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Abstract: For NiTi alloys prepared by the Laser Powder Bed Fusion (LPBF), changes in the building
directions will directly change the preferred orientation and thus directly affect the smart properties,
such as superelasticity, as well as change the distribution state of defects and impurity elements to
affect the phase transformation behaviour, which in turn affects the smart properties at different
temperatures. In this study, the relationship between impurity elements, the building directions, and
functional properties; the effects of building directions on the crystallographic anisotropy; phase
composition; superelastic properties; microhardness; geometrically necessary dislocation (GND)
density; and impurity element content of NiTi SMAs fabricated by LPBF were systematically studied.
Three building directions measured from the substrate, namely, 0◦, 45◦ and 90◦, were selected, and
three sets of cylindrical samples were fabricated with the same process parameters. Along the
building direction, a strong <100>//vertical direction (VD) texture was formed for all the samples.
Because of the difference in transformation temperature, when tested at 15 ◦C, the sample with
the 45◦ orientation possessed the highest strain recovery of 3.2%. When tested at the austenite
phase transformation finish temperature (Af)+10 ◦C, the 90◦ sample had the highest strain recovery
of 5.83% and a strain recovery rate of 83.3%. The sample with the 90◦ orientation presented the
highest microhardness, which was attributed to its high dislocation density. Meanwhile, different
building directions had an effect on the contents of O, C, and N impurity elements, which affected
the transformation temperature by changing the Ni/Ti ratio. This study innovatively studied the
impurity element content and GND densities of compressive samples with three building directions,
providing theoretical guidance for LPBFed NiTi SMA structural parts.

Keywords: laser powder bed fusion (LPBF); NiTi SMAs; microstructure; mechanical response;
building orientation; impurity elements

1. Introduction

NiTi shape memory alloys (SMAs) have received widespread attention from the mate-
rials science and engineering fields because of their excellent superelasticity, shape memory
effect, damping properties, and biocompatibility. NiTi SMAs have a wide range of applica-
tions in aerospace, biomedical devices, mechanical electronics, the construction industry,
and daily life [1,2]. Normally, NiTi SMAs prepared by traditional vacuum arc induction
melting and powder metallurgy methods have homogeneous structures. However, ther-
mal processing methods, such as drawing, forging, rolling, extrusion, and welding, are
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prone to introducing impurities, such as oxygen, carbon, and nitrogen, making the phase
transformation temperature difficult to regulate. Frenzel et al. [3] pointed out that for the
ratio of Ni and Ti elements, even a slight change of 0.1 at.%, can change their martensite
transformation start temperature (Ms) by up to ~10 ◦C, thus significantly affecting their
microstructure and mechanical properties, which greatly limits the application of NiTi
SMAs in complex working conditions [4,5].

Laser powder bed fusion (LPBF) has a wide range of applications and has been widely
used in a variety of materials, such as steel, high-temperature alloys, titanium alloys
and aluminium alloys [6–9]. LPBF technology can transform complex three-dimensional
shapes into two-dimensional layers and fabricate the desired shapes in one process. Its
tunability in the process can solve the limitation of the phase transformation temperature,
which is difficult to regulate during the traditional preparation and processing of NiTi
SMAs [10,11]. Furthermore, LPBF also has great potential for the manufacturing of gra-
dient materials. For example, Song et al. [12] proposes an analytical approach to design
stretching-dominated truss lattices with tailored elastic properties, including isotropic
elasticity, tailored zero/negative Poisson’s ratios, tailored Young’s moduli ratios along
specified directions, and the prototype was prepared using the Micro-LPBF technique,
these techniques could be used to develop new engineering applications and promote the
development of NiTi SMAs [13–15]. Therefore, the NiTi SMAs fabricated by LPBF have
become a major topic in the research community recently [16–19]. In these studies, the me-
chanical properties of LPBFed NiTi SMAs showed an obvious orientation dependence. For
example, the type of defects has a great influence on the tensile strength, and the building
directions have a significant effect on the wear properties of LPBFed NiTi SMAs [20,21].
Dadbakhsh et al. [22] investigated the anisotropy of LPBFed NiTi SMAs (with different
building directions) and clarified that the crystallographic textures have an important effect
on the mechanical properties of LPBFed NiTi SMAs. Gu et al. [15] optimized the process
parameters of LPBFed NiTi, an excellent shape recovery rate of 88.23% was achieved under
the optimal parameters, and a shape-recovery rate of 96.7% was achieved under electrical
actuation for a structure with a pre-compressed strain of 20%. Shi et al. [19] investigated
the effects of crystallographic anisotropy on the microstructure, phase transformation and
the tribological properties of NiTi shape memory alloys fabricated by LPBF and revealed
how different LPBF-induced microstructures affect mechanical properties and wear prop-
erties. Most of the studies above focused on the effects of the building directions on the
crystallographic texture, phase composition, and thermomechanical response. However,
the effect of the building directions on the impurity elements and the magnitude of the
dislocation densities in LPBFed NiTi SMAs has not been reported.

In this study, the microstructures, mechanical properties, and impurity element con-
tents of LPBFed NiTi SMAs with three different building directions (0◦, 45◦, and 90◦)
were investigated. In addition, the relationship between the preferred orientations and
the dislocation densities was analyzed. Furthermore, the influence of the defects in the
samples with different building directions on the introduction of impurity elements was
also investigated in detail.

2. Materials and Methods
2.1. NiTi Samples Fabrication by LPBF

Ni50.8Ti49.2 powder was prepared by Minatech Ltd. (Shenzhen, China) using the elec-
trode induction-melting gas atomization (EIGA) technique. The main composition (wt.%)
of the NiTi powder was determined to be 55.80 wt.% Ni, 0.0576 wt.% O, 0.0066 wt.% C,
0.0067 wt.% N, and balance Ti. Figure 1a shows the scanning electron microscopy (SEM)
image of the NiTi powder, which exhibits a regular spherical shape with less satellite
powder, and the size range of the powder particles is from 15 µm to 53 µm (D50 = 36.8 µm).
As shown in Figure 1b, three sets of cylindrical specimens were prepared with a height
of 10 mm and a diameter of 6 mm. Figure 1c shows the scanning strategy of 67◦ rotation
angles between the adjacent layers. The LPBF processing was performed in a BLT (BLT
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S210, Shaanxi, China) machine equipped with a 500 W ytterbium-doped laser under argon
protection to keep the oxygen level below 100 ppm. Previous research has shown that
NiTi alloys exhibits favorable superelasticity and low porosity when exposed to the energy
density of about 72 J/mm3. To control independent variables, the same process parameters
and different building directions are applied. Table 1 shows the optimized parameters in
the LPBF processing, and the energy density was calculated with E = P/vht [21].
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Figure 1. (a) Morphology of Ni50.8Ti49.2 powder, (b) actual view of LPBFed NiTi SMA samples,
(c) scanning strategy implemented in this research and (d) schematic of LPBFed NiTi SMA samples.

Table 1. Processing parameters for LPBFed NiTi SMAs.

Sample Laser Power
P (W)

Scanning Speed
v (mm/s)

Hatch Spacing
h (µm)

Layer Thickness
t (µm)

Energy Density
E (J/mm3)

0◦ 105 600 80 30 72.92
45◦ 105 600 80 30 72.92
90◦ 105 600 80 30 72.92

2.2. Microstructure and Property Characterization

ADSC250 differential scanning calorimeter (DSC, TA) was used to determine the
phase transformation temperature of the samples. The weight of the DSC specimens was
5~20 mg, and the heating/cooling rate was 15 ◦C/min from −80 ◦C to 70 ◦C. The LPBFed
NiTi SMAs were ground, polished, and etched using a mixture of 70 vol% H2O + 20 vol%
HNO3 + 10 vol% HF solution. The metallography of the samples was observed by an
optical microscope (OM, Zeiss, Oberkochen, Germany). The atomic ratios of Ni and Ti were
analyzed by scanning electron microscopy (SEM, FEI Scios 2, Waltham, MA, USA) equipped
with an EDAX X-ray energy spectrometer (EDS). Five random points were selected to test
each sample to obtain the average composition. The tested samples were polished to
2.5 µm with 180~2000 grit silicon carbide sandpaper, followed by electrolytic polishing in a
HNO3/CH3OH = 1:10 (vol%) solution at 20 V for 15 s. The crystallographic orientation,



Micromachines 2023, 14, 1711 4 of 15

phase composition and dislocation density were analyzed by SEM equipped with an EDAX
electron backscatter diffraction (EBSD) system.

Transmission electron microscopy (TEM) samples were ground to a thickness of 50 µm
and then electropolished using a twin-jet thinning electropolishing device and an electrolyte
consisting of 4% perchloric acid and 96% ethanol (vol%) at −20 ◦C. TEM observation and
electron diffraction analysis were performed in a JEM2100 (JEOL, Tokyo, Japan) electron
microscope at 200 kV.

Sample impurity elements were collected by an ONH836 gas analyser and a CS800
carbon and sulphur analyser. Compression tests were performed in an INSTRON 8862
mechanical testing machine with a strain rate of 5 × 10−4/s. The microhardness was tested
on a Wilson VH3300 (Buehler, Lake Bluff, IL, USA) microhardness tester. Among them, five
positions were collected for each sample to obtain the average microhardness value.

3. Results and Discussion
3.1. Defects and Impurities

As shown in Figure 2, the OM images of the 0◦, 45◦ and 90◦ samples demonstrate that
the porosity defects represented by the black dots are distributed inside the grains and at the
grain boundaries. It is noteworthy that the unmelted defects are concentrated at the melt
pool boundaries. Specifically, the 0◦ samples have more unmelted defects but smaller sizes
and fewer porosity defects. The 90◦ samples have more serious porosity defects and fewer
unmelted defects, while the number and size of unmelted defects and porosity defects of
the 45◦ sample are moderate. Actually, the difference in the building direction changes
the defect distribution of the samples. During LPBF processing, different thermal histories
result in different grain solidification directions and differences in convection, leading
to differences in the distribution of unmelted defects and differences in microporous
defects [21]. In addition, the spattering of the molten metal varies depending on the
direction of solidification, leading to differences in the distribution of the defects [23–26].
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Figure 2. Optical microstructure of (a) 0◦, (b) 45◦ and (c) 90◦ samples (the rolling direction (RD) and
transverse direction (TD) planes are the observation planes).

Slight changes in the Ni/Ti ratios can cause drastic changes in the phase transformation
temperatures [27,28]. Among them, the introduction of impurity elements could change the
phase composition of the samples by forming the second phases, i.e., Ti4Ni2OX, TiN, TiO2
and TiC, which will change the transformation temperatures. The functional properties
of the samples will change further [29,30]. Chemical element analysis was performed
on the virgin powder and the samples. The results are shown in Figure 3, and the LPBF
samples have a slightly higher oxygen content than the virgin powder. Among them, the
0◦ sample has the highest oxygen content, while the 45◦ sample has the lowest. The results
are consistent with the analysis of the OM images, where the 0◦ sample has the highest
number of defects, while the 45◦ sample has the lowest number of defects. In addition, the
carbon and nitrogen contents of the as-fabricated samples are lower than those of the virgin
powder, which indicates that the high temperature of the laser cladding process acts on the
powder, resulting in the loss of carbon or nitrogen.
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3.2. Microstructure Analysis

LPBF has the characteristics of directional temperature gradients and interlayer remelt-
ing. The grains could grow along the highest thermal gradient, and the competition
between the grains for growth will also lead to the preferential growth of favourable crys-
tallographic planes and favourable crystallographic directions during the processing of
LPBF. Obviously, the building directions will significantly change the preferred orientation
of the samples. Therefore, the texture of the LPBFed NiTi SMAs will be changed by the
difference in the building directions in this work [31–34].

To clarify the texture of the samples with different building directions, EBSD analysis
was performed. As shown in Figure 4a, the inverse pole figure (IPF) of the 0◦ sample
along the RD-TD direction shows a clear solidification texture of <100>//TD along the
VD. According to the pole figure of the 45◦ sample (Figure 4b), the {001} pole appears at
45◦ from the centre of the projection plane, indicating that the {001} texture is rotated by
45◦ compared to the 0◦ sample. Essentially, the {001} of the 45◦ sample is still growing
parallel to the VD. As shown in Figure 4c, the 90◦ sample has a strong solidification texture
of <100>//RD//VD. Interestingly, the pole figure of the 90◦ sample overlaps with that of
the 0◦ sample by rotating the pole figure of the 90◦ sample by 90◦, which indicates that the
90◦ sample has the same preferred orientation as the 0◦ sample. According to the analysis
of the EBSD results, the preferred orientation of the LPBFed NiTi SMAs can be obviously
changed by adjusting the building direction; meanwhile, a <100>//VD was formed for all
samples with different building directions.
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Figure 4. Schematic of the EBSD collection position for the (a) 0◦, (b) 45◦ and (c) 90◦ samples:
(a1–c1) are IPF orientation maps of LPBFed NiTi SMAs along the normal direction; (a2–c2) are IPF
orientation maps of LPBFed NiTi SMAs along the rolling direction; (a3–c3) are IPF orientation maps
of LPBFed NiTi SMAs along the transverse direction; and (a4–c4) are corresponding {001}, {110} and
{111} pole figures of the 0◦, 45◦ and 90◦ samples.

Figure 5 shows the phase composition, kernel average misorientation (KAM) and
grain boundary distribution of samples with different building directions. As shown in
Figure 5a,d,g, the martensite phase (shown in green) content of the 0◦, 45◦ and 90◦ samples
are 5.5%, 0.7% and 3.1%, respectively. Obviously, the martensite phase content of the
45◦ sample is lower than that of the others, which indicates that the martensite phase
transformation temperature of the 45◦ sample is lower than that of the others. The KAM
value is the statistic for calculating the overall average misorientation of the pixel points
collected, as shown in Figure 5b,e,h. The KAM values of the three samples are basically the
same, i.e., 0.73, 0.72 and 0.73, respectively. Moreover, the grain boundary distribution of
different samples is shown in Figure 5c,f,i. Generally, the lattice distortion is stronger in
the area of the martensitic phase. the area perpendicular to the melt pool that is parallel to
the building direction. Meanwhile, as shown in the KAM maps, there is also a large lattice
distortion at the high-angle grain boundary, which indicates that the grains at this location
are small, and more nucleation sites accompanied by large heat flow gradients during the
LPBF process have led to the formation of more fine grains.
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Figure 6 shows the geometrically necessary dislocation (GND) densities of the 0◦, 45◦

and 90◦ samples. The specific values calculated by EBSD are shown in Figure 6d. Among
them, the GND densities of the 0◦, 45◦ and 90◦ samples are 4.45 × 1013/m2, 3.89× 1013/m2

and 3.84 × 1013/m2, respectively. In contrast, the 45◦ sample has the highest GND density,
while the densities of the 0◦ and 90◦ samples were relatively low. Since the martensitic
phase contains more dislocations and twin substructures, which lead to an increase in the
overall dislocation density value, the limit of the misorientation value for calculating the
GND density is set to 1.5◦, excluding the influence of the martensitic phase.
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Figure 6. (a) GND distribution of the 0◦ sample, (b) 45◦ sample and (c) 90◦ sample and their
corresponding (d) GND density values.

To further analyze the effect of the building directions on the samples, TEM was used
to observe the phase composition and phase distribution of different samples. As shown in
Figure 7, a large number of Ti2Ni phases or Ti4Ni2OX phases with sizes ranging from 50
to 100 nm can be observed. In addition, the lath-shaped B19′ martensite phase with sizes
ranging from 100 to 300 nm can also be observed. Selected area electron diffraction was
applied to identify the Ti2Ni/Ti4Ni2OX phase and the B19′ martensite phase. Similarly,
Figure 8 shows the distribution of dislocations, Ti2Ni phase and B19′ martensite phase
of all the samples. Among them, the size of the Ti2Ni/Ti4Ni2OX phase in the 0◦ and 90◦

samples is larger than that in the 45◦ sample. In addition, according to the TEM bright-field
morphologies, the dislocation density of the 45◦ sample is higher than that of the 0◦ and
90◦ samples, while more martensite phases were observed in the 0◦ and 90◦ samples. Based
on the phenomenon reflected by the TEM morphology above, we found that the statistical
results of the GND density and martensite phase content are consistent with the EBSD
analysis. TEM analysis proved that larger sized Ti2Ni/Ti4Ni2OX phases were associated
with higher oxygen content in the 0◦ and 90◦ samples and that samples with different
building directions contained both Ti2Ni/Ti4Ni2OX phases and martensite phase.



Micromachines 2023, 14, 1711 9 of 15

Micromachines 2023, 14, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 6. (a) GND distribution of the 0° sample, (b) 45° sample and (c) 90° sample and their corre-
sponding (d) GND density values. 

 
Figure 7. (a) Bright field image and selected area electron diffraction in the corresponding circle 
region for the 0° sample (matrix and Ti2Ni phase). (b) Bright field image and selected electron dif-
fraction in the corresponding elliptic region for the 0° sample. 

Figure 7. (a) Bright field image and selected area electron diffraction in the corresponding circle
region for the 0◦ sample (matrix and Ti2Ni phase). (b) Bright field image and selected electron
diffraction in the corresponding elliptic region for the 0◦ sample.
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Figure 8. (a,d) TEM morphology of 0◦ samples. (b,e) TEM morphology of 45◦ samples. (c,f) TEM
morphology of 90◦ samples.

3.3. Phase Transformation Analysis

The reversible phase transformation between the austenite phase and martensite
phase is the theoretical basis for the shape memory effect and superelasticity of NiTi alloys.
Among them, the martensite start temperature (Ms), martensite finish temperature (Mf),
austenite start temperature (As) and austenite finish temperature (Af) are the important
phase transformation temperatures during the phase transformation process. Figure 9a
shows the result of the DSC measurement of the three samples. The corresponding phase
transformation temperatures obtained by the tangent method are listed in Table 2. The
Ms values of the 0◦, 45◦ and 90◦ samples are 22.1 ◦C, 11.4 ◦C and 13 ◦C, respectively.
Obviously, the Ms of the 0◦ sample was the highest, while that of the 45◦ sample was
the lowest. Correspondingly, the order of the martensite phase content in all samples at
ambient temperature (15 ◦C) was 0◦ sample > 90◦ sample > 45◦ sample, which is consistent
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with the result of the EBSD analysis. For each sample, five EDS results were collected
to calculate the average value, and the Ni content results are shown in Figure 9b. It can
be seen that the higher the Ni content of the sample, the lower the phase transformation
temperature, which is consistent with the DSC results.
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Table 2. Phase transformation temperatures of the 0◦, 45◦ and 90◦ samples.

Sample 0◦ 45◦ 90◦

Mf (◦C) −17.5 −54.2 −30.7
Ms (◦C) 22.1 11.4 13
As (◦C) 13.9 −15.9 11.1
Af (◦C) 52.3 43.7 51

The evaporation of Ni, the introduction of impurity elements, and the difference in
thermal conductivity are the reasons for the difference in the phase transformation tempera-
ture. During the processing of LPBF, a higher energy input could lead to the evaporation of
Ni, which in turn changes the Ni/Ti ratio in the NiTi alloys [30,35]. Nevertheless, the LPBF
processing parameters were the same except for the building direction in this work, so the
evaporation of Ni in different samples did not have a significant effect on the phase transfor-
mation temperature. Second, impurities are introduced, i.e., C, O, N, etc. Walker et al. [36]
pointed out that the introduction of impurities will react with the matrix elements to form
compounds, i.e., TiC, Ti4Ni2OX, TiO2, etc., which will affect the Ni/Ti ratios and further the
phase transformation temperature. As shown in Figure 3, the results of the chemical test
demonstrate that the content of oxygen is 0◦ sample > 90◦ sample > 45◦ sample. Obviously,
the loss of Ni was greatest in the 0◦ sample, which led to a decrease in the Ni/Ti ratio
and an increase in the phase transformation temperature. Last, the difference in thermal
conductivity. As described above, the raw powder and LPBF parameters used in this work
are the same. Therefore, it is considered that thermal conductivity has no significant effect
on the phase transformation temperature. In conclusion, the difference in the content of
impurity elements caused by different building directions is the most important factor
causing the difference in phase transformation temperatures.

3.4. Mechanical Properties Analysis

Figure 10 shows the microhardness test results for the three samples, with the 45◦ sam-
ple having the highest microhardness and the 0◦ sample having the lowest microhardness.
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Generally, dislocation densities are an important factor for the microhardness of metallic
materials. The increase in the dislocation density could lead to an increase in the matrix
strength and hardness of the material. As described in Section 3.2, the 45◦ sample has
the highest dislocation density, while the dislocation densities of the 0◦ and 90◦ samples
were relatively low; therefore, as a result, the highest microhardness values were obtained
for the 45◦ samples. In addition to the dislocation density, phase transformation is also
an important factor affecting the microhardness. Stress-induced martensite phase trans-
formation and martensite reorientation may occur during microhardness testing, which
can lead to a change in the microhardness values [37]. Based on the phase transformation
temperature (Table 2), we can see that the 0◦ sample has the highest phase transformation
temperatures, followed by the 90◦ sample, while the 45◦ sample has the lowest. However,
as shown in Figure 10, the trend of the microhardness values of the 0◦ sample, 45◦ sample
and 90◦ sample are opposite to the phase transformation temperatures: 45◦ sample > 90◦

sample > 0◦ sample. A high phase transformation temperature is prone to induce the
stress-induced martensite phase transformation, and martensite reorientation may occur
with less difficulty. Therefore, the microhardness value of the 0◦ sample was the lowest.
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Figure 10. Microhardness of 0◦, 45◦ and 90◦ samples.

Figure 11 shows the compression stress–strain curves. The recoverable strains and
recovery ratios are shown in Table 3. As shown in Figure 11a, all the samples were subjected
to a strain of 5% at 15 ◦C. Table 3 shows that the 45◦ sample has the highest recoverable
strain of 3.2%, while the lowest recoverable strain is 1.8% for the 0◦ sample under the
conditions above. As described in the phase transformation temperature section, the Ms of
the 45◦ sample is the lowest compared with the others. Therefore, during the superelasticity
test, the 45◦ sample with the highest proportion of the austenite phase shows the greatest
driving force of recovery and the highest recoverable strain.
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Figure 11. Compressive engineering stress-engineering strain curves for 0◦, 45◦ and 90◦ samples
(a) tested at ambient temperature (≈15 ◦C) and (b) tested at Af + 10 ◦C.

Table 3. Summary of compressive superelastic properties for 0◦, 45◦ and 90◦ samples.

Test Methods Tested at 15 ◦C; 5% Compressive Strain Tested at Af + 10 ◦C; 7% Compressive Strain

Samples 0◦ 45◦ 90◦ 0◦ 45◦ 90◦

Recoverable strain (%) 1.8 3.2 2.2 5.42 3.06 5.83
Irrecoverable strain (%) 3.2 1.8 2.8 1.58 3.94 1.17

Recovery ratio (%) 36 64 44 77.4 43.7 83.3

As shown in Figure 11b, the superelasticity was tested at the temperature of Af + 10 ◦C.
The recoverable strains of the 0◦ and 90◦ samples were improved to 5.42% and 5.83%, respec-
tively. Interestingly, the 90◦ sample has the best recoverable strain, while the recoverable
strain of the 45◦ sample is the lowest. As discussed above, samples with different building
directions have different textures along the loading direction. According to the result of the
EBSD analysis, the loading direction of the 90◦ sample coincides with the <100> orientation.
Generally, <100> is a hard orientation, which is not conducive to plastic deformation.
Moreover, the 90◦ sample is more likely to drive stress-induced martensitic phase trans-
formation behaviour without causing dislocation accumulation [38]. Therefore, the 90◦

sample has the best superelasticity compared to the others at the temperature of Af + 10 ◦C.
The 45◦ sample has a <110> texture along the loading direction with a relatively large
Schmidt factor, which is prone to plastic deformation. Therefore, the plastic deformation
will remain in the matrix after unloading and cannot be recovered. Meanwhile, the low
Ms of the 45◦ sample requires a larger stress to drive the martensitic phase transformation,
resulting in plastic deformation without a significant stress-induced martensitic phase
transformation platform.

Therefore, the superelasticity of the 45◦ sample is worst compared with the others at
the temperature of Af + 10 ◦C.

A summary of the research work on LPBFed NiTi SMAs with superior superelastic
properties (tested at Af + 10 ◦C) was performed, and the results are shown in Table 4. It can
be seen that at smaller deformations, the samples generally have higher strain recovery
rates, while larger strain is prone to have higher strain recovery, but the recovery rates are
not ideal. The superelastic properties in this work are similar to those in similar studies.
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Table 4. Comparison of the optimal superelastic properties (tested at Af + 10 ◦C) in various
LPBFed NiTi.

Reference (Tested at Af + 10 ◦C) Recoverable Strain (%) Recovery Ratio (%)

[39] 5.62 98
[40] 5.5 94.8
[41] 5.32 93.2

This work 5.83 83.3

4. Conclusions

In this study, LPBF-NiTi samples with different building directions (0◦, 45◦ and 90◦)
were tested and analyzed for microstructure, defect distribution, impurity element, crystal-
lographic orientation, dislocation density, phase transformation behaviour and mechanical
properties using the same LPBF processing parameters, and the following conclusions
were obtained:

(1) The samples with different building directions exhibited distinct defect distributions.
The 0◦ and 90◦ samples, which had more unmelted defects, demonstrated a higher
oxygen content. The introduction of oxygen impurities altered the Ni/Ti ratios in
the matrix and significantly raised the phase transformation temperature. The order
of martensitic phase transformation temperature was as follows: 0◦ sample > 90◦

sample > 45◦ sample. This order is in line with the oxygen content present in each
sample. Consequently, the quantity of martensite phase in samples with different
building directions also followed the same trend: 0◦ sample > 90◦ sample > 45◦ sample.

(2) The increase in dislocation density enhanced the microhardness of the matrix, while
the increase in phase transformation temperature facilitated the occurrence of stress-
induced martensitic phase transformation. This phenomenon was also the primary
factor responsible for altering the hardness of LPBFed NiTi SMAs.

(3) LPBFed NiTi SMAs with different building directions had different preferred orienta-
tions along the loading direction, but all had textures of VD//<100>.

The stress-induced martensitic phase transformation was related to crystallographic
orientation. Unfavourable orientations can result in plastic deformation and obscure the
platform of the stress-induced martensitic phase transition. When the phase transforma-
tion temperature (Af) exceeded the ambient temperature, it significantly impacted the
superelastic properties, with higher temperatures leading to poorer superelastic properties.

The main idea of this study was to change the introduction of impurity elements in
NiTi alloys and alter their microstructures by adjusting the LPBF building direction, which
in turn affects their phase transformation temperatures and superelasticity. In conclusion,
for engineering applications, the 45◦ sample had a lower phase transformation temper-
ature, which was more favourable for superelastic recovery under certain temperatures
(As < testing temperature < Af), while the preferred orientation of the 90◦ sample ensured
a greater superelastic recovery strain when tested at Af + 10 ◦C.
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