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Abstract: With the technological scaling of metal–oxide–semiconductor field-effect transistors (MOS-
FETs) and the scarcity of circuit design margins, the characteristics of device reliability have garnered
widespread attention. Traditional single-mode reliability mechanisms and modeling are less sufficient
to meet the demands of resilient circuit designs. Mixed-mode reliability mechanisms and modeling
have become a focal point of future designs for reliability. This paper reviews the mechanisms
and compact aging models of mixed-mode reliability. The mechanism and modeling method of
mixed-mode reliability are discussed, including hot carrier degradation (HCD) with self-heating
effect, mixed-mode aging of HCD and Bias Temperature Instability (BTI), off-state degradation (OSD),
on-state time-dependent dielectric breakdown (TDDB), and metal electromigration (EM). The impact
of alternating HCD-BTI stress conditions is also discussed. The results indicate that single-mode
reliability analysis is insufficient for predicting the lifetime of advanced technology and circuits and
provides guidance for future mixed-mode reliability analysis and modeling.

Keywords: MOSFET; mixed-mode reliability; hot carrier degradation (HCD); bias temperature
instability (BTI); self-heating; off-state degradation (OSD); time-dependent dielectric breakdown
(TDDB); electromigration (EM)

1. Introduction

To sustain the scaling down of complementary metal–oxide–semiconductors (CMOS),
new materials and structures have been continuously incorporated into the design and
manufacturing of CMOS devices, such as High-κ/metal gate (HKMG) [1–3], strain tech-
nology [4–6], and multi-gate transistors [7–10]. For the past 50 years, CMOS devices have
evolved from planar transistors with micron-level channel lengths to gate-all-around (GAA)
transistors with sub-twenty nanometer channel lengths [11–16]. However, with the scaling
down of CMOS, the continuous application of new technologies, and the increasing com-
plexity of manufacturing processes, reliability issues are gradually emerging as a significant
challenge in device applications [17–23].

In practical circuit operations, devices experience various reliability issues, triggering
non-ideal effects such as circuit functional aging and failure. As shown in Figure 1, taking
a typical inverter circuit as an example, devices undergo three typical biasing conditions:
gate voltage (Vgs) > 0 V, drain voltage (Vds) = 0 V; |Vgs| > 0 V, |Vds| > 0 V and Vgs = 0 V,
|Vds| > 0 V. The degradation phenomena observed in NMOS or PMOS devices under
the bias condition of |Vgs| > 0 V, Vds = 0 V are, respectively, termed positive bias temper-
ature instability (PBTI) [24–26] and negative bias temperature instability (NBTI) [27–33].
The degradation phenomenon observed when the device is under the bias condition of
|Vgs| > 0 V, |Vds| > 0 V is referred to as hot carrier degradation (HCD) [34–41]. The
degradation observed under the bias condition of Vgs = 0 V, |Vds| > 0 V is termed off-state
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degradation (OSD) [42–44]. Meanwhile, during device operation, the devices also face
failure issues such as time-dependent dielectric breakdown (TDDB) [45–47] and electromi-
gration (EM) [48–50].
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Figure 1. Schematic of the different degradation modes in an inverter.

In previous research, in-depth studies have been conducted on the degradation mech-
anisms and aging models of individual degradation modes. For instance, the accepted
mechanism for BTI is the capture/emission of carriers by oxide traps, leading to a signifi-
cant degradation in the threshold voltage [51,52]. The hydrogen bridges and hydroxyl-E’
are widely acknowledged as the origins of BTI traps [53–55]. For HCD, the phenomenon
involves the breakage of Si-H bonds by high-energy hot carriers, forming interface states
that induce degradation in the threshold voltage and mobility [56–58]. As device nodes
advance and carrier energy decreases, electron–electron scattering (EES) and multiple
vibration excitation (MVE) mechanisms have been proposed to explain the contributions
of low-energy carriers to HCD [59–61]. Simultaneously, the contribution of oxide trap-
induced degradation in HCD becomes more pronounced, especially in FinFET devices,
where HCD is considered a combined effect of oxide traps and interface states [62,63]. In
comparison to HCD and BTI, there is less research on OSD due to its less pronounced
occurrence in long-channel devices. OSD encompasses the combined action of carriers and
secondary carriers generated by impact ionization, resulting in a reduction in threshold
voltage or non-monotonic changes [64]. Based on the corresponding mechanisms of differ-
ent degradations, compact models are proposed for predicting aging. In the past, research
on the failure mechanisms of TDDB and EM mainly focused on gate dielectric breakdown
under Vg stress and source/drain metal electromigration [65–68] by establishing a failure
extrapolation model to constrain circuit design, such as maximum voltage and minimum
metal line width.

However, in practical device and circuit applications, devices do not undergo single-
mode reliability issues; instead, they operate under mixed-mode issues [69–71]. Previous
research has predominantly focused on pure single-mode reliability and independently
modeled each mechanism. This approach, which is based on the prediction of aging using
a single-mode reliability mechanism, fails to accurately predict the lifetimes of advanced
devices. Especially with the increasingly scarce circuit design margin today, complex
circuit systems design based on advanced devices demand more precise aging prediction
models to ensure the most appropriate design margins [72,73]. Therefore, recent research
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has gradually turned its attention to the study of the mechanisms and models of mixed-
mode reliability.

In this paper, we provide a comprehensive review of the mechanisms and the model
concerning mixed-mode reliability. The mixed-mode reliability mechanisms and the impact
of alternating stress were discussed separately. First, we summarized the mixed-mode
aging mechanisms, including the hot carrier degradation with self-heating effect, hot
carrier degradation with inhomogeneous BTI, and OSD, and provided existing modeling
methods. We also analyzed the mixed-mode failure mechanisms of on-state TDDB and gate
metal electromigration. Then, we summarized the HCD-BTI alternating stress degradation.
It is underscored that employing a single-mode reliability model for modeling proves
inadequate in accurately predicting mixed-stress aging in advanced devices. Consequently,
there arises a critical imperative to establish a prediction model and framework based on
mixed-mode reliability.

2. Mixed-Mode Reliability Mechanisms
2.1. Hot Carrier Degradation with Self-Heating Effect

The introduction of materials with low thermal conductivity and 3D device geometries
results in FinFET devices having limited heat dissipation capability and more severe self-
heating effects [74–77]. Previous studies on the self-heating effect of FinFET technology
have shown a significant impact on performance and HCD [78–81]. As shown in Figure 2,
the self-heating dominant region coincides with the HCD stress region. Thus, the impact of
the self-heating effect on HCD requires a thorough investigation.
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To investigate the hot carrier degradation with a self-heating effect, two key issues
need to be addressed: (1) how to accurately characterize the self-heating effect of the device
and (2) how to analyze the temperature dependence of hot carrier degradation accurately.
There are several methods for characterizing the self-heating effect, such as the Pulse IV
method [82,83], the gate resistance method [84], the heat-sensor method [85], etc. The
Pulse IV method involves comparing the current under low-duty-cycle ultra-narrow pulse
signals with DC I-V to extract the self-heating effect. This method relies on an ultra-fast
measurement platform to ensure that the pulse width is less than the device’s thermal time
constant (τ < 10 ns) and provides enough scattering time to avoid thermal accumulation
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effects. The gate resistance method requires a device with a specific gate structure, applying
voltage to both ends of the four-terminal gate and testing the gate current at the other
two ends, inferring the channel temperature by comparing the change in gate resistance.
Similarly, the heat-sensor method relies on a common source configuration, where one
MOS device acts as the “heat” and the adjacent MOS acts as the “sensor”. When voltage is
applied to the “heat” device, its self-heating effect raises the ambient temperature around
the “sensor” device, affecting the transfer characteristics of the “sensor” device. However,
the temperature around the “sensor” device will be lower than the actual self-heating
temperature of the “heat” device, leading to an underestimation of the self-heating effect.

After accurately characterizing the self-heating effect of FinFETs, it is essential to
incorporate the temperature influence into the degradation of hot carriers. Therefore,
the temperature dependence of HCD becomes a crucial aspect to explore further. As
mentioned earlier, the degradation amount of HCD in long-channel devices decreases
with increasing channel temperature, showing negative temperature dependence due
to the single vibration excitation (SVE) mechanism mainly dominating in long-channel
devices, as elevated temperature increases lattice scattering, reducing carrier energy [86,87].
Conversely, in short-channel devices, the degradation amount of HCD increases with
rising channel temperature, exhibiting positive temperature dependence due to the MVE
mechanism mainly dominating in short-channel devices, as higher temperature enhances
carrier energy [88,89]. However, recent studies have found that HCD in advanced process
node devices exhibits non-uniform temperature dependence, meaning that the temperature
dependence changes with different bias conditions and stress times [90,91], as shown
in Figure 3.
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Figure 3. Experimental results of nFinFET show the non-universal HCD temperature dependence.
(a) Vgs < Vds bias condition; (b) Vgs > Vds bias condition. Data from Ref. [90].

The cause of non-uniform temperature dependence in HCD is the varying activation
energy (Ea) of different traps [37,90]. The proportions of various traps also change with
different bias conditions, ambient temperatures, and degradation times, leading to a macro-
scopic change in the Ea of hot carrier degradation. Viewing this non-uniform temperature
dependence from the perspective of trap generation mechanisms reveals that it is caused by
the change in the dominant mechanism of trap generation under different stress conditions.

The coupled degradation of hot carriers and self-heating effects can be reflected in
the frequency dependence and layout dependence of HCD. As shown in Figure 4, with
the increase in the device frequency, self-heating effects gradually decrease, leading to a
reduction in HCD degradation [92]. Meanwhile, multi-fin devices experience more severe
self-heating effects due to mutual heating, resulting in more severe HCD for multi-fin
devices [93], as shown in Figure 5. However, these studies are based on characterization
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results under worst-case stress conditions (Vgs = Vds). In actual circuits, devices are
not always or continuously under worst-case stress conditions. Due to the non-uniform
temperature dependence of HCD, the degradation of HCD does not necessarily increase
with the increase in self-heating effects in the full bias map. Thus, hot carrier degradation
may have different layout and frequency dependencies in different bias ranges.
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2.2. Hot Carrier Degradation with Inhomogeneous Bias Temperature Instability

Generally, under bias conditions where Vgs > 0 V and Vds > 0 V, the predominant
degradation is commonly attributed to hot carrier degradation. However, across a wide
range of {Vds, Vgs} bias maps, the degradation is not solely governed by a single mechanism
but rather exhibits a mixed-mode degradation mechanism, as shown in Figure 6. In
previous studies, the mixed HCD and inhomogeneous BTI degradation existed in Vgs > 0 V,
Vds > 0 V stress conditions, as shown in Figure 7 [94]. Hence, the pressing challenge is to
analyze the contributions of inhomogeneous BTI components and pure HCD components
and establish an accurate predictive model.
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One approach involves analyzing the contribution of inhomogeneous BTI from the
perspective of the vertical electric field distribution in the channel, thereby isolating the
contribution of pure HCD [95]. It has been observed that under HCD stress, BTI exhibits
inhomogeneous distribution. This is due to changes in channel potential and carrier dis-
tribution influenced by non-equilibrium transport. Early attempts involved establishing
a simple model for inhomogeneous BTI degradation by calculating the impact of Vds
on channel potential. For example, at Vgs = Vds, the inhomogeneous BTI degradation is
approximately 50% of that under BTI stress alone, as shown in Figure 8. Based on this
approach, a consolidated model for HCD degradation decoupling analysis and inhomoge-
neous BTI contributions can be established [39]. The degradation contribution ratio of pure
HCD and inhomogeneous BTI under different frequency {|Vgs| > 0, |Vds| > 0} stresses
can be decoupled and analyzed across the entire voltage domain, as shown in Figure 9.
When the frequency reaches 1 MHz, the contribution of fast traps is neglected, leading to
a reduced proportion of BTI components. However, at 1 GHz, the self-heating effect of
the device decreases. For nFinFET, the oxide trap 2 of HCD has a larger Ea than the PBTI
trap, causing an increased proportion of PBTI at GHz. In contrast, for pFinFET, the NBTI
trap has a larger Ea, resulting in a reduced proportion of NBTI at GHz. This analytical
approach can effectively estimate inhomogeneous BTI degradation but overlooks the im-
pact of secondary effects in non-equilibrium transport. Subsequent research revealed that
secondary carriers generated by non-equilibrium transport affect the carrier distribution
near the source region, influencing inhomogeneous BTI degradation. This study suggests
that high Vds bias not only reduces the occupancy probability of traps at the drain region
but also affects traps near the source region [94,96].
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2.3. Mechanisms in Off-State Degradation

The off-state bias condition (|Vgs| = 0 V, |Vds| > 0 V) is a common bias condition in
practical circuit operations. Therefore, studying the aging mechanisms and modeling of
devices under off-sate conditions is crucial for predicting device lifetime and designing
aging-aware circuits. In HKMG planar devices, more publications report that off-state stress
leads to an increase in on-state current degradation and a decrease in threshold voltage,
also called the hot-electron-induced punch-through (HEIP) effect [97–99], as shown in
Figure 10. This degradation phenomenon is explained as secondary carriers being captured
by traps near the drain region, causing a decrease in effective channel length, resulting
in reduced threshold voltage and an increase in leakage current. However, in advanced
FinFETs, off-state degradation is considered a complex phenomenon involving multiple
electrical traps and mechanisms [100,101]. As shown in Figure 11, the non-monotonic
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shift of threshold voltage caused by the contribution of multiple electrical traps has been
observed in FinFETs.
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Figure 10. Experimental results of OSD in pMOSFET—Vth decrease and Idsat increase after OSD.
Data from Ref. [97].
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Figure 11. Experimental results of OSD in FinFET: the non-monotonic shift of threshold voltage
caused by the contribution of multiple electrical traps. Data from Ref. [101].

For PMOS, secondary electrons caused by band-to-band tunneling and impact ion-
ization (I/I) are observed in the channel-drain region. These electrons are trapped by the
oxide field into gate oxide traps near the drain region, such as PBTI. The high-energy part
is accelerated by the lateral electric field, breaking Si-H bonds near the source region, like
electron-induced HCD (eHCD), resulting in a significant decrease in |Vth| and degra-
dation of mobility. Simultaneously, high-energy hole injections from the source region
under lateral electric field acceleration can also break Si-H bonds near the drain region,
causing Vth degradation similar to hole-induced HCD (hHCD). Furthermore, both eHCD
and hHCD lead to degradation in subthreshold swing and mobility. Similar mechanisms
exist in NMOS. For NMOS, secondary holes are trapped by the electric field into gate
oxide traps near the drain region, such as NBTI, or break Si-H bonds in the source region
under lateral electric field acceleration, like hHCD. Simultaneously, the high-energy part of
electrons can also break Si-H bonds in the drain region, causing Vth degradation similar to
eHCD. Since HCD is almost irreversible, PBTI in pFinFET (NBTI in nFinFET) contributes to
the recoverable part of off-state stress degradation. It is worth noting that the main HCD
mechanisms are different for different device types. Due to the higher injection energy of
holes (4.7 eV) and the lower saturation value of interface states, hHCD in nFinFET can be
neglected, but in pMOS, where holes are the main charge carriers, hHCD cannot be ignored.
Therefore, in nFinFET, the main trap types are NBTI and eHCD traps, while in pFinFET, the
main traps are PBTI, hHCD, and eHCD traps. Based on the above mechanism, HCD and
BTI models are employed to describe the degradation contributions of each component
in OSD. The BTI recovery model is utilized to predict OSD recovery, as the recoverable
traps of BTI contribute to the recovery of OSD. This model can effectively predict both
the degradation and recovery of the threshold voltage. Simultaneously, compact models
for subthreshold swing and mobility degradation are established based on the saturated
power-law model due to the depletion of the available Si–H bond.

2.4. On-State Time-Dependent Dielectric Breakdown with Self-Heating Effect

In planar devices, much research has focused on conventional gate-only time-dependent
dielectric breakdown (Vgs-only TDDB) under stress conditions where the gate voltage is
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applied without drain voltage (Vgs > 0, Vds = 0). On the other hand, on-state TDDB (Vgs > 0,
Vds > 0) has received less attention due to the reduction in the gate oxide field caused by ap-
plying drain voltage, leading to improved lifetime for planar devices under on-state TDDB
conditions. However, with the advancement to FinFET technology at advanced technology
nodes, the impact of on-state TDDB on device lifetime becomes more severe, as shown in
Figure 12 [102,103]. Experimental results also indicate that the on-state TDDB lifetime of
FinFET decreases with increasing drain bias. A widely accepted explanation is that the
self-heating effect under on-state conditions facilitates TDDB. With a larger drain bias, the
device has higher power dissipation, and the more severe self-heating effect accelerates
the breakdown of the gate oxide. TEM characterization analysis has revealed that under
on-state TDDB stress conditions, breakdown occurs near the middle of the Fin, as shown in
Figure 13. The observations show that under on-state TDDB stress, the “hillock” on the
silicon Fin penetrates through the dielectric layer (the dielectric breakdown-induced epitaxy
(DBIE)) [102]. In previous reports, the DBIE phenomenon of Vgs-only TDDB occurred at the
bottom of Fin [104]. The breakdown point has shifted from the bottom of the Fin in Vgs-only
TDDB to the middle of the Fin in on-state TDDB. Simulations using multi-physics field
simulation, considering self-heating effects and electric field distribution, have illustrated
that a local hot spot in the middle of the Fin is critical to the occurrence of breakdown in the
middle. Thus, the lifetime prediction model for on-state TDDB not only needs to consider
the extrapolation of the gate electric field but also the influence of dissipated power [103].
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However, prior research did not consider the influence of hot carriers in on-state
TDDB, so understanding the role of hot carriers in on-state TDDB and how to characterize
their impact remains an area for further exploration.



Micromachines 2024, 15, 127 11 of 21

Micromachines 2024, 15, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 12. Weibull slops of on-state TDDB with different Vds bias. As the Vds increases, the lifetime 
of TDDB decreases. Data from [103]. 

 
Figure 13. The comparison of high-resolution transmission electron microscope images of dielectric 
breakdown-induced epitaxy morphologies compared in (a) Vgs-only TDDB and (b) on-state TDDB; 
comparison of tensile strain analysis in (c) Vgs-only TDDB and (d) on-state TDDB. Tensile strain 
variations induced by DBIE near the Fin middle have been observed after on-state TDDB [102]. 

0.001 0.01 0.1 1 10 100
-5

-4

-3

-2

-1

0

1

2

ln
(-l

n(
1-

F)
)

TBD (s)

 Vds = 0.5V
 Vds = 0.9V
 Vds = 1.2V

14nm FinFET

Vgs = 2.3V

Figure 13. The comparison of high-resolution transmission electron microscope images of dielectric
breakdown-induced epitaxy morphologies compared in (a) Vgs-only TDDB and (b) on-state TDDB;
comparison of tensile strain analysis in (c) Vgs-only TDDB and (d) on-state TDDB. Tensile strain
variations induced by DBIE near the Fin middle have been observed after on-state TDDB [102].
Copyright (2023) The Japan Society of Applied Physics.

2.5. Gate Metal Electromigration with On-State Soft Breakdown

Due to the extremely weak gate current, gate metal electromigration is typically
overlooked in device and circuit design. However, past research has revealed that a mixed
mode of self-heating effects and soft breakdown can lead to gate metal electromigration [97].
As shown in Figure 14, TEM images illustrate non-uniform contrast in the M0 layer after
a soft breakdown in the on-state, indicating gate metal electromigration. Simultaneously,
as soft breakdown deteriorates, gate leakage current increases, aggravating gate metal
electromigration and resulting in void formation. The results indicate tungsten metal ions
diffuse to the gate through Via. Other metal ions, such as titanium from Via filler, remain
uncontaminated. Correspondingly, there is no occurrence of gate metal electromigration
under Vgs-only soft breakdown stress conditions. Simulations considering gate leakage
current and self-heating effects indicate that the combined effect of increased leakage
current and self-heating is a significant factor causing gate metal electromigration. A
layout design featuring a double via is proposed to significantly mitigate gate metal
electromigration failure by reducing gate metal current and self-heating effects.

It is worth noting that as gate metal lines and transistors are tightly scaled at advanced
nodes, gate metal electromigration reliability becomes more severe. However, addressing
this issue is crucial for enhancing the future reliability design of advanced circuits.
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3. Impact of Alternating Stress Conditions

During the operation of circuits, devices typically undergo complex alternating stress
conditions. In digital circuits, devices are often influenced by BTI and off-state stress during
signal stability, while during signal transitions, they are affected by HCD. In addition,
some analog circuits (such as ADCs, amplifiers, etc.) may operate under alternating
HCD and BTI stresses. Therefore, in practical circuit aging analysis, analyzing aging
under alternating bias conditions becomes crucial. Past research indicates that models
simply superimposing single degradation mechanisms struggle to precisely match real
experimental data, as shown in Figure 15 [95,105–107]. This is attributed to the influence of
two major factors: (1) The HCD phase includes contributions from inhomogeneous BTI.
When analyzing alternating HCD-BTI stresses, it is necessary to consider the historical
effect of inhomogeneous BTI. (2) The influence of HCD stress on the recovery process
of BTI traps. The secondary carriers from HCD can significantly enhance the recovery
effect of BTI reported in the previous study, as shown in Figure 16. This may be attributed
to the substantial generation of secondary electrons in PMOS under severe Vds stress,
leading to the excessive emission of NBTI traps [108]. Therefore, in establishing a mixed
degradation model, it is necessary to consider the inhomogeneous BTI degradation within
HCD. Simultaneously, it is necessary to consider the impact of the historical effects of
inhomogeneous BTI on the pure BTI stage and the influence of the historical effects of pure
BTI on inhomogeneous BTI. In the recovery stage, it is essential to develop BTI recovery
models under different Vds voltages to accurately describe the recovery of BTI during the
HCD stress stage.
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Figure 15. The comparison of experimental data and model prediction. The model with simple
superposition of a single degradation mechanism cannot predict the experimental data and needs to
consider the historical effect of inhomogeneous BTI during the HCD stage. Data from Ref. [105].
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Figure 16. Measurement results of alternating HCD-BTI stress conditions. BTI recovery exhibits an
abnormal recovery trend starting from the HCD stress stage. Data from Ref. [108].

Moreover, for FinFETs, the self-heating effect also plays a crucial role in mixed mode
degradation under alternating stress conditions. The transient self-heating effect introduced
during the HCD stage will have an impact on the degradation and recovery stages of BTI
in alternating HCD-BTI stress conditions. Thus, in the actual circuit simulation process, the
HCD-BTI mixed stress model with a transient self-heating effect needs to be established [71].
As shown in Figure 17, a mixed-mode HCD-BTI aging prediction framework containing
transient self-heating effects is proposed. This framework has been implemented and
validated using silicon data. The heating and cooling stages are divided into multiple time
intervals, incorporating the historical effects of BTI degradation at different temperatures
through the introduction of the effective time (teff) concept. Therefore, when assessing
the degradation of complex alternating stress waveforms, one not only needs to consider
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multiple mechanisms for constructing aging models but also faces the challenge of the low
computational efficiency of complex mixed aging models.
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Figure 17. The mixed-mode stress simulation flow with transient self-heating effects [71]. Firstly,
input device characteristics and bias waveforms. If Vgs > 0 V and Vds > 0 V, consider the impact of
the transient heating stage on HCD, inhomogeneous BTI degradation, and BTI recovery effects. If
Vgs > 0 V and Vds = 0 V, consider the residual high temperature during the cooling process and its
impact on BTI degradation. If Vgs = 0 V and Vds = 0 V, consider the residual high temperature during
the cooling process and its impact on BTI recovery. Copyright (2023) IEEE.

Consequently, numerous frameworks integrating machine learning for aging evalua-
tion have been introduced, aiming to enhance prediction efficiency while ensuring accuracy
and minimizing invasiveness. Recurrent neural networks (RNNs) are a widely used neu-
ral network architecture. Their distinctive recurrent concept and, most importantly, the
structure of long short-term memory (LSTM) networks enable them to perform well in
addressing and predicting sequential data problems. Considering the compatibility of the
continuous-time equations of RNNs with transient circuit simulations, RNNs demonstrate
applicability in modeling aging circuits [109]. While in practical applications of circuit
simulation, an RNN model, with its internal feedback, may not be stable in circuit simula-
tion. In [110], the support vector machine (SVM) model is used to capture the relationship
between signal probabilities and delay degradation of cells. However, the impractical
assumptions about constant supply voltages and temperatures cause an obvious loss of
accuracy. A versatile aging-aware delay model for generic cell libraries has been introduced,
utilizing transistor-level SPICE simulations and feed-forward neural networks (FFNNs),
which demonstrates that the proposed model achieves fast estimation of the aging-induced
delay with high accuracy close to transistor-level simulation [111]. Machine learning (ML)
methods can be used to predict the aging delay in transistors and cell circuits, which map
the device degradation to the aging delay of cell circuits, thereby substantially amplifying
prediction efficiency [112–115]. Despite the promise of potentially replacing aging simu-
lations, there is still a need to integrate both fresh and stress simulations into the aging
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evaluation process, especially in emerging usage scenarios. Of particular significance is the
observation that their input features lack considerations for circuit structure, resulting in a
realized enhancement in efficiency that falls short of attaining optimal levels. In [116], an
innovative modeling framework is introduced for rapid aging-aware timing analysis, utiliz-
ing a temporal-spatial graph neural network (GNN). This framework employs a gated tanh
unit (GTU) as the temporal network, extracting device degradation from dynamic biases.
Simultaneously, it incorporates inductive GraphSAGE as the spatial network to gather com-
prehensive graph information from circuit topology and output circuit aging delay. This
pioneering approach, distinguished by its exceptional feature capture capability, markedly
enhances prediction efficiency, particularly within the context of nano-scale technology.

In summary, these reported works collectively contribute to advancing the under-
standing and modeling of aging effects in modern circuits, offering diverse solutions to
the challenges posed by predicting circuit aging under complex waveforms from neural
network-assisted to temporal-spatial GNN approaches.

4. Conclusions

In this paper, we have reviewed recent research on the mixed-mode reliability of
MOSFET. The introduction of advanced devices has led to more complex aging and failure
mechanisms due to the self-heating effects. This complexity exacerbates the difficulty in
establishing accurate compact models. Moreover, a more accurate and reliable compact
model can only be established through research that better aligns with the mixed-mode
reliability encountered in practical device usage. Especially in the current scenario where
design margins are becoming increasingly constrained, taking a crucial step from studying
single-mode reliability to investigating mixed-mode reliability is essential. This shift is
necessary to develop more precise lifetime prediction models that can support large-scale
advanced circuit designs. However, with further advancements in device technology and
the introduction of overly complex mechanism couplings, coupled with new materials and
structures, analyzing the mechanisms behind mixed-mode reliability will face significant
challenges. It prompts us to contemplate whether AI technology holds promise for future
mixed-mode reliability analysis and modeling. It is undeniable that AI has its limitations
in establishing accurate reliability prediction models. For instance, how neural networks
can train correct compact model formulas when the underlying mechanisms are unclear
poses a significant challenge. Different compact model formulas may exhibit excellent
fitting accuracy for short-term degradation, but significant variations in extrapolated
lifetimes are inevitable. Therefore, addressing the challenge of establishing accurate lifetime
prediction models for increasingly complex mixed-mode reliability in the future remains
an imminent task.
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