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Abstract: In this paper, the performance of Cu-(In,Ga)-S2 (CIGS2) solar cells with adjusting composite
[Cu]/([Ga] + [In]) (CGI)-ratio absorber was explored and compared through an improved three-
stage co-evaporation technique. For co-evaporating CIGS2 absorber as a less toxic alternative to
Cd-containing film, we analyzed the effect of the CGI-ratio stoichiometry and crystallinity, and
explored its opto-electric sensing characteristic of individual solar cell. The results of this research
signified the potential of high-performance CIGS2-absorption solar cells for photovoltaic (PV)-module
industrial applications. For the optimal CIGS2-absorption film (CGI = 0.95), the Raman main-phase
signal (A1) falls at 291 cm−1, which was excited by the 532 nm line of Ar+-laser. Using photo-
luminescence (PL) spectroscopy, the corresponding main-peak bandgaps measured was 1.59 eV at the
same CGI-ratio film. Meanwhile, the best conversion efficiency (η = 3.212%) and the average external
quantum efficiency (EQE = 51.1% in the visible-wavelength region) of photo-electric properties were
achieved for the developed CIGS2-solar cells (CGI = 0.95). The discoveries of this CIGS2-absorption
PV research provided a new scientific understanding of solar cells. Moreover, this research undeniably
contributes to a major advancement towards practical PV-module applications and can help more to
build an eco-friendly community.

Keywords: Cu-(In,Ga)-S2 (CIGS2) solar cells; three-stage co-evaporation technique; [Cu]/([Ga] + [In])
(CGI)-ratio stoichiometry; opto-electric sensing performance; eco-friendly community

1. Introduction

In recent years, photovoltaic (PV) technologies have been the most abundant form
of renewable energy of a fast-growing industry [1]. For many PV technologies, solar
cells with thin-film light trapping structures have attracted extensive attention due to
their advantages such as nanowires for light weight, and manufacturing flexibility [2–4].
Amongst thin-film PV cells with a copper–indium–gallium–selenide (CIGSe) absorber [5–7],
a low-temperature fabrication process can be applied to a glass or flexible polyimide (PI)
substrate for building-integrated industry PV applications [8]. However, when the substrate
temperature is below 500 ◦C, alkali elemental (Na) diffusion from the substrate is limited
for the high-efficiency CIGSe solar cells [9].

In order to solve this limitation, a three-stage process with Na postdeposition treatment
(PDT) was reported [10], thus improving the crystallinity and the grain size of the CIGSe
absorption layer deposited for the low-temperature process. For the design of CIGS2-
absorber thin-film solar cells on flexible substrates, we focused on developing the novelty
of the modified three-stage co-evaporation process, in the meantime maintaining good
interface characteristics between the buffer layer and the CIGS2 absorber on the tunable
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bandgap effect [4–8]. ZnO thin film was deposited on the CdS surface through the chemical
bath deposition (CBD) process to form a stack of buffer layers, denoted as i-ZnO/CdS.

However, the impact on environmental issues and human health has recently been
regarded as one of the top priorities. Therefore, developing alternatives to highly toxic
cadmium (Cd)-containing materials has become a primary issue in the eco-friendly research.
Thus, a copper–indium–gallium–sulfur (CIGS2) can be used as a less toxic alternative to
Cd-containing semiconductors. Moreover, CIGS2 is a promising absorber material for
the fabrication of high-efficiency thin-film solar cells thanks to its well-adapted bandgap
(approximately 1.5 eV) [11,12]. A gradient in the Ga distribution has also been found, and
CIGS2 was also investigated to be an absorber for the top cell of the tandem configura-
tion [13].

For the CIGS2-solar cell fabrication in this study, the absorber layer was prepared by a
modified three-stage sequential co-evaporation method [9], which can effectively adjust the
ratio of the [Cu]/([Ga] + [In]) (CGI) process. In this approach, combined with an additional
Cu-rich for composite-ratio (CGI ratio for Cu-contents of Cu/(In + Ga)) deposition phase,
an annealing process was utilized by different process duration after stage 2. Such a method
has shown tremendous potential to improve the crystallinity of the CIGS2 films deposited
at low temperatures.

At the same time, X-ray diffraction (XRD) analysis, Raman-shift spectroscopy, and
photo-luminescence (PL) spectroscopy were used to study the crystallization characteristics
of the CIGS2 absorber layer with different CGI ratios. The two main objectives of this
experiment were to increase conversion efficiency (η) and to improve the external quantum
efficiency (EQE) in the visible-wavelength region, all for CGI ratio (composite-ratio poly-
mer) approaches 1 of the developed CIGS2-solar cells. Under the premise of environmental
protection for promoting the commercialization of these technologies, we expected to
diminish the manufacturing temperature, lessen the toxic material, and reduce the pro-
duction cost. These eco-friendly cells could be effectively applied to mass production for
commercial PV-module applications.

2. Experiments and Measurements

The experimental process, as described in our previous work [6], mainly used the
co-evaporation method to make the absorption layer, the CBD process, and sputtering
method to plate the buffer layer and the barrier layer, and finally used the sputtering
method to make the Ni-Al surface electrode. For the modified three-stage co-evaporation
method in this study, four evaporation sources including Cu, In, Ga, and S were deposited
on the substrate as the absorption layer. Table 1 illustrates the deposition parameters of
the CIGS2 thin-film absorption layer for preparing sample S1, S2, and S3 with different
CGI ratios [14], changing from 0.67 to 1.96 for better crystal thickness and less secondary
phase signal. All the parameters were varied by the substrate temperature (◦C) and the
evaporation time (minutes) of adding the evaporation source (3 check marked) during
each stage co-evaporation process.

To investigate the characteristics for the three samples with different absorption layers,
Table 2 summarizes the surface composition and the corresponding images of energy-
dispersive X-ray spectroscopy (EDS) spectrum of their respective absorption layers. The
CGI ratios of sample S1, S2, and S3 were separated for 0.78, 0.95, and 1.25. Meanwhile,
the sample S2 ([Ga]/([Ga] + [In]), GGI = 0.10) of this table confirmed that CIGS2 is a
high-efficiency device, and the content of Ga atoms (between 0.1 and 0.3) to the GGI in
Ga [14]. The crystal structure of films was evaluated by a Rigaku X-ray diffraction (XRD)
with Ni-filtered Cu Ka radiation. An atomic force microscope (AFM) instrument (Bruker
INNOVA SPM) was used to scan the surface terrain in a typical area of 2.5 × 2.5 mm2

(512 × 512 pixels) of the CGIS2 film on a vibrating-free platform. The root mean square
(RMS) surface-roughness values were obtained using the software that came with the
instrument. Furthermore, the optical and electrical properties of our cells were also mea-
sured using commercially available systems: scanning electron microscopy (SEM) and EDS
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(Model: JSM-6500F, JEOL Ltd.), micro-Raman scattering (UniDRON, CL Technology Co.)
incorporated with microwave-induced photo-conductance decay (µ-PCD) system (Model:
U-2001), PV conversion efficiency measuring system (model: Oriel-91192/AM 1.5 GMM),
and the EQE measurements (model: QE-R, Enlitech).

Table 1. Experimental parameters of three-stage co-evaporation deposition for CIGS2 thin-film absorption
layer prepared with different CGI ratios, (a) S1 (CGI = 0.78), (b) S2 (0.95), and (c) S3 (CGI = 1.25).

(a) S1 (CGI = 0.78) Cu In Ga S Temp (◦C) Time (min)

Stage 1 3 3 3 3 380 48.5
Stage 2 3 380–640 40
Stage 3 3 3 3 640 20

(b) S2 (CGI = 0.95) Cu In Ga S Temp (◦C) Time (min)

Stage 1 3 3 3 3 380 41
Stage 2 3 3 380–640 31
Stage 3 3 3 3 640 16

(c) S3 (CGI = 1.25) Cu In Ga S Temp (◦C) Time (min)

Stage 1 3 3 3 3 380 37
Stage 2 3 3 380–640 33
Stage 3 3 3 3 640 9

Table 2. The surface composition and the corresponding images (below) of EDS spectrum of CIGS2

thin-film absorption layer prepared with different CGI ratios, S1, S2, and S3 for CGI = 0.78, CGI = 0.95
and CGI = 1.25, respectively.

Atomic Ratio (%) Cu K In L Ga K S K Mo L CGI GGI

S1 21.12 24.63 2.43 49.03 2.79 0.78 0.08
S2 24.33 23.05 2.43 46.6 3.59 0.95 0.10
S3 27.21 20.68 0.98 48.75 2.38 1.25 0.04
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3. Results and Discussion

Figure 1 demonstrates top-view and cross-section SEM images of CIGS2 absorption
layers for different CGI ratios. In all cases, the surface morphology was dominated by
the underlying granular structure of the CIGS2, which remained visible beneath the over-
layers. It was seen that the grain size of the Cu-poor (sample S1) absorber (0.9 µm of left
of Figure 1a) was slightly smaller compared with Cu-rich (sample S3) absorber (1.3 µm
of left of Figure 1c). Meanwhile, the thickness of Cu-poor absorber (1.875 µm of right
of Figure 1a) was thicker than that of Cu-rich absorber (1.547 µm of right of Figure 1c).
Moreover, quantization from the EDS spectra of CIGS2 films illustrated the CGI ratios of
0.78, 0.95, and 1.25 for samples S1, S2, and S3, respectively (shown as Figure 1). This led to a
slower reaction as well as growth rate leading to the formation of uniform nanoparticles [15].
Furthermore, the incorporation of the Cu-rich (samples S2 and S3) of CIGS2-absorption layer
can distinctly boost grain growth and reduce the fine-grain layer, thus greatly improving
the absorber crystallinity and reducing the trap state density [16]. Table 3 plots for 2-D
and 3-D AFM images of as deposited different CGI-ratio samples, in which Ra and Rmax
stand for the average centre-line and the maximum surface-height roughness, respectively.
As is evident from the S2 image’s relatively compact and flat surface structure, the film
was composed of cone-shaped columns randomly distributed over the surface of the film.
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Thus, the films’ surface was rough and porous with RMS surface roughness (Rq) of 97.3 nm.
These results were consistent with the results in the literature [16,17], indicating that a more
porous CGI-ratio film structure led to a greater grain size, as seen in Figure 1.
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Figure 1. The top view (left) and cross-sectional view (right) of SEM images with the CIGS2 absorber
layer for the CGI ratios are: (a) CGI = 0.78 (Cu-poor), (b) CGI = 0.95, and (c) CGI = 1.25 (Cu-rich),
respectively. The grain size (from 0.9 to 1.3 µm) increases with copper content for crystal thickness in
the range of 1.547~1.875-µm.
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Table 3. The AFM roughness and the corresponding images (below) of CIGS2 thin-film absorption
layer prepared with RMS (Rq) values, S1, S2, and S3 for 65.2, 97.3, and 130 nm, respectively.

RMS (Rq) Ra Rmax

S1 (CGI = 0.78) 65.2 nm 50.4 nm 407 nm
S2 (CGI = 0.95) 97.3 nm 73.4 nm 483 nm
S3 (CGI = 1.25) 130 nm 104 nm 785 nm
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Figure 2 shows XRD patterns (under 5◦ incident angle) of CIGS2 layers with different
CGI ratios, in which the chalcopyrite structure of these films was determined by XRD
using Cu-K radiation of 1.5418 Å. The peak pattern was in good agreement with the
Joint Committee on Powder Diffraction Standards (JCPDS) reference diagrams for the
corresponding bulk phases. The (112), (204/220), and (116/312) lattice plane, respectively,
located at 27.9◦, 46.5◦, and 55.0◦ (2-theta values) from CuInS2 (JCPDS # 00-042-1475). The
secondary-phase signal was located at CuS (103) at 32.38◦, Mo (110) at 40.5◦, MoS2 (104) at
44◦, and CuInS2 (440) at 48.06◦.

Figure 3 illustrates the Raman spectra of CIGS2 thin-film absorption layers, which
exhibited peaks that can be attributed to the phonon modes of the ternary CuInS2 chal-
copyrite. The absorption layers were excited by the 532 nm line of an argon (Ar+) laser at
room temperature. Meanwhile, the modes of secondary phase were formed during the
deposition process. The most peak at 291 cm−1 was assigned to the A1-mode of CuInS2,
thus coinciding a noticeable contribution from Cu–Au mode (310 cm−1) in CIGS2 films [18].
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Figure 3. The Raman spectra of CIGS thin film absorption layer prepared with different sample of S1,
S2, and S3, which contain various concentrations of Cu-Au ordering, in which the Raman main-phase
signal (A1) falls at 291 cm−1, which is excited by the 532 nm line of Ar+-laser.

At same modulation source as Raman spectra on CIGS2 thin films, Figure 4 plots the
energy bandgap (eV)—the photoluminescence (PL) spectra measured at the 600–980 nm
wavelength transmission. Therein, the Cu-rich with samples S2 and S3, the main peak
displaced to about 1.59 and 1.61 eV, which was possibly induced by the secondary phase of
CuS (103) at 32.38◦ (shown in XRD pattern of Figure 2) [16]. In the lowest CGI-ratio film
(sample S1), it did not have an obvious peak. The samples S2 and S3 showed the obvious
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and wanted peak at 1.59 and 1.61 eV, respectively. However, sample S1 had the unwanted
peak at 1.41 eV of CuIn5S8, thus increasing defect density of the CIGS2 film in concurrence
with the literature reports [19].
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Figure 4. The photoluminescence (PL) spectra of CIGS2 thin film absorption layer, which the main-
peak bandgaps measured are 1.58, 1.59, and 1.61 eV, respectively, for S1, S2, and S3 samples.

The current density-voltage (J–V) characteristics of solar cells were measured under
illumination and under the conditions of AM1.5G and 1000 W/cm2. Figure 5 shows the
J–V curve under illumination and the electrical properties of the CGIS2-layer solar cells are
summarized on the top. The best performance of sample S2 (CGI = 0.95) yielded the highest
efficiency of the CGIS2-layer solar cell, with short-circuit current (JSC) = 15.53 mA/cm2,
open-circuit voltage (VOC) =590 mV, series resistance (RS) = 189 Ω, and conversion efficiency
(η) = 3.212%, yielding a gain of 2.304%absolute compared to the S1 cell. Although there was
improvement in fill factor (F.F.) for the higher CGI-ratio solar cell, it resulted in larger-JSC
value. Upon further investigation, it appeared that the cause for the lower CGI-ratio device
required with this synthesis technique (CGI ratio ~1.0), which showed an approximate
1.6-eV-bandgap phenomena that was also observed with the CuGaS2 absorption layer at
the PL-spectra of Figure 4, as described previously, thus improving optoelectronic quality
and increasing the charge-carrier lifetime of the absorption layer [20].

Figure 6 shows the EQE effect for our CIGS2-absorption solar cells with different
CGI ratios. In this study, for the visible-wavelength range (400–700 nm), the average
EQE value of our CIGS2-solar cell was increased as the CGI-ratio was increased, due
to the low transmittance of the absorption layer [21]. This was attributed to the light
absorption effect [6]—the absorber structure (CIGS2 layer) adopted narrower bandgap of
CIGS2 (~1.61 eV), thus avoiding more incident light into the main absorption layer. This
phenomenon also indicates that, as shown in Figure 5, only a very small number of carriers
were generated in the lower CGI-ratio absorption layer after illumination, resulting in a
decrease in JSC and η values. Additionally, it can be noticed that in the visible-wavelength
range of Figure 6, sample S3 exhibited a great improvement in EQE as compared with
sample S1 by approximately 29.8%absolute. This was presumed to be due to the inability
of the absorber layer to efficiently extract current in the visible-wavelength region.

The solar-panel manufacturing process brought together six different CIGS2-absorber
cells to create a functioning PV-array module, the size of which was the dimension of
30 × 30-cm2 area. For commercial applications of mass production of PV modules, the
overall performance will vary significantly under different photo-intensity conditions,
which will have a serious impact on the yield of PV systems. Variations in the intensity of
solar radiation falling on a PV module affect many of its parameters, including VOC, F.F.,
conversion efficiency, and output power. For a PV module (CGI = 0.95) prepared with the
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optimal CIGS2-solar cells under photo intensity set at 1 KW/m2, Figure 7 plots the current
(A)-voltage (mV) cures of a module with varying ambient temperatures. Among them, the
VOC value decreased (from 570 to 410 mV) with the increase in the ambient temperature
(from 30 to 75 ◦C). At these ambient temperatures, the corresponding optoelectrical perfor-
mance (VOC, F.F., and η values) of the developed PV module was attached on the top of
Figure 7. This was the negative-temperature effect of VOC value, which, in turn, led to a
drop in its η value (from 5.47% to 3.21%) with the same point of view found in [22].
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Figure 7. Under the fixed photo intensity (KW/m2) for the optimal CIGS2-solar cells prepared
with a PV module (CGI = 0.95), the current-voltage (I–V) curves observed from different ambient
temperatures (30~75 ◦C).

As photo intensity increased, again, the incident photo energy was absorbed more
because a greater percentage of the incident light had enough energy to raise charge carriers
from the valence band to the conduction band [23]. For a PV module (CGI = 0.95), Figure 8
illustrates the output power (W) relation with voltage (V), and it showed a linear upward
trend with the gradual increase in photo intensity (from 250 to 1000 W/m2). On the contrary,
this was the positive-photo-intensity effect of VOC value, which, in turn, led to a raise in its
η value (from 1.58% to 5.73%), which was consistent with the findings in [23].
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4. Conclusions

In summary, the modified three-stage co-evaporation method was used to prepare the
CIGS2-absorber solar cell by adjusting the CGI-ratio to obtain the optimal PV characteristics.
All the CIGS2-absorption layers were characterized by the EDS, XRD, Raman, and PL
spectra, which were persuasive and distinguished the effect of CGI ratios on CIGS2 thin-
film layers. The SEM and AFM images (Figure 1 and Table 3) clearly showed nanocrystalline
CIGS2-absorber solar-cell structures without interfacial reactions, and these thick interfaces
between the layers indicated that all layers are physically stable. For the developed CIGS2-
absorption film (CGI = 0.95), the Raman main-phase signal (A1) fell at 291 cm−1, which
was excited by the 532 nm line of Ar+-laser. Using PL spectroscopy, the corresponding
main-peak bandgaps measured was 1.59 eV at the same CGI-ratio film. Meanwhile, the best
conversion efficiency (η = 3.212%) and the average EQE (=51.1% in the visible-wavelength
region) of photo-electric properties were achieved for the developed CIGS2-solar cells
(CGI = 0.95).

For PV modules used in commercial mass production, the overall performance will
vary greatly under different photo intensities. Variations in the intensity of solar radiation
falling on a PV module affect many of its parameters, including VOC, F.F., η, and output
power. For a PV module (CGI = 0.95) prepared with the optimal CIGS2-solar cell, the
η values decreased with rising ambient temperature (30~75 ◦C). At the same time, its
output powers also increased with increasing photo intensity. In addition, these optimal
CIGS2-absorption layers showed excellent thermal stability at all ambient temperatures
under photo intensity set at 1 KW/m2. On the premise of improving the performance of
the developed devices, we hope that the proposed technology can not only reduce the
process temperature and production cost but also lessen the toxic Cd-containing materials.
Except the modified three-stage co-evaporation method in this study, the novel discoveries
of this CIGS2-absorber research provide a new scientific understanding of PV applications.
From a perspective of sustainability environmental consciousness, thus, the eco-friendly
PV modules can be effectively applied to commercial mass production.
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