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Abstract: This paper presents the measurement and evaluation of the surfaces of molds produced
using additive technologies. This is an emerging trend in mold production. The surfaces of such
molds must be treated, usually using laser-based alternative machining methods. Regular evaluation
is necessary because of the gradually deteriorating quality of the mold surface. However, owing to
the difficulty in scanning the original surface of the injection mold, it is necessary to perform surface
replication. Therefore, this study aims to describe the production of surface replicas for in-house
developed polymer molds together with the determination of suitable descriptive parameters, the
method of comparing variances, and the mean values for the surface evaluation. Overall, this study
presents a new summary of the evaluation process of replicas of the surfaces of polymer molds. The
nonlinear regression methodology provides the corresponding functional dependencies between the
relevant parameters. The statistical significance of a neural network with two hidden layers based
on the principle of Rosenblatt’s perceptron has been proposed and verified. Additionally, machine
learning was utilized to better compare the original surface and its replica.

Keywords: surface quality; roughness parameters; nonlinear regression; perceptron; neural network

1. Introduction

Injection-molded polymer products mainly need to exhibit excellent mechanical
and surface properties, which is crucial for visible surfaces. As such, creating a high-
quality surface in an injection-molded polymer mold and its evaluation is essential for its
production [1].

Surface properties are, however, often determined already during the injection mold-
ing process, and the quality of the mold cavity surface is one of the factors influencing the
product quality [2]. As such, the surface quality of the final polymer product is predeter-
mined by its mold. Creating a high-quality surface in an injection-molded polymer mold,
together with evaluating this surface, is, therefore, fundamental for production [3].

The mold surface also undergoes wear and overall deterioration with continuous
use. This mainly depends on the number of injection cycle repetitions and will result in
lower-quality surfaces on the polymer products over time [4].

Presently, mold surfaces are often created using laser beam-based methods, which
are expensive despite their relatively widespread nature [5]. As such, the current trend is
toward the development of polymer molds created through rapid prototyping techniques
as a solution. The desired surface of the mold can then be created during the 3D printing
process or modified using a laser beam [6].

Because of the complexity and size of such polymer molds, it is difficult or nearly
impossible to correctly measure the roughness directly inside the cavity. Therefore, several
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replicate materials were sold and used. The standard declared error between the replica
and the original surface is approximately several micrometers or percents [7]. Verification of
this declaration is difficult, as the production of a replica depends not only on the chemical
composition and properties of the replication material but also on the replicator’s skill,
compliance with replicability conditions, and especially the type of replicated surface [1,8].
The process itself may also have inherent problems. For example, methyl methacrylate
casting resin used to be the most commonly used material for surface replication for indus-
trial use in mechanical engineering, electrical engineering, and chemical and metallurgical
laboratories. Methyl methacrylate is a known irritant that is harmful to health. Therefore,
replication materials based on C-silicones have been used in the production of replica
injection molds [9,10].

If replicas are properly made, the characteristics describing their surface properties
from a metrological point of view can then be classified as a measurement and evaluation
of amplitude, frequency, or hybrid parameters of the so-called surface roughness [9].
However, from a statistical point of view, the parameters characterizing the surface of
the original and the replicas are further burdened with different systematic and random
errors, which complicates the determination of any parameter. Therefore, it is a standard
procedure in scientific practice to use this basic separate approach [1,10]. It is also possible
to use a complex solution that based on the measured parameters on the surface replicated
“automatically”, finds a suitable spatial model and calculates the parameters of the original
surface at a predetermined confidence level [11].

Therefore, for our approach, the most practical solution is to use elements of machine
learning, neural networks with hidden layers, utilizing learning techniques based on
Rosenblatt perceptrons. Suitable parameters that characterize the original surface after
creating the appropriate replica are then determined as a result obtained at the output layer
of the neural network [12]. There are two methods by which the accuracy of predictions
can be compared. The first is a comparison of the size of the mean error for the data used
for learning the neural network and the test data in relation to the number of learning
cycles of the neural network. The term data refers to the measured values of the roughness
parameters of both types of surfaces. The second way would be to compare the so-called
“relative predictability” of the relevant parameters.

In this study, a new innovative method for the evaluation of surfaces and their replicas
was developed. After a basic check of the data values of the parameters Ra and Rz, classical
statistical tools belonging to the field of “Hypothesis Theory” (Fisher–Snedecor F-test
and two-sided t-test) were used [13]. The next step is to find the nonlinear regression
functions for the parameters Ra and Rz of the original and replicated surfaces. As can
be seen in the relevant relations and proofs, these functions are of the same type for
both the parameters described and the types of surfaces produced. Only the estimates
of the regression coefficients of the respective regression functions differed statistically
significantly [14]. This approach is considered by the authors to be crucial because it allows
them to assess the quality of the replicated surface relative to the original surface [15]. If
the function is of the same type, this is followed by the final construction of the perceptron
neural network and the start of its learning process. Thus, only the “one” perceptron neural
network is sufficient, which is then “learned” on the data presented by the parameters Ra
and Rz, both on the original and replicated surfaces. Thus, there is no need to construct (in
the presented case of the four examples) multiple neural networks; only a single network
learned on the corresponding parameter and surface type is required.

2. Materials and Methods
2.1. The Mould

A 3D printed mold insert with a layer thickness of 25 µm was produced on a Polyjet
3D printer (Rapid Prototyping Objet Eden 250, Treatstock, Newark, DE, USA) and consisted
of an acrylic monomer with a photoinitiator (Figure 1). Post-thermal treatment was then
provided to increase HDT temperature up to 95 ◦C with an applied load value of 0.45 MPa.
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Printing was conducted under the following laboratory conditions: an air temperature of
23 ◦C, a barometric pressure of 1015 atm, and a humidity of 40%. The mold quality was
investigated after 30 molding cycles.
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2.2. The Material Used for Replication

Two different compositions of impression materials from the StomaflexTM (Pentron,
Jičín, Czech Republic) brand belonging to the C-silicone group were used in the replica
production for comparison [9]. This set of materials was selected because of their ability to
capture even micrometric surface details. First, a very-high-viscosity-condensing silicone
impression material (Plus Putty©) (Pentron, Jičín, Czech Republic) was used. This con-
densation silicone impression material with a high tolerance to the amount of the catalyst
(±40%) allows for excellent application properties, a high value of recovery after deforma-
tion, and excellent volume stability. Second, an advanced condensation silicone impression
material with a low viscosity and high detail reproduction fidelity, called the Plus Light©
(Pentron, Jičín, Czech Republic) type, was utilized.

Finally, a system composed of the classic Plus Putty© and Plus Light© materials with
a low viscosity was used. It offers even more detailed reproduction, easy manipulation,
and high handling tolerance. A paste catalyst for condensing silicone was used to mix the
two materials. Their properties are listed in Table 1 [9].

Table 1. Parameters of used replication materials at a temperature of 23 ◦C.

Tested Property Stomaflex Plus Putty Stomaflex Plus Light

Mixing time Max. 45 s 30 s

Consistency 22.0–26.0 mm 36.0–44.0 mm

Total pot life Min. 5 s Min. 100 s

Setting time 2:15–3:00 min 4:00–4:45 min

Recovery after deformation Min. 97.5% Min. 98.5%

Linear dimensional change Better than |0.5|% Min. |1.3| %

2.3. Production of a Replica of the Original Surface

To ensure replicability, the replication process was designed in accordance with the
different handling requirements of the materials used. The replication material used for
this experimental set comprised the base material Plus Putty© used for reinforcement, and
Stomaflex Plus Light© for the replica itself. This combination has proven to be the most
advantageous and has been utilized in previous studies [15]. The replica was manufactured
under the following laboratory conditions: an air temperature of 23 ◦C, a barometric
pressure of 1015 hPa, and a humidity of 40%.

The process of manufacturing the replica can be seen in Figure 2.
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Figure 2. Creating the replica.

2.4. Optical Microscopy

The examined surfaces of the mold and its replica were evaluated by an optical
microscope (Leica DMI 3000 M, Leica Microsystem GmbH, Wetzlar, Germany) at 100×
magnification. The 3D images on the studied surfaces were assembled using LAS X 3D
visualization software (Leica Microsystems, Germany).

This microscope can detect surface defects on a macroscopic scale with fast three-
dimensional (3D) imaging. To create 3D images of the surface defects, the samples were
scanned in small increments (10 µm). Optical microscopy 2D images of the surface were
then recorded after removing a certain thickness (50 µm), as seen in Figure 3.

Micromachines 2024, 15, x FOR PEER REVIEW 4 of 12 
 

 

advantageous and has been utilized in previous studies [15]. The replica was manufac-
tured under the following laboratory conditions: an air temperature of 23 °C, a barometric 
pressure of 1015 hPa, and a humidity of 40%. 

The process of manufacturing the replica can be seen in Figure 2. 

 
Figure 2. Creating the replica. 

2.4. Optical Microscopy 
The examined surfaces of the mold and its replica were evaluated by an optical mi-

croscope (Leica DMI 3000 M, Leica Microsystem GmbH, Wetzlar, Germany) at 100× mag-
nification. The 3D images on the studied surfaces were assembled using LAS X 3D visu-
alization software (Leica Microsystems, Germany). 

This microscope can detect surface defects on a macroscopic scale with fast three-
dimensional (3D) imaging. To create 3D images of the surface defects, the samples were 
scanned in small increments (10 µm). Optical microscopy 2D images of the surface were 
then recorded after removing a certain thickness (50 µm), as seen in Figure 3. 

 
Figure 3. Optical microscope surface control magnified 100×: (a) original mold form, (b) replica. 

2.5. Optical Surface Scanner 
A NewView™ 9000 optical surface scanner (ZYGO™ Middlefield, Middlefield, CT, 

USA) was used because it provides good versatility in terms of non-contact optical surface 
profiling. The system allows fast and easy measurement of a wide range of surface types, 
including smooth, rough, flat, inclined, and staggered surfaces. 

The NewView™ 9000 optical surface scanner uses ZYGO’s Mx™ software to provide 
complete system control and data analysis, including interactive 3D maps, quantitative 

Figure 3. Optical microscope surface control magnified 100×: (a) original mold form, (b) replica.

2.5. Optical Surface Scanner

A NewView™ 9000 optical surface scanner (ZYGO™ Middlefield, Middlefield, CT,
USA) was used because it provides good versatility in terms of non-contact optical surface
profiling. The system allows fast and easy measurement of a wide range of surface types,
including smooth, rough, flat, inclined, and staggered surfaces.

The NewView™ 9000 optical surface scanner uses ZYGO’s Mx™ software to provide
complete system control and data analysis, including interactive 3D maps, quantitative to-
pographic information, and intuitive measurement navigation. The roughness parameters
utilized in this work are the Ra-Arithmetical mean deviation of the assessed profile and the
Rz-Maximum height of the assessed profile. These parameters were obtained from both
the mold and replica for comparison with the set at a scanning time of 120 s.
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3. Results

After the creation of replicas, both surfaces had to be checked for surface defects that
could have arisen during the replication process or mold printing. For this purpose, optical
microscopy was used, specifically a Leica metallographic microscope with 100× optical
magnification. Figure 3a shows the original surface of the mold, and Figure 3b presents the
replica. A comparison between Figure 3a,b shows that the surface defects are not significant
enough to cause deterioration in the replicated surface, rendering it incomparable to
the original.

Subsequently, both surfaces were scanned using a Zygo New View 9000 profilometer.
As shown in Figure 4, the resulting scans were cut using the software (according to ISO
4287 [16]), and the individual sections were then evaluated according to ISO 4288 [17].
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An optical filter was used during 3D profilometer scanning to increase the scan
accuracy, especially in difficult-to-scan sections of the surfaces of both types. The scan
obtained by the 3D profilometer was further processed by the method of least squares at
the recommendation of Whitehouse [1] to determine the optimal position of the sections
on both surfaces. A 3D spectrum was obtained through the Fast Fourier Transform (FFT)
technique [18,19]. The total number of sections processed by this method was n = 100,
from which the amplitude parameters of roughness were determined according to the
ISO standards mentioned above. A graphical representation of the distribution of the
parameters Ra and Rz is shown in Figure 4.

Figure 5 also shows that parameters Ra and Rz vary with sufficient statistical sig-
nificance. In practice, this means that each measured value on the replica and orig-
inal was burdened with a pair of errors. Specifically, each parameter was burdened
with systematic and accidental errors, where the latter type may be eliminated with
sufficient measurements.

To evaluate only one of the parameters, elementary statistical tests were conducted
using hypothesis testing to compare variances and differences in arithmetic means. This
method’s results are presented in Table 2.

As can be seen, each parameter pair had its own original statistical moments and
standard deviations. Furthermore, these parameters were functionally linked, and it was
impossible to evaluate them separately to maintain objectivity. To prove this assertion,
F-test and t-test determinations for the Ra and Rz parameters of the original and replicated
surfaces were performed.

The results of the variances test are as follows:
p-value = 0.416 for the parameter Ra and p-value = 0.997 for the parameter Rz. The

confidence level of both sets was set to 1 − α = 0.95.
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Table 2. Test of equality of variances and means.

Test of Equality of Variances (Fisher–Snedecor F-test)

Null hypothesis
σ(Ra_Original)/σ(Ra_Replica) = 1

Alternative hypothesis
σ(Ra_Original)/σ(Ra_Replica) ̸= 1

Significance level 1 − α = 0.5
p-Value = 0.416

Null hypothesis
σ(Rz_Original)/σ(Rz_Replica) = 1

Alternative hypothesis
σ(Rz_Original)/σ(Rz_Replica) ̸= 1

Significance level 1 − α = 0.95
p-Value = 0.997

Test of Equality of Means (Two-Sided t-Test)

Null hypothesis
µ(Ra_Original) = µ(Ra_Replica) = 1

Alternative hypothesis
µ(Ra_Original) ̸= µ(Ra_Replica) ̸= 1

Significance level 1 − α = 0.95
p-Value = 0.000

Null hypothesis
µ(Rz_Original) = µ(Rz_Replica) = 1

Alternative hypothesis
µ(Rz_Original) ̸= µ(Rz_Replica) ̸= 1

Significance level 1 − α = 0.95
p-Value = 0.000

Therefore, it is not possible to reject the agreement of the variances. By contrast, we
reject the precise arithmetic average of the test of equality of means. The results are listed
in Table 2.

Following the above procedure, a surface replica was made accordingly. Conversely,
the arithmetic means of the amplitude parameters deviate systematically. Therefore, the
use of F-tests and t-tests is more suitable for the assessment of parameters separately, and
not for the global assessment of all surfaces. Therefore, we investigated which parameter
to use as a discriminant and utilized the scatterplot shown in Figure 6 for this purpose [20].

Based on Figure 7, we can assert that the best discriminant parameter will be the
parameter Rz as its variance, when comparing the replica with the original, is minor in
comparison to the Ra parameter.

Furthermore, it was necessary to identify what the functional dependence between
the parameters Ra and Rz in the form of nonlinear regression (Figure 7) [2,21]. Obtained
nonlinear regression functions were then investigated using the Levenberg–Marquardt
algorithm based on the recommendation of Meloun [2]. Considering a confidence level of
95%, a maximum of 200 iterations and a convergence tolerance of 1–5 were set.
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The separately solved parameters, visually represented by the nonlinear regression
function, differed only in their regression coefficients. These coefficients must be individu-
ally determined for each type of replica and original surface [22].

To use the described variant of the evaluation process, where the individual amplitude
parameters will not be evaluated separately but globally, it is necessary to use a more
sophisticated tool: neural networks with hidden layers (Figure 8). This method is based on
modeling the relationship between a multidimensional input variable and a multidimen-
sional output variable. These multidimensional variables form the input and output layers
of a neural network. The basic philosophy behind this work is that the input amplitude
parameters found by the cluster analysis of the replicated surface are introduced into the
input layer. Subsequently, the predicted amplitude parameters of the original surface were
obtained at the output layer [1,19].
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This study aims to determine the number of hidden layers and neurons in these layers.
Furthermore, it was necessary to identify the corresponding synapses in the created neural
network. To solve this problem, a network using adaptive linear neurons, which can
approximate any continuous network, has been successful. Algorithmically, the backpropa-
gation method was used [12,23] to minimize the square of the difference between the actual
and expected output. It was also necessary to find an activating differentiable function,
which was chosen as a sigmoid function, as per the recommendation [18].

The structure of the neural network is illustrated in Figure 8. Blue indicates positive
synapses, and red indicates negative synapses.

The number of iterations was chosen to be 10,000, and the percentage of data for
the neural network’s own learning was 70%. As the graph of mean errors between test
and learning data shows, it can be stated that the mean error has a gradually decreasing
character and takes on the following values.

According to the maximum and mean errors for the learning and testing data pre-
sented in Table 3, this neural network can be considered learned. The statistical signifi-
cance of the found neural network was tested at a confidence level of 0.96 with the result
p = 3.584443439 × 10−34, which confirms the statistical significance of the neural network
with a 96% confidence. The mean error for this neural network is shown in Figure 9.

Table 3. Table of the maximum and mean errors for learning and testing data.

Maximum and Mean Errors Confidence Level

Maximum Error for Learning Data 0.0643

Medium error for learning data 0.0097

Maximum error for test data 0.0526

Mean error for test data 0.0152
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By the “iteration” in this case, we mean a cycle during which the appropriate synapses
are created between individual layers of the network occupied by neurons with the help of
test and learning data. As can be observed, the network gradually learns, and the mean
error difference between the test and learning data gradually decreases. Simultaneously, the
mean error curves for individual data types decreased. After 10,000 iterations, the difference
was negligible, and the graph was linearized. The neural network can be considered learned
and is now ready to solve the above-described problem of the elimination of systematic
errors of the surface parameters Ra and Rz.

As previously assumed and determined above, the cluster analysis for both the repli-
cated and original surfaces assumes a higher value of the amplitude parameter Ra than Rz.
The proof of this is a chart of the relative influence of predictors and relative predictability
(Figure 10).
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4. Discussion

When analyzing the results, it is necessary to note the use of the F-test (more precisely
the Fisher–Snedecor F-test) and a two-sided t-test to evaluate the Ra and Rz parameters
of the replicated and original surfaces [1]. An exploratory analysis, specifically quantile
graphs and pie charts, was used for the measured data to confirm that there was no
statistically significant asymmetry in the data. Normality tests were then performed at a
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confidence level of 0.95, according to the Anderson–Darling test and the combined slope
and sharpness test [2,24].

Consequently, we cannot reject the hypothesis that the measured data come from a
file with a normal distribution, with the possibility of an error of 0.05. To prove that there
was no trend or autocorrelation in the data at the same confidence level of 0.95, tests of
homogeneity and data independence were necessary.

Because of this necessity, the Fisher–Snedecor F-test followed these preparatory but
extremely important tests (see Figure 5). It did not reject the agreement of variances at the
confidence level mentioned above. A two-sided t-test subsequently confirmed this result.
At least in the case of the non-rejection of data normality and non-rejection of equality
of data scatter, it measured the amplitude parameters Ra and Rz of the replicated and
original surfaces.

This was followed by a search for suitable descriptive amplitude parameters that are
often used in scientific studies [1,12]. Time-series plot graphs were first assembled for this
purpose. They have shown a specific but undetermined trend in the individual amplitude
parameters. This trend was later investigated and quantified using nonlinear regression
functions, but only separately for each parameter and surface type.

A multidimensional statistical method, called cluster analysis, was used to search for
suitable descriptive parameters. Dendrograms of object similarity were created, and the
degree of self-similarity was evaluated according to the so-called cophenetic correlation
coefficients. The clustering methodology was tested using single linkage, furthest neighbor,
unweighted pair group, weighted pair group, and Ward’s minimum variance method.
Ward’s method was then selected as optimal according to the cophenetic correlation coeffi-
cient [11,12]. Separate regression functions were also found for each parameter, Ra and Rz,
according to the Levenberg–Marquardt method [11].

Classical residues have also been investigated. Specifically, the jackknife residue, Cook
distances, and normalized and plausible distances were determined together with function
sensitivity maps to determine the quality of the data.

Considering the aforementioned theory, the current trend is not to use separate es-
timates of individual pairs of amplitude parameters but elements of machine learning,
which has already been proven, for example, in an article by Chakrabarti [13]. In that case,
the above-designed and learned two-layer neural network based on linear perceptrons
was tested for statistical significance at a confidence level of 0.95. Its significance was not
rejected, and it had 95% confidence [2].

Graphs of the relative influence of predictors and relative predictability, which, per
the dendrogram of cluster analysis, are highlighted as the most important parameter, Rz.
Ra also supported the validity of the theory described above [2].

5. Conclusions

There is an observable trend in molds produced through rapid prototyping techniques.
Their creation and repair often utilize alternative laser beam-based machining methods.
Therefore, this work aimed to address the issue of the accuracy of the evaluation of the
original surface of the polymer mold created by rapid prototyping technology with the
subsequent creation or repair of the pattern.

A comprehensive description of the process of replicating the surface of a polymer
mold is provided. A silicone-based Siloflex Plus Putty® replication compound was used;
however, our own designed and tested recipe was used to create a mixture specifically for
such complicated impressions.

The procedure for finding suitable normative parameters of surface roughness accord-
ing to ISO 4287 was described and served as a basis for the evaluation of the replicas and
the actual form. The procedure to find a suitable method or algorithm that can sufficiently
compare the two surfaces in a comprehensive approach instead of separately, as is usual,
which was developed by testing hypotheses of variances and means.
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Such a procedure is necessary, as it has been demonstrated that the evaluation of
scattering and mean values of the original and replicated surface parameters that are
often described in the literature can be used only for separate evaluations. This stems
from the fact that each parameter is affected by a slew of different random and systematic
errors in the creation of the original replica. These problems have been solved by utilizing
a designed, learned, and tested neural network based on Rosenblatt’s perceptron. The
proposed neural network architecture in this study was tested for amplitude, frequency,
and hybrid parameters in both 2D and 3D, according to the relevant ISO standards. The
amplitude parameters, Ra and Rz, were based on the most common industrial and scientific
requirements, respectively.

Based on our experience, the proposed statistical approach with elements of machine
learning can be considered innovative and relatively easy to apply to the technology used
in mold production and modification or the repair of their designs.
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