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Abstract: We propose a dynamically tunable ultra-broadband terahertz metamaterial absorber, which
was based on graphene and vanadium oxide (VO2) and numerically demonstrated. The excellent
absorption bandwidth almost entirely greater than 90% was as wide as 6.35 THz from 2.30 to 8.65 THz
under normal incidence. By changing the conductivity of VO2 from 20 S/m to 3 × 105 S/m, the
absorption intensity could be dynamically tuned from 6% to 99%. The physical mechanism of the
ultra-wideband absorption is discussed based on the interference cancelation, impedance matching
theory, and field distributions, and the influences of the structural parameters on absorption are
also discussed. According to the symmetric configuration, the absorption spectra of the considered
polarizations were very close to each other, resulting in a polarization-insensitive structure. Such a
tunable ultra-broadband absorber may have promising potential in the applications of modulating,
cloaking, switching, and imaging technology.
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1. Introduction

The terahertz (THz) wave, whose frequency ranges from 0.1 to 10 THz, has broad
application prospects in medical imaging, stealth technology, security inspection, broad-
band communication, and so on [1–4]. High-performance devices are essential for effective
terahertz wave manipulation in order to achieve these favorable applications. Metamate-
rial perfect absorbers (MPAs) play an important role in numerous devices owing to their
distinctive advantage of ultra-thinness. Following the discovery of the perfect narrow-band
microwave absorber by Landy et al. in 2008 [5], many researchers have put forward a
variety of metamaterials based on the THz wave absorption device model and have studied
its single-band [6], multiband [7], and broadband characteristics [8]. However, the reported
MPAs with a metal/insulator/metal structure still have some problems, such as a lim-
ited frequency or wavelength, unadjustable absorption performance, and low absorption
efficiency, which greatly limit their further practical application. Hence, achieving high-
performance tunable ultra-broadband terahertz MPAs has become an important research
direction of terahertz technology.

In order to solve the above problems, some new two-dimensional materials have be-
come research breakthroughs. Recently, many MPAs have been proposed to broaden the ab-
sorption bandwidth and achieve dynamic tunable characteristics, based on graphene [9,10],
MoS2 [11,12], LCD [13], and black phosphate [14]. Although these have the advantage
of a greater degree of freedom in dynamic tunability, they are difficult to design because
of the complex structure of the cell and its array and the shortcomings of incident angle
or polarization dependence. VO2 is a kind of phase-change material, switching between
insulation and metal phase states, and it can be controlled by external stimuli such as
heat, with the phase transition time able to be completed in picoseconds. The conductivity
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difference of VO2 between the insulator and metal phase is approximately three orders of
magnitude in the THz range, which makes it promising to design innovative devices. Many
MPAs with broadband and tunable absorption properties have been reported, based on
VO2 [15–17]. However, there are many problems to be overcome, including their complex
structure, narrow bandwidth, and poor absorption effectiveness. Thus, it is worth further
exploring a novel broadband terahertz absorber with tunable absorption, improved insen-
sitivity to polarization, and simpler geometry. Graphene is a two-dimensional material
that consists of carbon atoms arranged in a planar hexagonal lattice. The Fermi level
of graphene can be continuously tuned to change its surface conductivity by chemically
doping it or introducing an external bias voltage, thus giving the tunable properties of
graphene-based metamaterial absorption structures [18–20]. Several multifunctional THz
absorbers combining graphene and VO2 have been proposed [21–23]. However, most
terahertz metamaterial absorbers still have some problems, such as a low absorption effi-
ciency, untunable absorption performance, and insensitivity to polarization, which greatly
limit their further practical application. Therefore, achieving a high-performance tunable
terahertz metamaterial absorber has become an important research direction in the field of
terahertz waves.

Inspired by these earlier studies, we proposed a tunable broadband terahertz meta-
material absorber based on vanadium dioxide and graphene. The proposed absorber
comprised a periodic array of VO2 resonant rings, a graphene layer, an insulator layer,
and a metal ground plane. When the VO2 was in the metallic state, the bandwidth of the
designed absorber was 6.35 THz (2.30–8.65 THz), and the rate of absorption was almost
entirely greater than 90%. When the frequency was between 2.30 and 8.65 THz, by con-
trolling the conductivity of VO2 from 2 × 10 S/m to 3 × 105 S/m, the absorption peak
could be continually tuned from 6% to 99%. Moreover, for both transverse and longitudinal
electromagnetic waves, the proposed absorber had an insensitivity to the polarization angle,
with considerable incident angle tolerance. In the field of terahertz absorbers, the proposed
multifunctional absorber is anticipated to be employed extensively.

2. Structure Design and Method

Figure 1 depicts a 3D schematic diagram and the geometric parameters of the designed
tunable ultra-broadband terahertz metamaterial absorber. The absorber consisted of four
layers, including the Au bottom layer, the insulator layer, the graphene layer, and the
VO2 layer with a resonant splitting ring pattern. As illustrated in Figure 1, the optimized
structural parameters of the absorber unit were Px = 20 µm and Py = 20 µm. The thickness
T2 and conductivity of the bottom gold layer were 0.2 µm and 4.09 × 107 S/m, respec-
tively [24], and the bottom layer acted as a mirror to ensure the complete reflection of the
illuminating terahertz wave, thereby suppressing transmission. The relative permittivity
of the insulator layer was 1.96, and it was assumed to be lossless in the simulation [25],
with a thickness T1 of 9.5 µm. The graphene layer was a single layer, and its thickness was
0 µm. The top VO2 layer was composed of a ring with a cross opening, and the thickness
T3 of the VO2 layer was 0.16 µm. The optimized geometric parameters of the splitting
ring were R1 = 7 µm, R2 = 9.5 µm, and g = 0.625 µm. In order to analyze the magnitude
response of the designed absorber, the CST microwave studio was used to perform the
numerical simulation. We utilized the finite difference time domain (FDTD) method to
simulate the structure and obtain the corresponding reflection and transmission coefficients.
The PEC-PMC boundary conditions were used in the x and y directions to simulate the
infinite array for normal incidence, while the open boundary was considered along the
z direction.
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Figure 1. (a) 3D schematic of the ultra-broadband terahertz absorber unit cell. (b) Top view of the 
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Figure 1. (a) 3D schematic of the ultra-broadband terahertz absorber unit cell. (b) Top view of the
unit cell.

The interaction between electromagnetic waves and graphene can be explained by
solving Maxwell’s equation. All the calculations were carried out using the computer
simulation technology (CST) microwave studio, and 3D numerical results were obtained.
Since graphene was modeled as a material with a surface conductivity of σgra in the
simulation, the surface conductivity of the graphene could be characterized using the
following formulae (i.e., Kubo formula) [26]:

σgra = σintra + σinter (1)

σintra =
2e2kBT
πh2

i
ω+ i/τ

In[2cos h(
Ef

2kBT
)] (2)

σinter =
e2

4h2 [
1
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hω− 2Ef
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2 + 4(kBT)2 ] (3)

where e denotes the charge amount; h is the reduced Planck constant; kB represents the
Boltzmann constant; and T, τ,ω, and Ef are the ambient temperature (T = 294 K), the electron
mobility, the incident light angular frequency, and the graphene Fermi level, respectively.

In accordance with the Pauli repulsion principle, the surface conductivity of the
graphene was primarily derived by the intra-band conductivity, while the inter-band
conductivity could be ignored. According to Refs. [27,28], Equation (1) can be simplified as:

σgra =
e2Ef

πh2
i

(ω+ i/τ)
(4)

It can be seen from Equation (4) that the surface conductivity of graphene is not
only related to the angular frequency and relaxation time of the incident electromagnetic
wave, but also to the Fermi level. Therefore, the surface conductivity of graphene can be
adjusted by the relaxation time and the Fermi level. Both chemical doping and changing
the bias voltage can be used in practice to attain a different Fermi level for graphene. In
this work, the Fermi level Ef = 0 eV and carrier relaxation time τ = 0.1 ps were selected for
broadband absorption.

In the terahertz range, the Drude model is adopted to describe the optical dielectric
constant of VO2 [29]:

ε(ω)VO2
= ε∞ −

ω2
p(σ)

ω2 − iγω
(5)

where ε∞, γ, and ω2
p(σ) denote the high-frequency relative dielectric constant, the colli-

sion frequency, and the plasma frequency related to the conductivity, respectively. In this
design, ε∞ = 9, ω2

p(σ) =
σ
σ0
ω2

p(σ0), σ0 = 3× 105 S/m, ω2
p(σ0) = 1.45× 1015 rad/s, and

γ = 5.75× 1013 rad/s. As a kind of phase change material, the phase change process of
VO2 is accompanied by substantial alterations in the dielectric constant and electrical con-
ductivity. Through external optical excitation [30], electrical excitation [31], or heating [32],
VO2 can be altered to a metallic state from an insulating state. Distinct dielectric constants



Micromachines 2023, 14, 1715 4 of 12

are employed for various phase states during the VO2 phase transition from insulator
to metal. In the simulation, VO2 was insulated, and we set the conductivity of VO2 as
σ = 2× 10 S/m in the normal temperature range. By the time the temperature rose to
68 ◦C, VO2 transformed to the metallic state from the insulating state, and the electrical
conductivity changed by four orders of magnitude as well. When VO2 was in the metallic
state, the VO2 conductivity was set as σ = 3× 105 S/m. By substituting σ into Equation (5),
the dielectric constant value of VO2 was derived. At room temperature, VO2 presented
an insulating phase with a conductivity of 20 S/m. When the temperature reached the
phase transition temperature, VO2 was in the metallic phase, and the conductivity was
2 × 105 S/m.

Figure 2a,b show the evolution of the real part (Re(ε)) and imaginary part (Im(ε)) of the
relative dielectric constant of VO2 for different values of the conductivity, respectively. It is
worth noting that Re(ε) varied from positive to negative with the increase in conductivity.
When the state of VO2 changed from the protective phase (20 S/m) to the metal phase
(300,000 S/m), Im(ε) increased remarkably.
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Figure 2. (a) The real and (b) imaginary parts of the VO2 relative dielectric constant for
different conductivities.

Absorptivity is a crucial parameter for evaluating absorber performance and can be
expressed as A(ω) = 1 − R(ω) − T(ω), where T(ω) is the transmission coefficient and
R(ω) is the reflection coefficient. Owing to the thickness of the metal film being greater
than the penetration depth, T(ω) was close to zero within the operating frequency range.
Therefore, A(ω) = 1 − R(ω) could be used to simplify the equation above. The absorption
characteristics of this design were estimated by employing the commercial software CST
2018 on the basis of the FDTD method, where periodic boundary conditions are used in
the x and y directions and Floquet ports are used in the z direction, and a plane wave was
incident on the designed absorbers.

Although numerical simulation could be used to design the proposed device structure,
the potential feasible preparation methods were worth exploring. Therefore, a potential
fabrication method was proposed. First, a 200 nm thick metallic ground layer was deposited
on a glass substrate by magnetron sputtering. A 9.5 µm thick dielectric layer is coated
by spin coating. Then, a single layer of graphene was fabricated using chemical vapor
deposition and a picosecond laser [33]. Next, 160 nm thick VO2 was deposited on the
graphene patterned by magnetron sputtering [34]. The ion gel was prepared by dissolving
PVDF-HFP in acetone with the aid of a magnetic stirrer for an hour, before adding the
EMIM TFSI into the solution and stirring for 24 h. The 100 nm thick ion gel was then
spin-coated on the structure and dried in ambient conditions for one hour [35]. Using the
above steps, the final sample could be prepared.

3. Results and Discussion

When the VO2 was in the metal phase state with a conductivity of 3 × 105 S/m, the
absorption spectra of the proposed broadband absorber were calculated and shown in
Figure 3. The absorption bandwidth with an absorptivity of more than 90% was found to be
6.35 THz (2.30–8.65 THz). The absorption was very high, but it was not uniform. There were
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certain kinds of oscillation. The cause of these oscillations was graphene film interference.
It was observed that two perfect absorption peaks were located at f1 = 5.36 THz and
f2 = 8.08 THz.
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Figure 3. (a) Absorption and (b) reflection curves when Ef = 0 eV and σVO2 = 3× 105 S/m.

Impedance matching, which explains that absorption tends to unity when the effec-
tive impedances of the free space and the absorber are matched, could also explain the
absorption bandwidth of the metasurface absorber presented in this study. According to
the impedance matching theory, the absorption of the absorber under normal incidence is
as follows [36]:

A(ω) = 1− R(ω) = 1−
∣∣∣∣Z(ω)− Z0

Z(ω) + Z0

∣∣∣∣2 = 1−
∣∣∣∣Zr(ω)− 1
Zr(ω) + 1

∣∣∣∣2 (6)

where Z0 =
√
µ0/ε0 and Z(ω) =

√
µ(ω)/ε(ω) are the effective impedances of the free

space and the absorber, respectively, and Zr(ω) = Z(ω)/Z0 is the relative impedance
between the absorber and the free space. The characterization of the metasurface absorber
and the calculation of the relative impedance could be achieved using the scattering
parameter inversion technique [23]:

Zr(ω) =

√√√√ (1 + S11(ω))2 − S21(ω)2

(1− S11(ω))2 − S21(ω)2 (7)

where S11 and S21 are scattering parameters, in which the first subscript represents the
receiving port and the second subscript denotes the excitation port. The necessary condition
for a metamaterial absorber to achieve perfect absorption is that the equivalent impedance
of the metamaterial absorber matches the impedance of the free space, so that the incident
electromagnetic wave enters the absorber to the maximum extent, and then the reflection
reaches the minimum, so as to realize ultra-broadband absorption characteristics. The
reflection is minimal and the absorption is close to the unit when the impedance of the
absorber equals that of the free space or the equivalent relative impedance is equal to the
unit (Zr = 1). Figure 4 depicts the real and imaginary parts of the relative impedance.
As the conductivity of VO2 increased, the real part of Zr inclined to 1, the imaginary part
inclined to 0, and the absorption bandwidth became wider. When the conductivity of VO2
was 3× 105 S/m, the real part approached 1 and the imaginary part approached 0, which
meant that the impedance of the proposed absorber almost matched that of the free space.
At this time, the reflection of the absorber structure on the incident electromagnetic wave
was almost zero, and the maximum loss of the incident terahertz wave was inside the
insulation layer, achieving nearly perfect absorption.
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In order to further explain the working mechanism of the broadband absorber, the
electric field was investigated at frequencies of 2.55, 5.36, 7.83, and 8.08 THz, respectively,
as illustrated in Figure 5. At the frequencies of 2.55, 5.36, 7.83, and 8.08 THz, the absorption
of the absorbers was 94.4%, 98.2%, 98.6%, and 99.5%, respectively, and the absorption
gradually increased. When the frequency equaled 2.55 and 5.36 THz, the electric field
was concentrated between the four parts of the splitting ring, and the VO2 resonance was
formed between the left and right parts of the splitting rings. When the frequency equaled
7.83 and 8.08 THz, the electric field between the four parts of the splitting ring decreased,
and the electric field at the edge of the splitting ring increased. It can be seen that the
resonance at a low frequency was mainly caused by the electrical resonance between the
parts of the VO2 splitting ring, while the resonance at a high frequency was caused by the
resonance of a single part of the VO2 splitting ring.
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Figure 5. The simulated electric field intensity distributions of the proposed absorber at the frequen-
cies of 2.55 THz, 5.36 THz, 7.83 THz, and 8.08 THz for (a) the TE mode and (b) the TM mode.

The absorption of this metasurface absorber could be dynamically regulated by ad-
justing the VO2 conductivity from 2 × 10 S/m to 3 × 105 S/m. Figure 6 describes the VO2
simulated absorption spectra with different electrical conductivity values under normal
incidence and a graphene Fermi level of 0 eV, as well as the absorption spectra without
graphene and with different graphene Fermi levels and a VO2 conductivity of 3 × 105 S/m.
Thus, the conductivity of VO2 and the Fermi level of the graphene had an important
effect on the designed absorption system performance, which offered a further degree of
flexibility for the implementation of dynamically adjustable ultra-broadband absorbers.
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Figure 6. (a) Absorption spectra and (b) reflection spectra with different conductivities of VO2 and
a graphene Fermi level of 0 eV, (c) Absorption spectra and (d) reflection spectra without graphene,
with different graphene Fermi levels, and with a VO2 conductivity of 3 × 105 S/m.

Considering the possible fabrication errors of the metamaterial structure in the actual
machining process, we studied in detail the impact of different geometrical parameters on
the broadband absorptive properties. Except for the variable parameters, the parameters
were fixed at the initial settings for this investigation. When the Fermi level of the graphene
was Ef = 0 eV and the structural period was 20 µm, the operating frequency and intensity of
the broadband and narrowband absorbance could be adjusted by the parameters. Figure 7
depicts the influence of the parameters (such as T1, T3, R1, R2, and g) on the absorption
spectrum of the design metasurface absorber.

As shown in Figure 7a, when T1 increased from 8.5 µm to 11.5 µm, a remarkable
red shift could be observed at a high frequency such that the relative bandwidth reduced.
In order to account for this red-shift phenomenon, the propagation phase (ϕp) could be
employed, which is denoted by [37]:

f =
cϕp

4T1

√
εr − sin2α

(8)

where T1, f, εr, c, and α are the thickness of insulator layer, the resonance frequency, the
permittivity of the insulator layer, the speed of light in free space, and the incident angle,
respectively. In this design, the parameters εr = 1.96 and α = 0◦. ϕp were considered to be
fixed as well. The incident wave was a plane wave, ϕp. It is known that Equation (8) shows
an inverse relationship between the resonant frequency and the thickness of the insulator
layer. Therefore, the resonance frequency was red-shifted as parameter T1 increased.
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Figure 7. The absorption spectra of the absorber with distinct geometric parameters (a) T1, (b) T3,
(c) R1, (d) R2, and (e) g under a normal TE incident wave.

The absorption spectra of the designed absorber with different thicknesses of the
bottom layer are depicted in Figure 7b. When the thickness T3 was equal to 0.16 µm,
the ultra-broadband and quasi-perfect absorption of the designed absorber was achieved.
Therefore, the thickness of T3 = 0.16 µm was selected as the optimal geometric parameter.
Figure 7c,d depict the absorption performance of the absorber with ring radius R1 and
R2, respectively. When the radius R1 varied from 6 to 7.5 µm, there was a significant red
shift in the high-frequency absorption. On the contrary, as the radius R2 increased from
8.5 to 10 µm, the absorption performance at a low frequency had a remarkable red shift.
The LC circuit model could be utilized to elucidate the resonant frequency of the proposed
absorber, which is expressed as [37]:

f =
1

2π
√

LC/2
∝

1
R

(9)

where R, C, and L, are the radius, the total capacitance, and the inductance of the ring, re-
spectively. It can be observed that the frequency in this equation has an inverse relationship
with the ring radius. Thus, as the radius of the ring increased, the peak of the absorption
moved towards a low frequency.
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In Figure 7e, as the gap of the splitting ring increased, the absorption between the two
resonant frequencies, shifting from 5 THz to 8.65 THz, decreased significantly. Furthermore,
the absorption peak at 2.3 THz reduced with an increase in parameter g. However, the
bandwidth showed no distinct change. Based on the above considerations, we finally
selected the size of the broadband absorber as T1 = 9.5 µm, T2 = 0.2 µm, T3 = 0.16 µm,
R1 = 7 µm, R2 = 9.5 µm, and g = 0.025 µm.

In practical applications, it is crucial that the absorber be insensitive to the polariza-
tion angle. To investigate the absorption effect of the absorber under oblique incidence,
broadband absorption spectra with polarization angles of 0◦ to 90◦, incidence angles of
0◦ to 90◦, and a step size of 10◦ were simulated in the frequency range from 1 to 10 THz.
Figure 8a,b depict the absorption spectra of electromagnetic waves that were incident in
the normal direction and had different polarization angles for TM and TE modes. It is
clear that the absorption at each frequency point experienced no shift with the change in
polarization angle. This polarization-insensitive characterization might have been a result
of the symmetrical structure of the designed absorber.
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Figure 8. The absorption spectra of the designed absorbers with different polarization angles for
(a) TE mode and (b) TM mode.

Figure 9a shows the absorption spectra with various incidence angles for the TE-
polarized incident wave. The absorption decreased in the low- and high-frequency absorp-
tion bands with the increased incident angle, but a maximum absorption coefficient of 89%
could still be achieved at the incident angle of 70◦. Figure 9b shows the absorption spectra
with various incidence angles for the TM-polarized incident wave. An absorption intensity
over 90% could also be obtained until the incident angle rose to 60◦. But the absorption
bandwidth was greatly affected by the incident angle, since the tangential component of
the electric field parallel to the x axis of the TM-polarized incident wave decreased with
the increase in the angle of incidence. In addition, both polarization situations showed a
blue shift with a rising incidence angle, which was caused by the parasitic resonance on the
absorber surface at high incidence angles [38].
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Figure 9. The absorption spectra of the designed absorbers with different incident angles for (a) TE
mode and (b) TM mode.
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Terahertz metamaterial absorbers based on VO2 and graphene have attracted more
and more attention. To illustrate the advantages of the absorbers designed in this paper,
we compared their broadband absorption characteristics with those of other published
papers in Table 1. The design of the absorber layer number, broadband performance, and
adjustable range had good performance.

Table 1. Comparison of broadband absorption performance between different absorbers.

References Constitutive Materials Number of Layers Absorption Bandwidth (THz) Angular Stability Polarization Insensitive

[39] Graphene and VO2 7 1.6 (0.8–2.4) 55 Yes
[40] Graphene and VO2 6 1.3 (1.05–2.35) 50 Yes
[41] VO2 3 3.3 (2.34–5.64) 55 Yes
[42] Graphene and VO2 3 1.03 (1–2.03) 50 No

This work Graphene and VO2 4 6.35 (2.30–8.65) 50 Yes

4. Conclusions

In summary, we designed a broadband tunable THz metamaterial absorber using VO2
and graphene that could achieve switching performance with nearly perfect broadband ab-
sorption. It was demonstrated that the proposed broadband absorber could achieve nearly
perfect absorption from 2.30 to 8.65 THz in both numerical simulations and theoretical
calculations. In addition, the proposed broadband absorber could be flexibly adjustable,
and the absorption amplitude could be continuously increased from 6% to 99% by changing
the conductivity of VO2. Due to absorbing devices having a tuning range width and po-
larization insensitivity, etc., they have good application prospects in such areas as tunable
filters, sensors, and switches.
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