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Abstract: Hollow microspheres as the filler material of syntactic foams have been adopted in extensive
practical applications, where the physical parameters and their homogeneity have been proven to
be critical factors during the design process, especially for high-specification scenarios. Based on
double-emulsion droplet templates, hollow microspheres derived from microfluidics-enabled soft
manufacturing have been validated to possess well-controlled morphology and composition with
a much narrower size distribution and fewer defects compared to traditional production methods.
However, for more stringent requirements, the innate density difference between the core–shell
solution of the double-emulsion droplet template shall result in the wall thickness heterogeneity of
the hollow microsphere, which will lead to unfavorable mechanical performance deviations. To clarify
the specific mechanical response of microfluidics-derived hollow silica microspheres with varying
eccentricities, a hybrid method combining experimental nanoindentation and a finite element method
(FEM) simulation was proposed. The difference in eccentricity can determine the specific mechanical
response of hollow microspheres during nanoindentation, including crack initiation and the evolution
process, detailed fracture modes, load-bearing capacity, and energy dissipation capability, which
should shed light on the necessity of optimizing the concentricity of double-emulsion droplets to
improve the wall thickness homogeneity of hollow microspheres for better mechanical performance.

Keywords: microfluidics; double-emulsion droplet; hollow microsphere; nanoindentation; FEM

1. Introduction

Hollow microspheres are lightweight microparticles with spherically symmetric mor-
phology, which have been adopted in a myriad of practical applications ranging from
construction [1–4], transportation [5–7], chemical engineering [8–11], pharmaceutical re-
search [12–15], and so forth. Due to their outstanding advantages in buoyancy perfor-
mance [16–18], energy absorption [19–21], thermal/acoustic insulation [22–24], etc., ceramic
hollow microspheres have shown great superiority as filler materials to regulate the perfor-
mance of syntactic foam, which is a kind of classical composite material extensively used
under various circumstances [25–28]. It is well known that the geometrical characteristics,
such as wall thickness, shell diameter, as well as their ratio, have played a decisive role in
determining the overall physical properties of hollow microspheres, including the effective
density, specific surface, isostatic pressure resistance, etc. [29–31]. Moreover, the overall
geometric homogeneity is also of vital importance for the actual usage based on the fact of
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the massive quantity involved, which fundamentally requires a narrower size distribution
and a lower percentage of defects for the hollow microsphere yield. This inevitably raises
the threshold of the manufacturing process, undoubtedly posing challenges for traditional
manufacturing methods in terms of adding excessive sorting and screening processes as
well as concurrently increasing costs.

To date, typical industrial hollow microspheres, represented by the fly ash cenospheres,
which are the by-product of coal combustion in thermal power plants, have been system-
atically analyzed and proven to possess significant geometric heterogeneity [32–34]. The
actual dimension of individual hollow microspheres varies and the range can reach up to
several times the nominal size, which has a negative influence on the preliminary design of
syntactic foam, especially for high-standard applications. This large geometric inhomogene-
ity is deeply rooted in the manufacturing process; i.e., the preparation of the powdery raw
material by milling shall ineluctably result in the heterogeneity of granular dimensions, and
the ingredient content of the blowing agent cannot be precisely controlled. In addition, the
melting kinetics of the discrepant powdery compounds in identical high-temperature smelt-
ing conditions change synchronously and, thus, maintain the differentiation [35,36]. Other
common manufacturing methods, such as spray technology, fluidized bed, suspension pro-
cess, etc., all have their shortcomings with respect to the geometric homogeneity of hollow
microspheres. In terms of spray technology, there is an apparent contradiction between the
pursuit of prescribed droplet dimensions and the minimization of geometric heterogeneity,
since external forces, such as electrical, pneumatic, and mechanical forces, are generally
introduced to regulate droplet dimensions at the cost of increasing the difficulty of reducing
the droplet polydispersity. Additionally, the competition between mass transport velocity
and potential droplet supersaturation usually reduces the yield. For the fluidized bed and
suspension methods, the geometric homogeneity of the as-prepared hollow microspheres
is largely determined by two critical factors: one is the degree of the monodispersity of the
solid particles as sacrificial templates, and the other is the subsequent surface coating effect.
The fluidized bed approach is inferior for handling small particles down to 50 µm in real
industrial production because the particles are prone to agglomeration, and the subsequent
coating methods, such as sputtering, laser ablation, CVD deposition, spraying, etc., all
require multiple precautions to guarantee the coating uniformity, which can remarkably
improve the complexity of the manufacturing process [37–39]. The suspension technique
is capable of realizing precise coating on smaller particles through the precipitation and
agglomeration of colloidal particles or the alternating the layer-by-layer interfacial reaction
at the nanoscale. However, this process is relatively complicated, since in each coating
step, not only the molar ratio of raw materials should be strictly regulated to prevent
potential flocculation or bridging phenomena but also the non-absorbed particles should
be separated in a timely manner [40–43], thereby significantly increasing the costs of time
and economy.

In recent years, microfluidics-enabled soft manufacturing has emerged as a robust
technological means to fabricate liquid templates with well-controlled composition and
morphology, which has already innovated the fabrication approach in various fields, en-
compassing chemistry, biology, physics, and engineering [44–52]. The easily prepared
double-emulsion droplets with a core–shell structure possess a series of advantages, includ-
ing controllable compositions, adjustable dimensions, and a higher degree of structural
homogeneity, which have already been exploited to fabricate hollow microspheres via
the sintering of ceramic nanoparticles inside the shell solution [53–55]. Compared with
traditional industrial manufacturing methods, it is promising to downsize the shell size
discrepancy to several microns with a shell regulation range of hundreds of microns, but
a slight deficiency lies in the innate density difference between the core/shell solutions,
which may cause an eccentric problem if no additional regulation measures are taken,
further leading to the uneven distribution of the wall thickness for the hollow microsphere.

Herein, in order to investigate the influence of wall thickness inhomogeneity on the
mechanical performance of microfluidics-derived hollow silica microspheres, a hybrid
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method combining a nanoindentation experiment and FEM simulation was performed.
The FEM model was firstly benchmarked against the existing experimental data and,
thus, established to reveal the nominal strain distribution under different indentation
displacements as well as the disparate fracture modes of hollow silica microspheres with
two different eccentricities, which should shed light on the importance of improving the
overall geometric homogeneity, including both the inner wall thickness and the outer shell
diameter, of the hollow microspheres.

2. Materials and Methods
2.1. Preparation of the Microfluidic Device

As shown in Figure 1a, the microfluidic device for W1/O/W2 double-emulsion droplet
generation was assembled by sequentially inserting and fixing two cylindrical glass capil-
lary tubes at each end of a square glass tube. The tips of the two cylindrical glass capillary
tubes were forged into different sizes, i.e., 40 µm and 260 µm, with the smaller cylindrical
glass capillary tube used as the channel for the inner water phase Qinner, while the larger
one served as the collection tube for the W1/O/W2 double-emulsion droplets. The inter-
stices between the two cylindrical glass capillary tubes and the square glass tube were the
inlets of the middle oil phase Qmiddle and the outer water phase Qouter, respectively. The
area through which the middle oil phase flowed was treated with trimethoxy (octadecyl)
silane to make it hydrophobic.
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Figure 1. Schematic illustration of the microfluidics-based hollow silica microsphere fabrication
process. (a) Schematic diagram of the microfluidic system. (b) The optical and fluorescence images of
the as-prepared W1/O/W2 double-emulsion droplets; the scale bar is 200 µm. (c) Statistical analysis
of the shell diameter of the as-prepared W1/O/W2 double-emulsion droplets. (d) Statistical analysis
of the eccentricity of the as-prepared W1/O/W2 double-emulsion droplets. (e,f) SEM images of the
as-prepared hollow silica microspheres based on microfluidics. The scale bars are 500 µm and 25 µm,
respectively. (g) SEM image of an artificially crushed hollow silica microsphere. The scale bar is
15 µm.
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2.2. Materials

Both the inner and outer water phases were 5 wt% poly (vinyl alcohol) solution, while
the middle oil phase was the mixture of photoinitiator 2-hydroxy-2-methylpropiophenone,
photosensitive monomer ethoxylate trimethylolpropane triacrylate, fluorescent red pig-
ment, and silica nanoparticle-loaded xylene solution, in which the poly (vinyl alcohol),
trimethoxy (octadecyl) silane, 2-hydroxy-2-methylpropiophenone, and ethoxylated
trimethylolpropane triacrylate were provided by Sigma-Aldrich. The silica nanoparticle-
loaded xylene solution was purchased from Jingcai Chemical Co., Guangzhou, China, and
the red pigment was bought from Aladdin, Shanghai, China. The deionized water was
prepared using the Millipore Milli-Q system, Saint Louis, MO, USA.

2.3. Preparation of the Hollow Silica Microspheres

The hollow silica microspheres were prepared from the generated W1/O/W2 double-
emulsion droplets by high-temperature sintering at 1200 ◦C. During this heat treatment
process, all the organic substances were thermally pyrolyzed, while the remaining silica
nanoparticles were gradually subjected to precipitation, aggregation, and calcination pro-
cesses. This high-temperature smelting process made the microsphere shell void-free and
more compact, as demonstrated in Figure 1.

2.4. Characterization

The optical and corresponding fluorescence images of the as-prepared double-emulsion
droplets were obtained with an optical microscope system (BX53, Olympus, Tokyo, Japan)
coupled to a high-speed CCD camera (DP27, Olympus, Tokyo, Japan). The SEM pictures
were captured with a scanning electron microscope (SU8010, Hitachi, Tokyo, Japan), and
some hollow microspheres were intentionally crushed to show the internal morphology.
The nanoindentation tests were carried out with a commercial nanoindenter (G200, Agilent
Technologies, Santa Clara, CA, USA) equipped with a 100 µm flat indenter.

3. Results and Discussion
3.1. Microfluidic Fabrication and Characterization of the Hollow Microspheres

As shown in Figure 1a–d, the W1/O/W2 double-emulsion droplets as soft templates
for hollow microsphere fabrication could be easily prepared by the microfluidic device
with a rational three-phase flow rate combination. It could be found from the statistical
analysis results that the shell diameters of the as-prepared droplets presented a sort of small-
range distribution, which was the merit of this microfluidics-enabled soft manufacturing
approach. However, the eccentricity ξ, which was defined by the quotient of the deviation
distance Ω between the two centers O1, O2, and the radius difference (R1–R2) of the
core/shell droplets, showed a random distribution pattern and was expected to deteriorate
further due to the innate solution density difference or any potential perturbation.

This geometric disadvantage of the soft template could be inherited by the hollow
microspheres after heat treatment in the form of wall thickness heterogeneity, as depicted
in Figure 1e–g. As a result, the mechanical properties of the hollow microspheres should be
discretized in a plausible range. Thus, in order to verify this inference, nanoindentation
tests, as schematically illustrated in Figure 2a, were performed using a 100 µm flat indenter,
and the loading velocity was set to 3 nm/s. Since the average shell diameter of silica hollow
microspheres was about 45 µm, the much larger indenter could effectively meet the axial
centering requirement, thereby minimizing the influence of artificial factors. The exper-
imental force-displacement results of the nanoindentation tests were listed in Figure 2b,
where all the curves possessed a snap-through region around 2 µm, as highlighted by the
gray oval shadow. This indicated the occurrence of the shell buckling phenomenon, which
could release the accumulated stress during incipient compression. However, it should
be noted that although all the hollow microspheres have undergone the same indentation
displacement of 3 µm, their mechanical responses could vary to a certain extent, with the
maximum value reaching up to more than twice the minimum counterpart. Based on the
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approximation hypothesis that all hollow microspheres shared basically identical outer
shell diameters, this difference should be attributed to the inner geometric inhomogene-
ity, i.e., the uneven distribution of the wall thickness. In order to verify this deduction,
two FEM models were constructed using the commercial software ABAQUSTM SIMULIA
Suite 2017 and were further calibrated to reproduce the trend of the force-displacement
curves of the tested hollow microspheres during nanoindentation down to 3 µm. Thus,
the compression process, in particular the specific fracture modes of two types of hol-
low microspheres with different eccentricities, could be revealed, thereby clarifying the
evolution of the strain distribution as the hollow microspheres were deformed at further
indentation displacements.
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Figure 2. (a) Schematic representation of the uniaxial nanoindentation test setup equipped with a flat
indenter. (b) Nanoindentation results of hollow silica microspheres derived from the microfluidic
W1/O/W2 double-emulsion droplets.

3.2. Simulation-Based Mechanical Response Analysis of Hollow Silica Microspheres with
Varying Eccentricities

The two typical hollow microspheres were modeled with an identical mean wall
thickness of 2.5 µm, outer diameters of 45 µm, and varying eccentricities of 0, i.e., perfectly
concentric, and 0.6, i.e., comparatively eccentric, respectively. The loading configuration
of the eccentric hollow microsphere was set to arrange the loading direction parallel to
the connection between the thinnest and thickest shell walls. Due to identical structure,
boundary conditions, and applied forces during the compression process, only a quarter of
the hollow microsphere was modeled under symmetry boundary conditions to simplify
the model. This resulted in a spatial displacement degree of freedom and two spatial
rotational degrees of freedom being zero at each of the two orthogonal symmetric planes.
The corresponding settings are listed in Table 1.

Table 1. Settings of the ABAQUSTM model.

Modeled Hollow Microsphere Physical Parameters of Microsphere

Part description: 3D deformable Young’s Modulus: 76 GPa
Materials behavior: brittle cracking Poisson’s ratio: 0.22
Section type: Solid, homogeneous Simulated Diameter: 45 µm

Element type: Linear tetrahedron C3D10 Modeled Indenter and Pedestal

Through thickness elements: 4 Part description: 3D analytical rigid
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After the iterative run and calibration of the FEM model, the simulation results of
the eccentric hollow microspheres with 3 µm feed were shown in Figure 3. The thinnest
part of the hollow microsphere was mechanically weak and prone to deform due to its
comparative eccentric configuration and the gradual increase in external work. The force-
displacement curve of the eccentric hollow microsphere displayed several snap-through
regions at smaller compression feeds. The load capacity, which refers to the magnitude of
the force concerning the nanoindentation displacement, decreased accordingly.
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Figure 3. Finite element simulation results of eccentric hollow microsphere nanoindentation with
prescribed displacement. (a) Force-displacement behavior of the eccentric hollow microsphere
during uniaxial indentation simulation. (b) The variation of external energy input, strain energy,
and damage dissipation energy of the eccentric hollow microsphere during uniaxial indentation
simulation. (c) The numerical fit curve of the maximum principal stress distributed in the outer
shell of the eccentric hollow microsphere with respect to the y coordinates at varying displacements.
(d–g) The nominal strain distribution of the eccentric hollow microsphere during uniaxial indentation
simulation. (d1,d2) The nominal strain distribution contour of the eccentric hollow microsphere
from two different perspectives in the initial configuration. (e1,e2) The nominal strain distribution
contour of the eccentric hollow microsphere from two different perspectives at a displacement of
1 µm. (f1,f2) The nominal strain distribution contour of the eccentric hollow microsphere from two
different perspectives at a displacement of 2 µm. (g1,g2) The nominal strain distribution contour of
the eccentric hollow microsphere from two different perspectives at a displacement of 3 µm.
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Figure 3b shows that the external work was dissipated only as strain energy before
the snap-through phenomenon occurred. Afterward, the damage dissipation energy began
to increase slowly but accounted for only a small portion of the external work input. This
indicated that the thin-walled region could withstand relatively large strain rather than
rapid fracture. The distribution profile of the nominal strain in Figure 3d–g explicitly
demonstrates the energy conversion process. It was observed that the total nominal strain
of the eccentric hollow microsphere was proportional to the nanoindentation displacement.
Additionally, the strain magnitude of the thin-walled region was much higher than that of
the thick-walled counterpart. Furthermore, the extent of large strain areas in the thin-walled
region gradually increased from the bottom tip to encompass the entire lower hemisphere,
as illustrated in Figure 3e–g. Simultaneously, the maximum strain spot shifted from the
bottom to the lower part, as indicated by the red arrows, demonstrating the occurrence
of buckling phenomena in the previously constrained thin-walled region in direct contact
with the pedestal. To enable quantitative comparison, Figure 3c shows the numerical
fit curves of the maximum principal stress distributed in the outer shell of the eccentric
hollow microsphere at different displacements. The distribution of the maximum principal
stress was consistent with the nominal strain. At a displacement of 1 µm, the maximum
principal stress was induced at both ends of the hollow microsphere, while the remaining
regions remained essentially stress-free. For further displacements, significant increases
in the maximum principal stress were observed in the expanding areas of the thin-walled
region with small y-coordinate values. However, the stress level was lower due to the
mechanically inferior thin-walled geometry.

The concentric hollow microsphere did not have an obvious mechanically weak region
due to its symmetric geometry, making it mechanically stronger with perfect wall thickness
homogeneity. Figure 4a shows that the snap-through region occurred at approximately
2 µm, consistent with the experimental results. The corresponding force magnitude was
approximately 2.7 times that of the eccentric hollow microsphere. Meanwhile, the concentric
hollow microsphere was able to sustain much larger external work. Although dissipated in
identical forms, namely, the strain energy and damage dissipation energy, their ratio varied
accordingly. The damage dissipation energy started to increase significantly corresponding
to the snap-through region and accounted for half of the strain energy at the displacement
of 3 µm, reaching about eight times that of the eccentric hollow microsphere. Furthermore,
the homogeneity of the wall thickness has altered the deformation mode of the hollow
microsphere. This was verified by examining the nominal strain distribution in Figure 4d–g.
At an indentation displacement of 1 µm, the nominal strain distribution did not exhibit
any excessive regional concentration features, except for a single large strain spot located
directly at the inner shell under the indenter. The strain in the upper middle part of the shell
was relatively larger. This could be attributed to the bulging deformation of the concentric
hollow microsphere caused by compression. As a result, the external work was dissipated
in the form of strain energy. At an indentation displacement of 2 µm, another large strain
spot appeared, as indicated by the red arrow. The nominal strain contour presented an
approximately symmetric distribution with this spot as the center of symmetry with respect
to the indentation direction. It should be noted that the nominal strain distribution in the
lower hemisphere of the concentric hollow microsphere was comparatively smaller, which
differed from the results of the eccentric counterpart. For an indentation displacement of 3
µm, the large strain spot in the upper hemisphere continued to strengthen in both scope
and magnitude, as shown in Figure 4g. This spot would serve as the vulnerable region for
further indentation. To quantitatively compare the maximum principal stress, the fitting
curves of the outer shell node series at varying indentation displacements are displayed
in Figure 4c. Furthermore, the lower section of the concentric hollow microsphere did
not exhibit a significant stress concentration. This resulted in a considerable enhancement
in stress magnitude, highlighting the importance of improving the homogeneity of wall
thickness in hollow microspheres for superior mechanical performance.
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different perspectives at a displacement of 2 µm. (g1,g2) The nominal strain distribution contour of
the eccentric hollow microsphere from two different perspectives at a displacement of 3 µm.

3.3. Simulation-Based Prediction of Damage Evolution Behavior of Hollow Silica Microspheres
with Varying Eccentricities

Although no experimental data were available for reference, it was still possible to
predict the subsequent failure and damage evolution behavior of the hollow microspheres
through simulation. The respective fracture modes were also found to be closely correlated
with their eccentricities, as shown in Figure 5a–d. The evolution of the nominal strain
distribution revealed the fracture development process of the eccentric hollow microsphere.
The strain spots in the lower thin-walled hemisphere developed into cracks along the
longitudinal direction, as shown in Figure 5a. These cracks then extended upwards, tearing
the hemisphere and resulting in the formation of an arcuate notch along the latitudinal
direction, as indicated by the red arrow in Figure 5b. This represented the disconnection
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of the most fragile thin-walled region. Therefore, the load-bearing section of the eccentric
hollow microsphere was reduced, and the newly formed arcuate notch acted as the new
bottom in direct contact with the platen. Subsequently, a new longitudinal crack originated
from the first arcuate notch, and the previous cracks continued to grow toward the upper
thick-walled hemisphere. Subsequently, the shell of the eccentric hollow microsphere
underwent another fracture, and the second arcuate notch occurred in the thin-walled
region, as highlighted by the red arrow in Figure 5d. The damage evolution behavior of
the eccentric hollow microsphere exhibited a repeated partial fracture mode starting from
the thin-walled region, which corresponded to the abrupt drops in the force-displacement
curve in Figure 5e. The sudden decrease in the load-bearing capacity of the eccentric hollow
microsphere was caused by the formation of latitudinal cracks, specifically the two arcuate
notches, in the thin-walled region.
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Figure 5. Finite element simulation results of eccentric hollow microsphere nanoindentation with
further displacements. (a–d) The nominal strain distribution of the eccentric hollow microsphere
during the simulation of further uniaxial indentation. (a1,a2) The nominal strain distribution con-
tour of the eccentric hollow microsphere from two different perspectives at the displacement of
4 µm. (b1,b2) The nominal strain distribution contour of the eccentric hollow microsphere from
two different perspectives at the displacement of 4.5 µm. (c1,c2) The nominal strain distribution
contour of the eccentric hollow microsphere from two different perspectives at the displacement
of 5 µm. (d1,d2) The nominal strain distribution contour of the eccentric hollow microsphere from
two different perspectives at the displacement of 5.5 µm. (e) The force-displacement behavior of the
eccentric hollow microsphere during simulation of further uniaxial indentation. (f) The variation of
strain energy and damage dissipation energy of the eccentric hollow microsphere during the simu-
lation of further uniaxial indentation. (g) The numerical fit curve of the maximum principal stress
distributed in the outer shell of the eccentric hollow microsphere with respect to the y coordinates at
varying displacements.



Micromachines 2024, 15, 109 10 of 14

The strain energy decreased during the repeated shell collapse procedure and was
released by the initiation and propagation of cracks, particularly the formation of transverse
arcuate notches. Meanwhile, the damage dissipation energy increased proportionally to
the indentation displacement as more cracks developed. It was an interesting phenomenon
worth noting. Figure 5g shows the numerical fit curves of the maximum principal stress
distribution for the shell node series, used for quantitative analysis and validation. The
stress concentration region was located at the thin-walled hemisphere, and the overall stress
level increased with the indentation displacement. The stress magnitude in the thick-walled
part began to increase distinctly only after the emergence of the second arcuate crack, which
was consistent with the nominal strain distribution.

Likewise, the damage evolution process of the concentric hollow microsphere was also
initiated from the large strain spots, as depicted in Figure 6. The longitudinal cracks formed
due to the perfect homogeneity of the wall thickness. These cracks extended synchronously
along both ends and gradually lengthened with respect to the indentation displacement.
The large nominal strain was concentrated at the crack tips, causing the hollow microsphere
to be torn up and split into several lobes. Each lobe was sandwiched between the indenter
and the platen. The longitudinal segmentation of the concentric hollow microsphere
differed significantly from the layer-by-layer latitudinal collapse of the eccentric hollow
microsphere. Despite maintaining a similar strain magnitude to the eccentric counterpart,
the concentric hollow microsphere exhibited an improved load capacity of over two-fold,
and the force magnitude did not decrease until the cracks approached the top and bottom
of the shell, as illustrated in Figure 6e. This trend was similar to the variation tendency
of the strain energy. The strain energy was not significantly released until the damage
dissipation energy reached a certain level, as shown in Figure 6f. Figure 6g displays the
fitting curves for the quantitative analysis of the maximum principal stress on the outer
shell. Unlike the eccentric hollow microsphere, the stress magnitude at both ends of the
concentric hollow microsphere was at the same level, which was significantly larger than
that in the middle part due to the initiation and development of cracks in the middle region.
Therefore, all the curves presented a basin-like trend, with the maximum value exceeding
twice that of the eccentric counterpart. Therefore, the simulation results suggested that
the eccentricity, or wall thickness homogeneity, of the hollow microsphere was a crucial
factor in determining its specific mechanical responses, including deformation modality,
crack evolution paths, and fracture modes. In addition, optimizing the concentricity of
the double-emulsion droplets during the preparation process of hollow microspheres
using a microfluidics-enabled soft manufacturing method could effectively improve the
mechanical performance of the microspheres in terms of the force/stress magnitude and
energy dissipation capability.
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Figure 6. Finite element simulation results of concentric hollow microsphere nanoindentation with
further displacements. (a–d) The nominal strain distribution of the concentric hollow microsphere
during the simulation of further uniaxial indentation. (a1,a2) The nominal strain distribution contour
of the concentric hollow microsphere from two different perspectives at the displacement of 4 µm.
(b1,b2) The nominal strain distribution contour of the concentric hollow microsphere from two
different perspectives at the displacement of 4.5 µm. (c1,c2) The nominal strain distribution contour
of the concentric hollow microsphere from two different perspectives at the displacement of 5 µm.
(d1,d2) The nominal strain distribution contour of the concentric hollow microsphere from two
different perspectives at the displacement of 6 µm. (e) The force-displacement behavior of the
concentric hollow microsphere during simulation of further uniaxial indentation. (f) The variation
of strain energy and damage dissipation energy of the concentric hollow microsphere during the
simulation of further uniaxial indentation. (g) The numerical fit curve of the maximum principal stress
distributed in the outer shell of the concentric hollow microsphere with respect to the y coordinates
at varying displacements.

4. Conclusions

Herein, a hybrid method combining experimental nanoindentation and FEM simu-
lation was used to characterize the mechanical response of microfluidics-derived hollow
silica microspheres with varying eccentricities. The eccentric hollow microsphere exhibited
a repeated partial fracture mode during the indentation process through the formation
of transverse arcuate notches. Meanwhile, longitudinal cracks gradually developed and
propagated upwards toward the thick-walled region due to the indentation displacement.
The load-bearing capacity and energy dissipation capability of the eccentric hollow micro-
sphere were comparatively lower due to the presence of mechanically weak thin-walled
regions. Due to the homogeneity of the wall thickness, only longitudinal cracks formed in
the concentric hollow microsphere during the indentation process. These cracks continued
to expand synchronously along both ends and gradually lengthened, tending to split the
hemisphere into several lobes. The concentric hollow microsphere exhibited significantly
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improved mechanical performance compared to the eccentric counterparts, and the load ca-
pacity and energy dissipation capability increased by more than two-fold. Therefore, it was
both reasonable and necessary to enhance the concentricity of the double-emulsion droplets
in the microfluidics-based fabrication process of hollow microspheres. This improvement
in homogeneity of the wall thickness could provide a more stable geometric foundation
for achieving better mechanical performance, thereby meeting the higher requirements in
practical applications.
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