechanical properties of 3D-printed products in different
printing methods [20–25]. For instance, Favero et al. [20] evaluated the effect of layer
height on accuracy when a model was created with a 3D printer, based on an SLA
scheme. Zhang et al. [21] examined the accuracies of DLP and SLA printers at various
layer thicknesses and discovered the optimum layer thickness for these printing techniques.
Liu et al. [22] explored the impact of printing-layer thickness on mechanical properties and
optimized printing conditions through its modulation via fused deposition modeling-based
3D printing. For SLA-manufactured products, Saini et al. [23] investigated the effect of layer
directions on mechanical properties, such as tensile, compression, flexural, impact, and
fatigue characteristics. Ouassil et al. [24] studied the effect of printing speed on the porosity
and tensile characteristics of fused filament 3D-printed materials. Jiang et al. [25] investi-
gated how layer thickness affected the mechanical characteristics and molding accuracy
of 3D-printed samples using a DLP scheme. The majority of these prior studies, however,
have concentrated on the effects of printing parameters on the mechanical characteristics of
3D-printed objects.

In microfluidic systems, e.g., when the system size is reduced to the millimeter or
micrometer scale, continuous or discontinuous flow (e.g., droplets) is primarily influenced
by interfacial tension (or surface tension) rather than volumetric forces such as inertia and
gravity [26,27]. Wettability characteristics, such as the contact angle and contact angle
hysteresis (CAH, the difference between the advancing and receding contact angles), are
widely recognized as crucial physical factors for understanding wetting and the capillary
phenomena resulting from interfacial tension [27]. For instance, the physicochemical inho-
mogeneity of a solid surface causes CAH, which hinders the movement of discontinuous
fluids [28,29], like a raindrop clinging to a window. Therefore, a thorough investigation of
the wetting properties of 3D-printed objects as a function of printing conditions is essential
and crucial to achieving the desired functionality of 3D-printed microfluidic systems.

In the present study, we methodically investigate the surface-wetting characteristics of
DLP-based 3D printing outcomes under varied printing conditions to offer crucial and prac-
tical guidelines for fabricating microfluidic devices. We primarily examine the correlation
between surface roughness and lamination thickness through microscopic and confocal
microscopic image analysis. The variations in CA and CAH seen in aqueous and oily
droplets are then investigated as a function of lamination direction and thickness. Finally,
we analyze the dynamics of liquid flow when driven by capillary action inside simple
microchannels that have been fabricated under different printing conditions to evaluate the
effect of printing conditions on the functionality of a DLP 3D-printed microfluidic device.

2. Materials and Methods

To examine the effects of 3D printing conditions on the surface characteristics of prod-
ucts, we initially designed a cube of 10 mm and exported the design in the form of STL files
using SolidWorks 2020, a professional 3D CAD program (Dassault Systèmes SolidWorks
Corp., Waltham, MA, USA). Using Asiga Composer 1.3 (Asiga, Sydney, Australia), the
design was segmented into layers and lamination conditions were set for layer thicknesses
of 10 µm, 50 µm, and 100 µm. Cubic objects with different layer thicknesses were then
manufactured utilizing a DLP-based 3D printer (Asiga MAX X27, Asiga, Australia) and
printable resin (PlasClear V2, Asiga, Australia) (Figure 1). This printable resin is a type of
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UV-curable resin from the diurethane dimethacrylate family. It is widely used in microflu-
idics due to its many advantageous properties, such as transparency and chemical stability
against organic solvents [30,31]. The printing durations for layer thicknesses of 10 µm,
50 µm, and 100 µm were approximately 370, 84, and 51 min, respectively. The same objects
were printed in a vertical direction to examine the impact of the lamination direction. To
eliminate any remaining photocurable resin, we cleaned the printed products utilizing an
ultrasonic cleaner (CPX8800H-E, Branson, MO, USA) and isopropyl alcohol. Subsequently,
the printed products were post-cured through the application of UV light with a UV curing
apparatus (Flash, Asiga, Australia) to diminish deformation and augment rigidity.
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Figure 1. (a) Schematic of the DLP-based 3D printing process. (b) Actual photographs of the 3D-
printed objects under different printing conditions. Here, IS and LS stand for irradiated and laminated
surfaces, respectively, while the numerical values indicate the lamination thicknesses.

To qualitatively assess the surface roughness of 3D-printed objects created under
various printing conditions, we captured microscopic images using an optical microscope
(Eclipse Ci-L, Nikon, Tokyo, Japan) and a CCD camera (Fastcam mini UX100, Photron,
Tokyo, Japan). A quantitative investigation of surface roughness as a function of printing
conditions was also conducted using a confocal laser scanning microscope (LEXT OLS5000,
Olympus, Tokyo, Japan) to enable the expected surface roughness and surface wetting
characteristics to be correlated.

Aqueous and oil-liquid phases were prepared to assess the CA of droplets resting on
the surfaces of 3D-printed objects created under varied printing conditions. Aqueous liquid
phases included deionized (DI) water and a mixture of DI and Tween 20 (1 mM), while
oil–liquid phases included mineral oil (Sigma-Aldrich, St. Louis, MO, USA), silicone oil
with a viscosity of 50 cSt (Shinetsu, Tokyo, Japan), and hexadecane (Alfa Aesar, Haverhill,
MA, USA). Here, Tween 20, otherwise known as polyoxyethylene (20) sorbitan monolaurate,
is a water-soluble surfactant belonging to the polysorbate family [32]. It possesses the
capability to modify the interaction between solids and liquids by reducing the surface
tension of the liquid [33,34]. The surfactant was utilized in experiments to examine the
effect of printing conditions on liquid flow in microchannels and to augment capillary
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action through the reduction of liquid surface tension. To improve the visibility of the
aqueous droplets, a small amount (0.2 wt%) of a blue water-soluble dye was added to the
aqueous liquid phase. Table 1 shows a summary of the physical properties of the aqueous
and oil–liquid phases at room temperature. The viscosities and densities of the liquids
were measured using a rotating viscometer (ViscoQC 300 L, Anton Paar, Graz, Austria) and
an analytical balance (ME204T, Mettler Toledo, Columbus, OH, USA), respectively. Surface
tension was also measured using the image processing of pendant droplets via the public-
domain software ImageJ 1.53 (NIH Image, Bethesda, MD, USA). A micropipette was used to
carefully dispense tiny aqueous and oil droplets with a volume of 5 µL onto the surfaces of
3D-printed objects, after which their images were captured using a DSLR camera (EOS 90D,
Canon, Tokyo, Japan) equipped with a macro lens (MP-E 65 mm, Canon, Japan). The CA of
the sessile droplets was measured from the acquired images using a low-bond axisymmetric
drop shape analysis (LBADSA) approach via ImageJ software [35]. The LBADSA approach
is based on fitting the Young–Laplace equation according to photographic images of
axisymmetric sessile drops using a first-order perturbation method. This method is widely
recognized for its ability to accurately measure the contact angle of a spherically shaped
sessile droplet under low bond number conditions (using the ratio of the surface tension
force to the gravitational force). It is freely available and is implemented as a plugin for the
open-source program ImageJ [36].

Table 1. Physical properties of the aqueous and oil–liquid phases (23 ± 1 ◦C).

Density
(kg/m3)

Viscosity
(mPa·s)

Surface Tension
(mN/m)

DI water 998 0.93 71.8
DI water + Tween 20 (1 mM) 998 1.01 37.5

Mineral oil 830 9.13 37.6
Silicone oil, 50 cSt 960 48 36.9

Hexadecane 774 3.46 27.3

To determine the CAH of droplets resting on the surfaces of 3D-printed objects, which
is the difference between the advancing (ACA, θA) and receding contact angles (RCA, θR),
we measured the ACA and RCA by inflating and deflating the droplet volumes, respectively
(Figure 2). The ACA refers to the maximum CA just before the contact line moves forward
on the surface as the droplet volume increases, while the RCA refers to the minimum CA
just before the contact line moves backward on the surface as the droplet volume decreases.
The ACA and RCA of the sessile droplets can be measured using the LBADSA approach
via ImageJ software, which is similar to the CA measurement process.

To evaluate the effect of printing conditions on the functionality of a DLP 3D-printed
microfluidic device, we designed a simple microfluidic device that enables the observation
of the dynamics of liquid flow driven by capillary action (Figure 3). Figure 3b shows
the geometry and dimensions of a microfluidic device. The microfluidic devices were
fabricated utilizing a DLP-based 3D printer and using various lamination directions and
thicknesses, such as those used for manufacturing the cubic objects. The microchannel
features of the 3D-printed microfluidic devices for different lamination directions can be
found in the Supplementary Materials. To observe capillary flows inside the microfluidic
devices manufactured under different printing conditions, a droplet of 25 µL, consisting
of a solution containing DI water and Tween 20 (1 mM), was initially deposited onto a
reservoir of the microfluidic device using a micropipette. Subsequently, the displacement
of liquid flow driven by capillary action was consecutively recorded using a DSLR camera
(EOS 90D, Canon, Japan) equipped with a lens (AF-S NIKKOR 24–70 mm, Nikon, Japan).
Finally, the captured images were subjected to digital image processing, using custom
MATLAB® R2022a code to obtain data on the temporal progression of liquid flow. All
experiments were completed with a minimum of three repetitions, and the reported data
represent the average and standard deviations of the results.
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3. Results and Discussion

We initially examined the microscopic images of the surfaces of cubic objects created
under various printing conditions to qualitatively investigate the relationship between
printing conditions and surface roughness (Figure 4). The irradiated surface exhibits
the lowest surface roughness compared to the other three surfaces while displaying a
microscale lattice pattern of 27 µm in both width and height. This pattern results from the
digital micromirror device (DMD) component, which comprises closely grouped small
mirrors in a DLP printer. Each mirror of the DMD corresponds to a single pixel, resulting
in a lattice pattern that matches the pixel resolution (27 µm) of the DLP printer used in
this study. As expected, the surface roughness of the laminated surfaces was observed to
increase as the layer thickness increased. In addition, when a layer was cured, the spot
closer to the UV light source cured over a larger area than a spot that was farther away.
Thus, even in the same layer, a spot closer to the light source had a greater height than
other spots.
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thicknesses of 10 µm, 50 µm, and 100 µm, respectively.

We also conducted a quantitative assessment of the surface roughness of 3D-printed
objects created under different printing conditions, using a confocal laser scanning micro-
scope (LEXT OLS5000, Olympus, Japan), as shown in Figure 5. Confocal laser scanning
microscopy is an optical imaging technique that improves the optical resolution and con-
trast of a micrograph and has the ability to capture multiple two-dimensional images at
different depths within a sample, enabling the reconstruction of three-dimensional struc-
tures [37,38]. We employed the arithmetic mean roughness value (Ra) as the representative
measure of surface roughness in this case, which was calculated by taking the average
of all the profile values in the roughness profile. The arithmetic mean roughness values
for irradiated and laminated surfaces with layer thicknesses of 10, 50, and 100 µm were
approximately 0.06, 0.38, 2.57, and 7.03 µm, respectively. We quantitatively demonstrated
a direct correlation between the increase in layer thickness and the increase in surface
roughness. Due to the variations in roughness caused by different layer thicknesses, it is
expected that the printing condition of layer thickness can affect surface wettability.
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Figure 6 shows the side and top views of aqueous and oil droplets resting on the
irradiated and laminated surfaces of 3D-printed objects created with different layer thick-
nesses. All liquids, both aqueous and oily, except hexadecane, spread out axisymmetrically
on an irradiated surface, giving each droplet the appearance of a sessile droplet. The
aqueous droplets on the irradiated and laminated surfaces have an almost sessile droplet
shape. However, the droplet shape is slightly distorted by the laminated grain as the
layer thickness increases. In the case of oily liquids, the droplets spread unevenly, except
on a few surfaces, due to the low surface tension. Based on these findings, we can infer
that the thickness or direction of the lamination may affect the fluid dynamics seen on
the 3D-printed surface. We will further investigate this assumption through a practical
demonstration in the final examination of this study.
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(b−d) laminated surfaces with layer thicknesses of 10 µm, 50 µm, and 100 µm, respectively.

From the acquired image information in Figure 6, we measured the CAs of water and
oil droplets on irradiated and laminated surfaces of different directions and thicknesses
(Figure 7a). The CAs of DI water droplets on the horizontally laminated surfaces remained
almost constant, regardless of the lamination thickness. However, the CA on the vertically
laminated surfaces increased with increasing lamination thickness. The surface, especially
at a lamination thickness of 100 µm, showed hydrophobic properties, as indicated by a
CA of approximately 94◦. This result may have occurred because when DI water droplets
are placed on vertically laminated surfaces, they encounter greater resistance and pinning
effects from the vertically laminated grain, which prevents them from spreading. As a
result, the CA of these droplets is greater than that of droplets placed on horizontally
laminated surfaces. However, in the case of droplets containing a mixture of DI water
and Tween 20, the CA increases as the thickness increases, regardless of the lamination
direction. The disparity in CA tendency between the two aqueous droplets may arise from
the addition of surfactant, which reduces surface tension and significantly influences the
solid–liquid interaction. Moreover, the CA is significantly greater on vertically laminated
surfaces than on horizontally laminated surfaces. As a result, the fluidic behaviors in a
3D-printed microfluidic system are expected to be influenced by the lamination orientation.
This will be demonstrated through a final assessment of this work. Finally, the oil droplets
are unevenly spread in mineral oil placed on laminated surfaces with thicknesses of 50
and 100 µm and in silicone oil placed on laminated surfaces with thicknesses of 10, 50, and
100 µm, as shown in the top-view images in Figure 6. We were unable to collect any specific
data on these behaviors due to the difficulty of determining and precisely measuring the
oil droplet contact angle.
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Figure 7. Aqueous and oil droplets on irradiated and laminated surfaces of varying directions and
thicknesses: (a) contact angle and (b) contact angle hysteresis. IS, H, and V stand for irradiated,
horizontally, and vertically laminated surfaces, respectively, while the numerical values indicate the
lamination thickness.

The dependence of CAH of aqueous droplets on printing conditions was further
investigated, as shown in Figure 7b. In contrast to the CA, it is evident that the lamination
direction and thickness influenced the CAH of both aqueous droplets. This difference
may be attributed to the fact that CAH is more affected by changes in surface roughness
under different printing conditions than CA. Furthermore, the CAH increases with layer
thickness, regardless of the lamination direction.

To assess the influence of printing conditions on the performance of a DLP 3D-printed
microfluidic device, we observed the flow of a liquid consisting of a mixture of DI water and
Tween 20 (1 mM), which was propelled by capillary action inside basic microfluidic devices
under various printing conditions (Figure 8). A mixture of DI water and Tween 20 was used
as the working fluid for the following reasons. The addition of Tween 20 surfactant resulted
in a significant decrease in both CA and CAH, as previously shown in Figure 7b. A droplet
consisting of a mixture of DI water and Tween 20 showed higher hydrophilic wettability on
different printed surfaces than a droplet containing only DI water. In addition, a reduced
CAH indicates a reduced pinning force, which hinders the movement of the liquid on
the solid surface. As a result, we could experimentally investigate the effect of printing
conditions on liquid flow in microchannels to improve capillary action by reducing the
liquid surface tension and CAH. In a microfluidic channel created by vertical lamination
with a thickness of 10 µm, the liquid rapidly enters the channel. However, when the layer
thickness is increased to both 50 µm and 100 µm, the liquid barely flows. Conversely, in a
microfluidic channel created via horizontal lamination, the liquid flow slows down as the
layer thickness increases. The trends regarding whether the liquid flows and its speed may
be correlated with its wetting characteristics, as shown in Figure 7. This correlation will be
quantitatively analyzed and discussed later.
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Figure 8. Consecutive images of capillary flow inside microfluidic devices fabricated under different
printing conditions: images (a–c) correspond to printing conditions with a vertical lamination
direction and layer thicknesses of 10 µm, 50 µm, and 100 µm, respectively. The bottom row exhibits
microscopic photographs of the walls of microchannels created under different printing conditions;
images (d–f) correspond to printing conditions with a horizontal direction and layer thicknesses of
10 µm, 50 µm, and 100 µm, respectively.
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Using the acquired image data from Figure 8, we obtained quantitative information on
the temporal evolution of capillary flows in microfluidic devices under different printing
conditions (Figure 9). The microfluidic channel created by vertical lamination with a
thickness of 10 µm showed the fastest capillary flow. In contrast, the microfluidic channel
created by horizontal lamination exhibited slower capillary flow as the thickness increased.
Based on the results presented in Figure 7, it is evident that the CA and CAH of droplets
containing a mixture of DI water and Tween 20 decrease with decreasing layer thickness.
Furthermore, an examination of Figures 7 and 8 shows that the CAH has a more pronounced
effect on capillary flow in microfluidic devices than the CA. Contrary to our expectations,
the capillary flow in the vertically laminated microchannels was faster than in the horizontal
ones with a layer thickness of 10 µm. Possible reasons for this are the uncontrollable
scratches found in the horizontally laminated channels and the small CAH in vertically
laminated channels.
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Figure 9. Temporal evolution of capillary flows inside microfluidic devices fabricated under different
printing conditions: (a,b) are represented on a graph using linear and logarithmic scales, respectively.
The dashed lines of (b) illustrate the power–law correlations between the moving distance of capillary
flow and time. The triangle insets show the power–law exponents.

By adjusting the linear scales of the x and y axes in Figure 9a to a logarithmic scale, we
established empirical relationships in the form of a power law between the distance traveled
and the time needed for capillary flow (Figure 9b). In the case of relatively high capillary
flow velocity—that is, in microfluidic channels constructed by laminating vertically and
horizontally with a thickness of 10 µm—the distance traveled by the capillary flow tends
to be roughly proportional to time. Conversely, in the case of relatively low capillary
flow velocity—that is, microfluidic channels constructed by laminating horizontally with
a thickness of 50 µm and 100 µm—the distance traveled by the capillary flow tends to
be roughly proportional to the square root of time. These tendencies align closely with
the power law correlation between the position of the advancing contact line and time, as
discussed in previous literature on the dynamics of capillary flows in microchannels [39–42].
The position of the advancing contact line is known to be proportional to the time when the
imbibed liquid passes through the inertial regime at short durations (<1 s, depending on
the specific system) [42]. Conversely, the position of the advancing contact line is known to
be the square root of time when long durations (<10 s, depending on the specific system)
are reached, at which point the liquid enters the viscous or Lucas–Washburn regime [39,40].

The thickness of the horizontally laminated layers in 3D-printed objects has an effect
on the surface roughness that can be evaluated by quantitative assessment with a confocal
laser scanning microscope, as previously shown in Figure 5. It was also observed that the
wetting properties, such as CA and CAH, of droplets containing a mixture of DI water and
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Tween 20 increased with increasing layer thickness, as previously shown in Figure 7. The
wetting properties, especially the CAH, influenced the flow of fluids by capillary action in
the 3D-printed microchannels, based on the data in Figures 7 and 9. These results highlight
the significance of assessing printing conditions before carrying out practical research when
utilizing DLP printers to produce microfluidic devices.

4. Conclusions

This study investigates the surface wetting properties (e.g., CA and CAH) of 3D-
printed items under different DLP printing conditions, including lamination direction
and thickness. The thickness of the horizontally laminated layers in 3D-printed objects
had an effect on the surface roughness, as seen in quantitative assessment with a confocal
laser scanning microscope. The CA of the DI water droplets remained nearly constant
on horizontally laminated surfaces but increased with increasing thickness on vertically
laminated surfaces. Regardless of lamination direction, the CA increased with thickness
for droplets containing a mixture of DI water and Tween 20. In contrast, the lamination
direction and thickness influenced the CAH of both types of aqueous droplets. Moreover,
the CA and CAH for oil droplets were limited to specific surfaces, due to uneven spreading.
Thus, printing conditions showed a noteworthy effect on the efficiency of a microfluidic
device produced through DLP 3D printing, as evidenced by the observed flow of liquid
through microfluidic channels, driven by capillary action. This study offers essential and
vital insights into grafting DLP-based 3D printing in various microfluidic applications,
such as chemistry, materials science, medicine, biology, pharmaceuticals, and healthcare.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/mi15010061/s1, Figure S1: Schematic diagrams of (a) the microfluidic
channels with vertical lamination and (b) the microfluidic channels with horizontal lamination.
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