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Abstract: In this paper, a microheater that can absorb thermal stress and has a large heating area
is demonstrated by optimizing the structure and process of the microheater. Four symmetrically
distributed elongated support beam structures were machined around the microheater via deep
silicon etching. This design efficiently mitigates the deformation of the heated region caused by
thermal expansion and enhances the structural stability of the microheater. The updated microheater
no longer converts the work area into a thin film; instead, it creates a stable heating platform that
can uniformly heat a work area measuring 10 × 10 mm2. The microheater is verified to have
high temperature uniformity and structural stability in finite element simulation. Finally, thorough
investigations of electrical–thermal–structural characterization were conducted. The test findings
show that the new microheater can achieve 350 ◦C with a power consumption of 6 W and a thermal
reaction time of 22 s. A scan of its whole plane reveals that the surface of the working area of the
new microheater is flat and does not distort in response to variations in temperature, offering good
structural stability.

Keywords: MEMS; microheater; temperature; large area heating

1. Introduction

Over the past few decades, dynamic in situ observation techniques have been ex-
tensively utilized for the purpose of designing and characterizing materials [1]. In situ
observation techniques can provide a more intuitive response to the structure, properties,
and reaction principles of materials by providing a continuous process of change under
different conditions [2,3]. A number of devices have been developed that can heat samples
under vacuum and observe them in real time, such as in situ TEM. Variable-temperature
experiments in an in situ TEM allow for the study of the changes in the structure and
properties of a material as a function of temperature [4–6].

MEMS microheaters offer the benefits of rapid temperature increase and minimal
power consumption, making them extensively utilized in in situ observation devices [7–10].
To enhance the rate at which heat is generated and the upper limit of temperature, it is
necessary for these devices to restrict the high-temperature area within a compact volume.
Thin-film microhotplates have garnered significant scholarly interest and have undergone
rapid development. T. P. Nguyen et al. [11] employed micromachining techniques to create
a microheater on a suspended silicon nitride (SiN) film measuring 1 × 1 mm2. The micro-
heater exhibited thermal stability up to 500 ◦C, while mechanical stability of the membrane
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up to 250 ◦C was achieved. However, above 250 ◦C, the film saw a substantial rise in defor-
mation. Woo-Jin Hwang et al. [12] fabricated a novel polycrystalline silicon microheater
via power compensation design. The uniform high-temperature area of the microheater
was increased by 2.5 times, and the average temperature increased by 40 ◦C after the
power compensation design. Lei Xu et al. [13] successfully created a reliable microheater
with minimal power consumption. The power consumption was effectively decreased by
employing two elongated beam constructions with a high aspect ratio. The corners of the
slender beams were adjusted to minimize heat stress and enhance mechanical robustness.

Although the thin-film architecture has notable benefits, such as decreased power
usage and enhanced thermal response, it also has notable drawbacks. The mechanical
properties of the thin-film structure are highly unstable and incapable of withstanding
heavy samples. During operation, the film experiences internal tensions caused by thermal
expansion, which can lead to deformation or even the breaking of the film. In addition,
the size of the film is inversely related to its stability, meaning that thin-film microheaters
can only offer a limited heating area [14–17]. Finally, thin-film microheaters are expensive
to produce because of the intricate nature of the film manufacturing process. In practical
applications, structural stability should be an issue that needs to be focused on. Good
mechanical strength can, on the one hand, expand the application range of microheaters,
and on the other hand, ensure the stability of the microheater in order to obtain accurate
observation data [13]. George Adedokun et al. [18] designed a structurally modified beams
suspended membrane microheater with a perforated dielectric layer. This improvement
reduces the power consumption of the microheater by approximately 18.6%. Perforated-
membrane microheaters have lower thermal stresses in the working area compared to
non-perforated membranes. Hotovy, I. et al. [19] fabricated a microheater on a gallium
arsenide membrane that was levitated by four cantilever beams oriented diagonally. The
mechanical stability of the multilayer membrane structure was tested, and it was found
that the center of the microheater deflected more than a few micrometers after heating the
microheater plate to a temperature of 350 K. When the microheater was heated to 550 K,
the amplitude of the center of the microheater exceeded 30–40 µm. Byeongju Lee et al. [20]
prepared an anodized aluminum oxide-based microheater that fabricated a bridge structure
with the same thickness as the substrate using the etching mechanism of the anodized
aluminum oxide substrate. Because the heating platform uses the entire thickness of the
substrate instead of a microscale membrane, the microheater platform has exceptional
mechanical and thermal stability.

In this paper, we design a MEMS microheater with a novel support beam structure.
Due to the inherent instability of the mechanical structure of thin-film microheaters, we
refrain from processing the heating region into a thin film. The new microheater has a larger
heating area as well as the ability to carry a larger sample mass. Symmetrically distributed
support beams are machined around the working area of the microheater to suspend the
working area of the microheater. These support beams are different from the traditional
cantilever beam structure, which can better absorb the thermal stresses generated by the
heating of the working area. The implementation of this suspended support structure
design also diminishes the power consumption of the microheater. In order to enhance
temperature consistency, we employ a platinum film with a spiral design that encompasses
the entire heating region. Ultimately, we carried out a comprehensive experiment to assess
the electrical–thermal performance of the microheater and the structural stability of the
microheater while it was in operation.

2. Structural Design and Process Flow of Microheater
2.1. Structural Design

Figure 1a illustrates a typical suspended membrane structure consisting of four di-
agonally aligned bridge cantilever beams that offer mechanical support for the central
suspended membrane. During the operation of the microheater, the central suspended
membrane experiences thermal expansion, while the surrounding cantilever beams are
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subjected to an axial force F1 in the direction of the beams, as shown in Figure 1b. In order to
ensure the support strength, the length of the thin-film cantilever beam l1 is very short (the
length is close to the gap between the suspended film and the outer frame, which is usually
tens or hundreds of µm); thus, the cantilever beam cannot effectively absorb the expansion
caused by the heat of the internal suspended film area. Figure 2a shows the shape of a
microheater with support beams after optimization. Instead of a thin-film structure, the
new support beams and the central suspended portion retain the silicon substrate, which
brings a great enhancement to the mechanical structure stability of the microheater. In
contrast to the traditional cantilever beam structure, the novel support beam structure
experiences a transverse force F2 that is perpendicular to the support beam when the central
working zone undergoes thermal expansion, as shown in Figure 2b. Moreover, the length
of the support beam structure l2 is much larger than l1 (the length is close to the size of the
working area of the microheater, and the length of the support beam designed in this paper
reaches 14 mm) so that the support beam can better absorb the thermal expansion of the
working area under the action of the same size of force.

Micromachines 2024, 15, x FOR PEER REVIEW 3 of 15 
 

 

membrane experiences thermal expansion, while the surrounding cantilever beams are 

subjected to an axial force 𝐹1 in the direction of the beams, as shown in Figure 1b. In order 

to ensure the support strength, the length of the thin-film cantilever beam 𝑙1 is very short 

(the length is close to the gap between the suspended film and the outer frame, which is 

usually tens or hundreds of μm); thus, the cantilever beam cannot effectively absorb the 

expansion caused by the heat of the internal suspended film area. Figure 2a shows the 

shape of a microheater with support beams after optimization. Instead of a thin-film struc-

ture, the new support beams and the central suspended portion retain the silicon sub-

strate, which brings a great enhancement to the mechanical structure stability of the mi-

croheater. In contrast to the traditional cantilever beam structure, the novel support beam 

structure experiences a transverse force 𝐹2  that is perpendicular to the support beam 

when the central working zone undergoes thermal expansion, as shown in Figure 2b. 

Moreover, the length of the support beam structure 𝑙2 is much larger than 𝑙1 (the length 

is close to the size of the working area of the microheater, and the length of the support 

beam designed in this paper reaches 14 mm) so that the support beam can better absorb 

the thermal expansion of the working area under the action of the same size of force. 

 
 

(a) (b) 

Figure 1. (a) Schematic diagram of a miniature heater with conventional cantilever beam construc-

tion. (b) Schematic diagram of the cantilever beam structure subjected to axial force during the op-

eration of the microheater. 

 
 

(a) (b) 

Figure 2. (a) Schematic diagram of the microheater with support beam structure designed in this paper. 

(b) Schematic diagram of the force acting on the support beam during the operation of the microheater. 

As shown in Figure 3a, the microheater of the new structure is divided into an inner 

core and an outer frame by the isolation of the surrounding support beams, with the sup-

port beam structure in the red solid box and the inner core region in the red dashed box. 

When the inner core region expands due to heat, it squeezes the surrounding support 

beams. These support beams give solid support to the inner core region but do not hinder 

the expansion of the inner core as in the conventional bridge-type cantilever beam struc-

ture. As shown in Figure 3b, the support beams deform when a lateral force is applied 

perpendicular to them, which greatly reduces thermal stress on the inner core region. The 

suspended construction has the additional benefit of reducing heat dissipation from the 

microheater and decreasing power usage. 

Figure 1. (a) Schematic diagram of a miniature heater with conventional cantilever beam construction.
(b) Schematic diagram of the cantilever beam structure subjected to axial force during the operation
of the microheater.

Micromachines 2024, 15, x FOR PEER REVIEW 3 of 15 
 

 

membrane experiences thermal expansion, while the surrounding cantilever beams are 

subjected to an axial force 𝐹1 in the direction of the beams, as shown in Figure 1b. In order 

to ensure the support strength, the length of the thin-film cantilever beam 𝑙1 is very short 

(the length is close to the gap between the suspended film and the outer frame, which is 

usually tens or hundreds of μm); thus, the cantilever beam cannot effectively absorb the 

expansion caused by the heat of the internal suspended film area. Figure 2a shows the 

shape of a microheater with support beams after optimization. Instead of a thin-film struc-

ture, the new support beams and the central suspended portion retain the silicon sub-

strate, which brings a great enhancement to the mechanical structure stability of the mi-

croheater. In contrast to the traditional cantilever beam structure, the novel support beam 

structure experiences a transverse force 𝐹2  that is perpendicular to the support beam 

when the central working zone undergoes thermal expansion, as shown in Figure 2b. 

Moreover, the length of the support beam structure 𝑙2 is much larger than 𝑙1 (the length 

is close to the size of the working area of the microheater, and the length of the support 

beam designed in this paper reaches 14 mm) so that the support beam can better absorb 

the thermal expansion of the working area under the action of the same size of force. 

 
 

(a) (b) 

Figure 1. (a) Schematic diagram of a miniature heater with conventional cantilever beam construc-

tion. (b) Schematic diagram of the cantilever beam structure subjected to axial force during the op-

eration of the microheater. 

 
 

(a) (b) 

Figure 2. (a) Schematic diagram of the microheater with support beam structure designed in this paper. 

(b) Schematic diagram of the force acting on the support beam during the operation of the microheater. 

As shown in Figure 3a, the microheater of the new structure is divided into an inner 

core and an outer frame by the isolation of the surrounding support beams, with the sup-

port beam structure in the red solid box and the inner core region in the red dashed box. 

When the inner core region expands due to heat, it squeezes the surrounding support 

beams. These support beams give solid support to the inner core region but do not hinder 

the expansion of the inner core as in the conventional bridge-type cantilever beam struc-

ture. As shown in Figure 3b, the support beams deform when a lateral force is applied 

perpendicular to them, which greatly reduces thermal stress on the inner core region. The 

suspended construction has the additional benefit of reducing heat dissipation from the 

microheater and decreasing power usage. 

Figure 2. (a) Schematic diagram of the microheater with support beam structure designed in this
paper. (b) Schematic diagram of the force acting on the support beam during the operation of
the microheater.

As shown in Figure 3a, the microheater of the new structure is divided into an inner
core and an outer frame by the isolation of the surrounding support beams, with the support
beam structure in the red solid box and the inner core region in the red dashed box. When
the inner core region expands due to heat, it squeezes the surrounding support beams.
These support beams give solid support to the inner core region but do not hinder the
expansion of the inner core as in the conventional bridge-type cantilever beam structure. As
shown in Figure 3b, the support beams deform when a lateral force is applied perpendicular
to them, which greatly reduces thermal stress on the inner core region. The suspended
construction has the additional benefit of reducing heat dissipation from the microheater
and decreasing power usage.
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Figure 3. (a) Front graphic diagram of microheater. (b) Schematic working diagram of support
beam. (c) Schematic cross-section of a microheater. (d) Schematic diagram of heating resistor and
temperature measuring resistor.

The heat-generating material for the preparation of microheaters must be characterized
by a high melting point, high resistivity, good thermal conductivity, and a small coefficient
of thermal expansion [21]. Platinum, tungsten, molybdenum, polycrystalline silicon, and
titanium nitride are used as heat-generating materials for microheaters, but each has its own
advantages and disadvantages. In recent years, titanium nitride has received particular
attention due to its high melting point, good thermal conductivity, mechanical and chemical
stability, etc. [22]. Creemer et al. [23] developed a microheater with titanium nitride as a
heat-generating material that can operate up to 700 ◦C but faced the problem of high stress
in the titanium nitride film during fabrication. Jithin M.A. et al. [24] investigated the effect
of substrate temperature on the properties of titanium nitride thin films and found that the
resistivity of titanium nitride thin films decreases with increasing substrate temperature.
Platinum is one of the most commonly used heater materials because of its high melting
point, good electrical conductivity, stable chemical properties, and excellent mechanical
properties [25,26]. Therefore, in this paper, Pt is chosen as the material for heat-generating
and temperature-measuring resistors. Figure 3c shows the cross-sectional structure of the
microheater. The thermal conductivity of SiO2 is relatively poor, so a layer of Si3N4 with
high thermal conductivity is wrapped around the heating resistor on the inner core surface
to enhance the temperature uniformity of the inner core. As shown in Figure 3d, in order
to further ensure temperature uniformity, the structure of the heating resistor is designed
as a double-helix structure. The width of the resistance wire is 200 µm. The temperature
measurement resistor is adjacent to the heating resistor and is in the same layer, which
serves to measure the surface temperature of the microheater. The main dimensions and
materials of the structure are shown in Table 1.
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Table 1. Materials and structural dimensions of microheaters.

Material Thickness (nm)

Membrane Si3N4 (layer S1) S1 = 300
SiO2 (layer S2) S2 = 500
SiO2 (layer S3) S3 = 500

Heating resistor Ti + Pt 250
Temperature measuring

resistor Ti + Pt 250

Chip Si t = 5 × 105

We used COMSOL Multiphysics 5.6 simulation software to run coupled electrical,
thermal, and structural simulations of microheaters. Specifically, we used the three parts
of the software to conduct the simulations, namely, Electric Currents in Layered Shells,
Heat Transfer in Solids, and Solid Mechanics. Refer to Table 1 for specific material and size
settings for the microheater. To simplify the model, ignore the Pt thin film used only for
temperature measurement. First, voltage is set to the heating resistors of the microheater
within the Electric Currents in Layered Shells assembly. An operating voltage of 100 V is
set at one of the electrodes, and at the other electrode, it is set to ground. Then, the surface
heat flux of the microheater is set within the Heat Transfer in Solids assembly with a value
of 5 W/(m2·K). Finally, within the Solid Mechanics assembly, fixed constraints distributed
around the perimeter are added to the microheater. With the above setup, let the COMSOL
Multiphysics software solve the model. As shown in Figure 4, the maximum temperature
of the center of the microheater at 100 volts can reach 393 ◦C. From the trend of temperature
distribution, it can be seen that the temperature on the support beam shows a significant
downward trend, so the support beam plays the role of thermal insulation and reduces the
loss of heat. Taking the center of the microheater as the origin and the centerline along the
horizontal direction as the x-axis, the temperature distribution of the microheater along
the centerline is shown in Figure 5. As can be seen from the blue comparison line in the
figure, the microheater working area has good temperature uniformity, with a maximum
temperature difference of 7.5 ◦C in the range of 14 × 14 mm2 at the center and a maximum
temperature difference of 2.8 ◦C in the range of 10 × 10 mm2. The results of the microheater
stress simulation are shown in Figure 6. From the enlarged view of the details circled by
the red dashed box, it can be seen that the deformation of the surrounding support beams
absorbs the thermal stresses generated by the heating of the working area and ensures the
stability of the working area.
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Figure 6. Structural stress simulation diagram of microheater.

2.2. Process Flow

The overall processing flow of the microheater is shown in Figure 7. First, deep silicon
etching was used to machine through holes on the surface of a 500 µm thick double-thrown
silicon wafer to form support beams. Then, a SiO2 layer with a thickness of 500 nm was
deposited on both sides of the wafer using thermal oxidation. Because Pt and SiO2 do
not stick together very well, 50 nm Ti was sputtered on as an adhesion layer via reactive
magnetron sputtering. This was followed by 200 nm thick Pt being sputtered on. Ion
etching was then used to make the temperature measurement resistor and spiral resistor
wire into the shape that was wanted. Then, a 300 nm thick layer of Si3N4 was deposited on
the surface of the inner core area using PECVD. The Si3N4 layer is 100 nm thicker than the
Pt layer underneath to ensure complete insulation and to protect the resistor wires from
environmental influences. The excess silicon nitride was then etched away in the pad area
using the RIE technique, exposing the underlying Pt to facilitate lead bonding. Finally,
individual microheaters were cut from the wafer.
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According to the aforementioned process, we successfully produced 12 microheaters
on a 4-inch wafer, each with a substantial heating surface area, as shown in Figure 8. From
the illustration, it is evident that all the remaining microheaters are in pristine condition,
except for one microheater inner core that has sustained damage to one of its corners during
long-distance transportation. We performed a basic power-on test on all the processed
microheaters, and the outcomes indicated that all the microheaters functioned correctly. To
make the experimental results comparable, an unoptimized planar microheater (Structure 1)
and an optimized microheater with a support beam structure (Structure 2) were fabricated
using the same process. The optical images of the machined individual microheaters are
shown in Figure 9, we have circled some of the important structures in the microheater
with red wireframes and labeled the dimensions next to them, while the enlarged view is
circled with a red dashed wireframe.
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3. Electrical–Thermal–Mechanical Structural Characteristics of Microheater

In this chapter, we performed a complete electrical–thermal–mechanical structural
characterization of the microheater. First, we tested the electrical–thermal performance
of the microheater. The power consumption temperature profile, the temperature resis-
tance coefficient of resistance of the measured temperature, and the rate of warming and
cooling were determined by heating the microheater. The maximum temperature that
the microheater can reach was tested. Finally, the deformation that occurs in the work-
ing area of the heated microheater was investigated with respect to the stability of the
mechanical structure.

3.1. Electrical–Thermal Characteristics

We analyzed the electrical–thermal performance of the microheater. The experimental
setup has four components: a microheater, a programmable DC power supply, an infrared
camera (Testo 890), and a workstation for control and documentation. The wire-bonding
process is used to bond the leads on the heating resistor and temperature measuring
resistor electrodes for subsequent wire connections. The measured temperature and power
relationship, applying a DC voltage to the microheater heating resistor through a DC
power supply, are shown in Figure 10. Based on the graph, it is evident that Structure 2
demonstrates significantly superior power consumption characteristics. When the input
voltage is 100 V, Structure 2 reaches 350 ◦C with 6 W of heating power. In contrast, the
power consumption of Structure 1 with the same access to 100 V reaches 6.3 W, while the
temperature only reaches 322 ◦C. Thus, the structural design of the support beam designed
in this paper can provide good thermal insulation and reduce the power consumption of the
microheater. It should be noted that the processed platinum film is not absolutely uniform,
and the measurements were not performed under vacuum conditions with uncontrolled
convective heat dissipation between the microheater and the environment. As a result,
there are some deviations between the experimentally measured temperatures and the
simulation results, but in general, they are within acceptable limits.

The principle of metal thin film temperature measurement is that when the tem-
perature rises, its resistance also rises, and Pt has a good linearity of temperature resis-
tance coefficient. Therefore, it is possible to respond to changes in temperature based
on changes in resistance [27,28]. We used an almost linear fit to the measured tempera-
ture and the temperature resistance value to find the temperature coefficient of resistance
(TCR). Figure 11 shows the relationship between resistance and temperature, which shows
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that the temperature–resistance curve is highly linear. TCR can be calculated using the
following equation:

α = (RT − R0)/[R0(T − T0)] (1)

where α represents the TCR value, and R0 represents the resistance at the initial temper-
ature T0. In this paper, the TCR value of the temperature measurement resistance of the
microheater is calculated to be 0.00205 K−1.
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Figure 11. Temperature–resistance curve of microheater measuring resistance.

The main heating range of our microheater is from room temperature to 350 ◦C,
but some special organic materials have a melting point of about 500 ◦C. Therefore, we
subjected the microheater to further high-temperature testing. The voltage was brought to
155 V by controlling the DC power supply, at which time the power consumption of the
microheater came to 9.1 W, while the temperature of the microheater increased to 497.8 ◦C.
Figure 12 shows a thermal image of the microheater at this temperature. The microheater
was tested at that temperature without any warping or cracking of the surface.

The rate of warming of Structure 2 was tested at a safe temperature of 350 ◦C. The
current temperature of the microheater is detected by the previously calibrated temperature
measuring resistor. Similarly, the cooling rate of the microheater was tested after turning
off the power. The heating and cooling curves of the microheater are shown in Figure 13.
The test results show that the microheater heats up at an average rate of 14.9 ◦Cs−1 and
cools down at an average rate of 10.3 ◦Cs−1.
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3.2. Electrical–Thermal Characteristics

To confirm the enhanced structural stability of the microheater with the support beam
structure proposed in this study during operation, we conducted measurements of the
deformation of Structure 1 and Structure 2 under heating conditions, and the experimental
setup is shown in Figure 14. The whole experimental system consists of five parts: a fixed
MEMS microheater, a laser 3D profilometer, a fully enclosed type-slide module driven
by a motor, a DC power supply, and a workstation for control and recording. Figure 15
shows the whole experimental flow. First, the microheater fixed on the linear module is
heated by the DC power supply, and the temperature of the microheater is measured by
the temperature measuring resistor. After the temperature is stabilized, the linear module
drives the fixed microheater to do horizontal displacement so that the entire plane of the
microheater passes through the beam of the laser 3D profiler. The laser 3D profiler scans the
working area of the heater, and the surface profile of the heater is obtained by processing
the measured point cloud data. The experimental procedure was repeated at different
temperatures to obtain the deformation profiles and data of the microheater at different
temperatures. In order to ensure the stability of the test process, the entire test system is
placed on a pneumatic platform.
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Figure 15. Experimental flowchart.

Figure 16a shows a 3D contour map of Structure 1 heated to 100 ◦C, and Figure 16b
shows a 3D contour map of Structure 1 heated to 350 ◦C. The blue to red color in the figure
indicates that the deformation increases sequentially. It can be seen from the figure that the
center region of Structure 1 undergoes a raised deformation during the heating process,
where the largest deformation is located in the center of the microheater. After several
measurements, the two-dimensional cross-section profile curves of the center working
region of Structure 1 at different temperatures are shown in Figure 17. It can be seen
that the higher the temperature, the larger the bulge at the center of the microheater. The
microheater center deformation reaches a maximum of 9 µm at a temperature of 350 ◦C.
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Figure 17. Two dimensional cross-sectional profile curves of Structure 1 in the working area at
different temperatures.

Similarly, Structure 2 was heated and scanned, and the resulting 3D contour map
is shown in Figure 18. It can be seen that the center working area of Structure 2 still
maintains an intact surface flatness after warming up, as the colors in the 3D contour map
are essentially the same. The two-dimensional cross-section profile curves of the working
region of Structure 2 at different temperatures are shown in Figure 19, from which it can
be seen that the cross-section of Structure 2 still has good linearity at high temperatures
without large deformation. This indicates that the support beam structure designed in
this paper can well absorb the expansion of the center working area due to heat, which
enhances the mechanical–structural stability of the microheater.
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different temperatures.

4. Conclusions

This paper investigates the design and fabrication of a MEMS microheater with a
support beam structure. The microheater is characterized by a large heating area and low
thermal stress in the heating region. We used COMSOL to simulate the microheater’s
temperature and stress distribution after it was turned on. The simulation results show
that the microheater has a highly uniform surface temperature and that the support beam
does a good job of absorbing thermal stress in the heating area.

A microheater with a heating area of 10 × 10 mm2 was obtained by using bulk micro-
machining technology and surface micromachining technology. The machining process
and fabrication procedure of the MEMS microheater are introduced, and a microheater
with a heating area of 10 × 10 mm2 is obtained. We tested the electrical and thermal
characteristics of the microheater in detail. The experimental results show that the mi-
croheater designed in this paper has a very good heating efficiency, requiring only 6 W
of heating power to warm up the heating area to 350 ◦C, and the heating area has good
temperature uniformity. The average heating rate of the microheater is 14.9 ◦C, and the
average cooling rate is 10.3 ◦C. Furthermore, the capacity of the support beam structure to
mitigate thermal stresses in the operational region of the microheater was confirmed. A
laser 3D profilometer was employed to scan the operational region of the microheater. The
experimental findings demonstrate that the microheater’s working area, when equipped
with the support beam structure, consistently maintains a flat configuration without any
deformation throughout varying temperatures. The support beam construction proposed
in this research can significantly enhance the structural stability of the microheater.
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