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Abstract: In this study, we present a novel dual-polarized patch antenna that exhibits high isolation
and two in-band transmission zeros (TZs). The design consists of a suspended metal patch, two
feeding probes connected to an internal neutralization line (I-NL), and a T-shaped decoupling
network (T-DN). The I-NL is responsible for generating the first TZ, and its decoupling principles
are explained through an equivalent circuit model. Rigorous design formulas are also derived to aid
in the construction of the feeding structure. The T-DN realizes the second TZ, resulting in further
improvement of the decoupling bandwidth. Simulation and experimental results show that the
proposed antenna has a wide operating bandwidth (2.5–2.7 GHz), high port isolation (>30 dB), and
excellent efficiency (>85%).
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1. Introduction

A dual-polarized antenna array is widely adopted in current wireless communication
systems due to its remarkable potential to increase the channel capacity and combat the
multipath fading effect. Port isolation is a critical factor in evaluating the performance
of dual-polarized antennas, as it determines the degree of independence between the
orthogonal polarizations [1]. To improve port isolation, various techniques [2–11] have been
proposed in recent years. For example, a single-layer, dual-port, and dual-mode antenna
with enhanced port isolation is proposed in [2]. High isolation is realized by reducing
surface waves between antennas. In [3], the port isolation is improved for dual-polarized
stepped-impedance slot antenna by using shorting pins. C-shaped structures and square
rings are designed to enhance the isolation between stacked microstrip patch antenna
arrays [4]. In [5,6], dielectric superstrates and Defected Ground Structure (DGS) are utilized
to improve the E-plane and H-plane isolation. Cross-polarization levels are suppressed by
using decoupling strips and nested structures in [7]. A dual-feed technique is proposed
in [8] to achieve high isolation (over 30 dB) between two antenna ports. In addition,
complementary magneto–electric coupling feeding methods are employed in [9] to achieve
high isolation and low cross-polarization. By introducing an air bridge as an inductor to
compensate for the capacitance load, high isolation between the two polarization ports is
realized [10]. In [11], by adding shorting vias and additional ground, the mutual coupling
and cross-polarization have been significantly suppressed. However, the abovementioned
decoupling methods for dual-polarized antennas have some limitations, such as complex
decoupling structure, narrow bandwidth, and low radiation efficiency.

This paper proposes a novel high-isolation dual-polarized patch antenna with two
in-band transmission zeros. Slots and probes are commonly used to feed patch antennas.
In this design, rectangular probes are used to feed the suspended patch, which results in
extended operating bandwidth (2.5–2.7 GHz). The rectangular probes can also facilitate the
construction of the I-NL. The I-NL and T-DN are simultaneously adopted to enhance the
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isolation (>40 dB). The decoupling structure is simple and compact. Furthermore, an equiv-
alent circuit model is adopted to facilitate the illustration of decoupling principles. Rigorous
design formulas are derived to help the design process. The experimental results show that
the proposed antenna features wide operating bandwidth, high port isolation, and good
radiation efficiency, making it a promising candidate for modern wireless communication
systems.

2. Proposed Design Method
2.1. Structure of the Proposed Antenna

Figure 1 illustrates the 3D structure of the dual-polarized antenna with and without
decoupling structures. In Figure 1a, the initial patch antenna is shown without any decou-
pling structures. It consists of a square metal patch that is suspended above the ground and
fed by two rectangular probes. In Figure 1b, the antenna is shown with a C-shaped I-NL.
The I-NL is also made of metal and connected to the feeding probes. This I-NL is used
to create the first TZ at f 1. Figure 1c shows the antenna with both I-NL and a decoupling
network (DN). The DN is constructed below the ground to create the second TZ at f 2. The
T-DN has an inherent TZ at f 1, which enables independent control of two TZs. Impedance
matching is realized by adjusting the length of the patch and the position of the feeding
probes. Figure 2 shows the layout structure of the proposed dual-polarized patch antenna.
The suspended patch is constructed using copper with a thickness of 1 mm. The Rogers4003
substrate with a permittivity of 3.55 and loss tangent of 0.0027 is adopted to construct the
decoupling network. The detailed dimensions of the antenna and decoupling structures
are listed in Table 1.
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Figure 1. Structure of the proposed antenna. (a) Original patch; (b) with neutralization line; (c) with 

neutralization line and decoupling network. 
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Figure 1. Structure of the proposed antenna. (a) Original patch; (b) with neutralization line; (c) with
neutralization line and decoupling network.
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Figure 2. Layout of the proposed dual-polarized patch antenna (units: mm). (a) Top view; (b) side
view.

Table 1. Dimensions of the proposed high-isolation dual-polarized patch antenna.

wg w wf wd wt wn hz

150 48.7 0.96 1.01 0.40 1.0 5.5

wm hp hn wx pw hh ln

1.13 8.0 0.035 1.5 1.0 0.508 30.9

lm lf ld lt la

31.13 14.68 3.53 19.07 12.15

2.2. Equivalent Circuit Model and Decoupling Mechanism

For further investigation, the equivalent circuit (EC) model of the high-isolation dual-
polarized patch antenna (without a decoupling network) is proposed in Figure 3. This
model can be subdivided into three parts: original patch antenna, initial coupling circuit
(ICC), and I-NL. The radiating patch is equivalent to paralleled RLC circuits (R1, L1, and
C1). The feeding probe can be modeled by inductor L2 and transmission line (e1). The
initial coupling is represented by composite circuits R2, L3, and C2. e3 is used to adjust
the phase effect of the coupling signal, which is mainly determined by patch dimensions.
The I-NL (introduce additional coupling) is modeled by C3, L4, and e4. Finally, the feeding
lines of the path antenna are represented by e2. The optimal parameters of this equivalent
circuit model (corresponding to patch antenna with I-NL) are shown in Table 2. To validate
the effectiveness of the EC model, we compared the S-parameters of the physical structure
(simulated by SuperEM V2022) and the EC model (simulated by ADS2020), as shown in
Figure 4. Specifically, Figure 4a depicts the S-parameter comparison of antennas without
I-NL, while Figure 4b illustrates their comparison with I-NL. The results show that the
phase and magnitude of the S-parameters are well-matched, indicating that the proposed
EC model is accurate and reliable. As such, it can be utilized to expedite the optimization
process of the proposed patch antenna design. Referring to Figure 3, let [A1, B1; C1, D1]
and [A2, B2; C2, D2] denote the transmission matrices (TM) of ICC and I-NL, respectively.
The TM of the resonance circuit with L2 is denoted by [A3, B3; C3, D3], and the TM with
respect to the reference plane AA’ is denoted by [A4, B4; C4, D4]. By applying network
theory, the following equation can be derived.[

A1 B1
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]
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1

]
(3)

[
A4 B4
C4 D4

]
=

[
cos e1 jz1 sin e1

jy1 sin e1 cos e1

][
A3 B3
C3 D3

][
A2 B2
C2 D2

][
A3 B3
C3 D3

][
cos e1 jz1 sin e1

jy1 sin e1 cos e1

]
(4)

Micromachines 2023, 14, x FOR PEER REVIEW 4 of 9 
 

 

2

1 1 1 1 1

2

2

3 3

3 3 3

1 1 1 2 1 1 2 1

1 0

1
( )

A
R jwL w R L C

jwR L L w L L jw R L L C

B

C D

 
 

+ − 
 

 


+ −
 

− 

=





 

(3) 

2

1

1

3 3 3 34 1 1 1 1

1

4 2 2

3 3 3

1

1 1 1 134 4 2

cos sin cos sin

sin cos sin cos

A B A BA e jz e e jz e

jy e e jy e

B A B

C D CC D eDC D

   
   

      
=       

       

 
(4) 

 

Figure 3. Equivalent circuit of the proposed patch antenna (without decoupling network). 

  

(a) 

  

(b) 

Figure 4. Comparison of S-parameters (magnitude and phase) of the EM structure and the equiva-

lent circuit (EC) model. (a) Without I-NL; (b) with I-NL. 

  

z1 

e1

L1 L1

C1 C1

R1 R1

L2 L2

z1 

e1

z2 

e2

z2 

e2

L3

C2

z3, e3 z3, e3R2

Feed 1 Feed 2

X-polar Y-polar

Probe

ICC 1 1

1 1

A B

C D

 
 
 

z4, e4
z4, e4

L4

C3

I-NL
2 2

2 2

A B

C D

 
 
 

3 3

3 3

A B

C D

 
 
 

4 4

4 4

A B

C D

 
 
 

Origin 

antenna

AA’

BB’

2.2 2.3 2.4 2.5 2.6 2.7 2.8
−40

−30

−20

−10

0

M
a
g
n

it
u

d
e(

d
B

)

Frequence(GHz)

 S11(EM_Sim)   S12(EM_Sim)

  S11(EC)   S12(EC)

2.2 2.3 2.4 2.5 2.6 2.7 2.8
−200

−100

0

100

200

P
h

a
se

(D
eg

re
e)

Frequence(GHz)

 S11(EM_Sim)   S12(EM_Sim)

  S11(EC)   S12(EC)

2.2 2.3 2.4 2.5 2.6 2.7 2.8
−50

−40

−30

−20

−10

0

M
a

g
n

it
u

d
e(

d
B

)

Frequence(GHz)

 S11(EM_Sim)

  S12(EM_Sim)

  S11(EC)

  S12(EC)

2.2 2.3 2.4 2.5 2.6 2.7 2.8
−200

−100

0

100

200

P
h

a
se

(D
eg

re
e)

Frequence(GHz)

 S11(EM_Sim)

  S12(EM_Sim)

  S11(EC)

  S12(EC)

Figure 3. Equivalent circuit of the proposed patch antenna (without decoupling network).
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Figure 4. Comparison of S-parameters (magnitude and phase) of the EM structure and the equivalent
circuit (EC) model. (a) Without I-NL; (b) with I-NL.
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Table 2. Optimal parameters of the equivalent circuit model.

R1 L1 C1 L2 z1 e1

52.4 Ω 0.4 nH 9.4 pF 1.1 nH 53.1 Ω 179.40

z2 e2 z3 e3 R2 C2

179.8 Ω 10.60 85.4 Ω 49.80 7.7 Ω 0.8 pF

L3 z4 e4 L4 C3

2.1 nH 15.3 Ω 10.60 404.1 nH 0.5 pF

Subsequently, the mutual admittance with reference to the plane BB’ can be calculated
as follows.

Y21
B = Y21

A + Y21
C = − 1

B4
− 1

B1
(5)

As shown in (5), the I-NL can provide another mutual coupling to cancel out the
original coupling. By adjusting the length/width and height of I-NL (C3, L2, L4, z4, and e4),
the first transmission zero can be created at f 1.

Figure 5 illustrates the schematic diagram of the proposed decoupling network, which
comprises two sections of transmission lines (TLs) and a T-DN. As described in [12], the
inserted TLs and T-DN serve to eliminate the real and imaginary parts of mutual admittance
(by adjusting e5 and z6), respectively. A shunt quarter wavelength TL, evaluated at f 1, is
positioned at the center of the T-DN to maintain the first TZ created by I-NL. This approach
enables the independent control of the position of two TZs, resulting in deep and wideband
decoupling.
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The generation of two TZs using the proposed decoupling method is illustrated
in Figure 6. The original antenna exhibits high mutual coupling (15–20 dB), which is
significantly reduced after applying the I-NL, resulting in high isolation at f 1. However, the
decoupling bandwidth is limited. To overcome this problem, a DN is then added, which
generates another TZ and achieves wideband decoupling. The simulated in-band isolation
is below 40 dB with two TZs.

The I-NL and T-DN are responsible for generating the first and second TZ, respectively.
To further investigate this, the height of I-NL (hz) and the width of the microstrip line of
T-DN (wd) are used for examination. Figure 7 illustrates the variation in S-parameters
when these two parameters are changed. Excellent decoupling performance is attained
with hz = 3.5 mm and wd = 1.05 mm. By adjusting hz, the first TZ at a lower frequency can
be generated. By adjusting wd, the second TZ can be generated without affecting the first
TZ. This demonstrates the independent control of the two TZs.
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Figure 7. Key-parameter study. (a) hz; (b) wd.

3. Experimental Validation and Results

For verification, the proposed high-isolation dual-polarized patch antenna is designed,
fabricated, and measured. Figure 8 shows the photographs of the fabricated antennas
and the anechoic chamber. The suspended patch is supported by three plastic posts. The
S-parameters are measured by the Keysight vector network analyzer E5071C, and radiation
patterns are measured in an anechoic chamber. As shown in Figure 9, the measured
reflection coefficient of the proposed antenna is below −10 dB from 2.5 to 2.7 GHz. High
isolation (below 30 dB) is realized in the operating band by using the proposed decoupling
method. Figure 10 shows the simulated and measured radiation patterns (yoz- and xoz-
planes) of the proposed antenna. Good agreement of the simulated and measured results is
observed. Figure 11 gives the measured total efficiency and realized antenna gain of the
proposed antenna. High total efficiency (90%) and measured stable gain (9.6–10.3 dBi) is
observed. Furthermore, the measured front-to-back ratio is about 23 dB.

Table 3 gives the performance comparison with other published works. As demon-
strated, this design performs competitively compared to existing proposals, particularly in
terms of realized gain, efficiency, and isolation performance.
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Figure 10. Radiation patterns. (a) xoz-plane; (b) yoz-plane.
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Figure 11. Measured total efficiency and realized gain of the proposed antenna.

Table 3. Performance comparison with other works.

Ref. Method Frequency
(GHz)

Antenna Size
(λ0

3) Isolation (dB) Total Efficiency
(%)

Average
Gain (dBi)

[8] Dual-feed technique 1.71–1.88 0.55 × 0.55 × 0.11 >30 N.A <8

[9]
Complementary
magneto-electric
coupling feeding

1.53–2.95 0.62 × 0.62 × 0.26 >31 N.A 4

[10] Introducing air bridge 1.6–2.3 N.A >33 N.A N.A

[11] Using shorting vias
and additional ground 7–12 0.56 × 0.56 × 0.13 >40 N.A 8.5

This work Using I-NL and T-DN 2.5–2.7 0.42 × 0.42 × 0.07 >30 >85 10.0

4. Conclusions

In this paper, a novel high-isolation dual-polarized patch antenna with two transmis-
sion zeros has been proposed, designed, and demonstrated. To better reveal the decoupling
principle, the equivalent circuit model of the proposed antenna is analyzed. Moreover, the
decoupling condition of the two-layer decoupling structure is rigorously derived and equiv-
alently represented by the two-port transmission matrix and Y-matrix. Finally, the isolation
is improved by about 15–20 dB between two input ports. The proposed design features
high port isolation, compact size, low cross-polarization, and high radiation performance.
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