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Abstract: The spectral and depth (SAD) imaging method plays an important role in the field of
computer vision. However, accurate depth estimation and spectral image capture from a single image
without increasing the volume of the imaging sensor is still an unresolved problem. Our research finds
that a snapshot narrow band imaging (SNBI) method can discern wavelength-dependent spectral
aberration and simultaneously capture spectral-aberration defocused images for quantitative depth
estimation. First, a micro 4D imaging (M4DI) sensor is proposed by integrating a mono-chromatic
imaging sensor with a miniaturized narrow-band microarrayed spectral filter mosaic. The appearance
and volume of the M4DI sensor are the same as the integrated mono-chromatic imaging sensor. A
simple remapping algorithm was developed to separate the raw image into four narrow spectral
band images. Then, a depth estimation algorithm is developed to generate 3D data with a dense
depth map at every exposure of the M4DI sensor. Compared with existing SAD imaging method, the
M4DI sensor has the advantages of simple implementation, low computational burden, and low cost.
A proof-of-principle M4DI sensor was applied to sense the depth of objects and to track a tiny targets
trajectory. The relative error in the three-dimensional positioning is less than 7% for objects within
1.1 to 2.8 m.

Keywords: microarrayed spectral filter mosaic; spectral and depth imaging; snapshot imaging;
micro-imaging sensor; depth from defocus

1. Introduction

Spectral imaging sensors have the ability to obtain spectral information with two-
dimensional spatial information (x, y, λ), and they have been widely used in remote
sensing [1], biomedical engineering [2,3] and food/crop quality detection [4,5]. In parallel,
three-dimensional (3D) imaging, with the ability to obtain three-dimensional spatial infor-
mation (x, y, z), plays an important role in the field of computer vision, such as in trajectory
tracking [6,7], 3D reconstruction [8–10], and automatic driving [11,12]. In recent years, a
spectral and depth (SAD) imaging method combining 3D spatial imaging and spectral
imaging has been developed.

The simplest SAD imaging method is to fuse data from multiple sensors [13–15] to
obtain 4D information (x, y, z, λ), but these methods are bulky and suffer from alignment
errors. The monocular SAD imaging method can obtain 4D information (x, y, z, λ) from
one imaging device, but most of them rely on scanning [16,17] or multiple frames [18–21],
which leads to a low temporal resolution and requires the scene to be static. With the
development of imaging technology, SAD imaging methods are gradually developing
toward both monocular and snapshot [22–25]. On the one hand, the existing methods use
dispersive elements [22,24,25] or a Wollaston prism [23] to map the spectrum with pixel
positions, which increases the volume of the system. Most of them use computational
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imaging methods [22–25], which cannot display 4D data cubes in real time due to the
massive computational requirements for reconstructing spectral images. On the other hand,
the existing methods use light field imaging to obtain depth, which also requires increasing
the volume of the imaging system. Therefore, a monocular snapshot SAD imaging method
with simple implementation and low computational complexity is of great research value.

The key problem of the SAD imaging method is how to use a single two-dimensional
imaging sensor to obtain multidimensional information (x, y, z, λ) in real time. Regarding
snapshot spectral imaging, the snapshot narrow-band imaging (SNBI) method developed
by our team [26] can capture a multispectral image in a single shot. The SNBI method uses
a miniaturized narrow-band microarrayed spectral filter mosaic to transform grayscale
cameras into snapshot multispectral cameras without increasing the volume of the imaging
system. Regarding depth imaging, extensive research has been undertaken into depth
sensing in 3D unstructured scenes using various 3D imaging methods, including light field
imaging [7,22–25], multicolor depth from defocus (DFD) [27–31], time-of-flight [19,21,32],
and multicamera stereo vision [33,34]. Most of them could not ensure that the depth
obtained in a single frame and range expanded without increasing the volume of the
imaging sensor. In particular, the DFD approach has unique advantages: it recovers depth
by analyzing the amount of defocus blur of a single image and requires a simpler optical
design. In addition, the DFD approach is a passive depth estimation method, which is
not disturbed by the infrared illumination of the sun. Therefore, it can be used indoors as
well as outdoors. The focus of our research is to estimate the depth from the multispectral
image by using a micro-imaging sensor. We previously proposed that it was feasible to use
multispectral images to detect spectral-aberration-caused defocus [35].

This study proposes a micro 4D imaging (M4DI) sensor that can dynamically capture
spectral and spatial 3D information. The M4DI sensor is integrated by a mono-chromatic
imaging sensor and a miniaturized narrow-band microarrayed spectral filter mosaic. The
M4DI sensor has the same volume as the integrated mono-chromatic imaging sensor, and
has the advantages of compactness, a light weight, and low cost. Four-channel multispectral
images are obtained by a simple remapping algorithm in a single exposure. Then, we
propose a method of using defocus cues from multispectral images to estimate the depth.
Postprocessing requires less computational burden, which makes it possible to be applied
to a real-time micro-imaging sensor. Finally, the system parameters are determined and the
depth estimation performance of the prototype is tested.

2. System and Methods
2.1. Micro 4D Imaging Sensor

The M4DI sensor was developed by integrating a mono-chromatic imaging sensor
with a miniaturized narrow-band microarrayed spectral filter mosaic. The filter mosaic
contains 135 × 160 square compound pixels (CP), and each CP covers 16-by-16 pixels of
the underneath mono-chromatic imaging sensor. A higher spatial and spectral resolution
can be realized in the future by improving the manufacturing accuracy of the filter mosaic.
Each CP consists of four optical microfilters arranged side-by-side in a two-dimensional
manner (Figure 1a). The side length of a CP is 104 µm; hence, the side length of each
microfilter is 52 µm, allowing optical light within one narrow spectral band to pass through.
Jointly, a CP allows four narrow spectral bands, B1 = 450 ± 10, B2 = 525 ± 10, B3 = 620 ± 10,
and B4 = 415 ± 10 nm to pass through while blocking all other wavelength light rays. The
transmittance rates of all four passing bands are over 70%, which is at least four orders of
magnitude higher than those of all stopping bands, which have transmittance rates lower
than 0.004% (Figure 1b). Therefore, the M4DI sensor eliminates any noticeable cross-talk
between different spectral bands.
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Figure 1. Illustration of (a) the geometric arrangement and (b) the spectral transmittance of the 
filter mosaic used in this study. 

As shown in Figure 2, an experimental platform for the M4DI sensor is established, 
and Table 1 lists the components used in the experimental platform. The characteristic of 
the axial dispersion lens is that each wavelength of light has a different focal length, which 
enhances the defocus difference between spectral images. Light is filtered by a miniature 
narrow-band filter and captured by a grayscale camera. The laser range sensor is used to 
provide the true value of depth and is fixed with the M4DI sensor. The relative depth error 
of the laser range sensor is less than 0.2% in the range of 5 m. 

 
Figure 2. The experimental setup for the proposed M4DI sensor. 

Table 1. List of components used in the experimental platform. 

Components Manufacturer Function 

Mono-chromatic imaging sensor United Scientific Camera & Im-
aging Corp, (A55-G17M) 

Capture gray image 

Miniaturized narrow-band microar-
rayed spectral filter mosaic 

Self-built Convert gray image into narrow-band spectral 
image 

Axial-dispersive optical lens Self-built Produce chromatic dispersion 

Laser range sensor 
Zhiwei Robotics Corp, 
(RPLIDAR A1M8-R6) Obtain true depth for testing performance 

Figure 1. Illustration of (a) the geometric arrangement and (b) the spectral transmittance of the filter
mosaic used in this study.

As shown in Figure 2, an experimental platform for the M4DI sensor is established,
and Table 1 lists the components used in the experimental platform. The characteristic of
the axial dispersion lens is that each wavelength of light has a different focal length, which
enhances the defocus difference between spectral images. Light is filtered by a miniature
narrow-band filter and captured by a grayscale camera. The laser range sensor is used to
provide the true value of depth and is fixed with the M4DI sensor. The relative depth error
of the laser range sensor is less than 0.2% in the range of 5 m.
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Table 1. List of components used in the experimental platform.

Components Manufacturer Function

Mono-chromatic imaging sensor United Scientific Camera & Imaging
Corp, (A55-G17M) Capture gray image

Miniaturized narrow-band microarrayed
spectral filter mosaic Self-built Convert gray image into narrow-band

spectral image

Axial-dispersive optical lens Self-built Produce chromatic dispersion

Laser range sensor Zhiwei Robotics Corp,
(RPLIDAR A1M8-R6)

Obtain true depth for
testing performance

2.2. Multispectral Images and Depth Map
2.2.1. Multispectral Image Acquisition

Figure 3 illustrates the spatial arrangement of four neighboring pixels of multiple
bands Bi (i = 1, 2, 3, 4) within the raw image, which is determined by the filter mosaic
shown in Figure 1a. At a single exposure, the M4DI sensor captured a raw image of the
scene (Figure 3). A simple remapping algorithm was developed to separate the raw image
R(r,c) (r = 1, 2, . . ., 2560; c = 1, 2, . . ., 2160) into four narrow spectral band images Bi (m,n),
where i = 1, 2, 3, 4 and m = 1, 2, . . ., 135; n = 1, 2, . . ., 160, according to Equation (1):

Bi(m, n) =
∑5

x=2 ∑5
y=2 R

(
16m + x + 8×mod(i− 1, 2), 16n + y + 8×

⌊
i−1

2

⌋)
16

, (1)

where mod(a,b) is the remainder of the division of a and b. The symbol
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length of light. In general, chromatic aberration is eliminated in the postprocessing step. 
Our research is focused on estimating depth from blur differences in multispectral images. 
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is rounded toward
negative infinity. In a spectral pixel, all the gray values in the coverage area of an i channel
filter are averaged. Due to the limitation of the manufacturing technology, there is a gap
between different spectral bands, so a 4× 4 area is selected as the window of each spectrum
(x, y = 2, 3, 4, 5).
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2.2.2. Depth from Multispectral Imaging with Chromatic Aberration

The key of DFD is how to obtain defocus information from the blurred image. A
blurred image can be modeled as a convolution of a clear image with a point spread
function (PSF). For circular apertures, the defocus pattern can be approximated by the
Gaussian function g(x, σ) = 1/

√
2πσ2 × exp

(
−x2/2σ2). The standard deviation σ of the

Gaussian function represents the degree of blur. The defocused image I(x) captured by the
imaging sensor can be represented by the following formula:

I(x) = f (x)⊗ g(x, σ) + n(x), (2)
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where x is the pixel coordinate of the image, ⊗ is a convolution symbol, and n(x) is
random noise.

The chromatic aberration of the lens is characterized by each wavelength of light
having a different focal length, which is caused by the different transmittance of each
wavelength of light. In general, chromatic aberration is eliminated in the postprocessing
step. Our research is focused on estimating depth from blur differences in multispectral
images. The relationship between defocus cues σi of the ith spectral channel λi and depth d
is as follows:

σi(x) = kDs
∣∣∣∣ 1
di
− 1

d

∣∣∣∣, (3)

where D is the optical aperture; k is a constant related to the imaging system; s is the distance
between the sensor and the lens; and di is the optimal focus distance (OFD) corresponding
to the ith spectral channel λi.

Generally, defocus cues are easily estimated at the edge of the image texture [36].
The step blur edge is the main type in the image texture. Calculating the defocus de-
gree of the step edge can be used to estimate the depth. The image at the edge can be
expressed as f (x) = [Au(x) + B]⊗ g(x, σ0). The function u(x) is the step function, and
σ0 is a fixed standard deviation of the step blur edge. A is the amplitude, and B is the
offset. The defocused image captured by the imaging sensor can be represented by the
following formula:

Ii(x) = [Au(x) + B]⊗ g(x, σ0)⊗ g(x, σi) + n(x), (4)

where Ii(x) is the pixel value at the image position x of the ith spectral channel λi and
σi is the standard deviation of the ith spectral channel λi. Median filtering is applied to
the multispectral image captured by the M4DI sensor to eliminate noise. Before depth
estimation, one preprocessing procedure was applied to normalize the four spectral images
to make their amplitude A comparable. The normalized spectral image I(λ) is obtained
using Equation (5):

I(λ) =
B(λ)− Bmin(λ)

Bmax(λ)− Bmin(λ)
. (5)

where B(λ) is the spectral image obtained using Equation (1), Bmin(λ) is the minimum gray
value of the spectral image, and Bmax(λ) is the maximum gray value of the spectral image.

Then, the gradient of the blurred image becomes:

∇i(x) =
A√

2π
(
σ2

0 + σ2
i
) exp

(
− x2

2
(
σ2

0 + σ2
i
)). (6)

Write ∇i(0) as ∇i. At the edges (x = 0), the gradient becomes:

∇i =
A√

2π
(
σ2

0 + σ2
i
) . (7)

According to Equation (7), the edge gradient of any three wavelength images is used
to eliminate the fixed standard deviation σ0. For convenience, the following equation is
denoted as M:

M =

1
∇2

i
− 1
∇2

j

1
∇2

k
− 1
∇2

j

=
σ2

i − σ2
j

σ2
k − σ2

j
i 6= j 6= k. (8)
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Substituting Equation (3) into Equation (8) and defining Di =
1
di

:

d̂
(
∇i,∇j,∇k

)
= 2×

[
M×

(
Dk − Dj

)
−
(

Di − Dj
)][

M×
(

D2
k − D2

j

)
−
(

D2
i − D2

j

)] i 6= j 6= k. (9)

It can be seen from Equation (9) that the depth can be estimated from three spectral
images. In the imaging system, there is a limit to the gradient change perceived by the
image sensor. When the blur size is too large, it may cause a gradient change that is
too small to be sensed by the sensor. Therefore, three spectral images with the closest
central wavelengths are applied to Equation (9), and other spectral images provide depth
estimation in a new range. In this paper, four spectral images are used for depth estimation:

d̂ =


d̂(∇1,∇2,∇3) i f ∇2 or ∇3 = max(∇1,∇2,∇3,∇4)
d̂(∇1,∇2,∇4) i f ∇1 or ∇4 = max(∇1,∇2,∇3,∇4)

0 else
. (10)

The sparse depth is obtained by Equation (10) and the depth value is only estimated
at the edge. A dense depth map, wherein each pixel within the image has a depth value,
can be obtained from the sparse depth map using existing algorithms [37] with some
modifications. We use the matting Laplacian method to interpolate the sparse depth d̂
into a dense depth map δ. The depth map interpolation method needs to minimize the
following cost function:

E(δ) = δT Lδ + ρ
(

δ− d̂
)T

H
(

δ− d̂
)

, (11)

where L is the Laplace matrix, which was proposed in [37]; ρ is a smoothing constant; H is
a diagonal matrix whose element Hmm is equal to 1 if the inequality d̂(m) 6= 0 is satisfied at
pixel m. Equation (11) is derived and the derivative is made 0:

(L + ρH)δ = ρHd̂, (12)

Equation (12) can be rewritten in the following way:

δ = (L + ρH)−1ρHd̂. (13)

The value of ρ is determined by the camera system or estimation method. In our
system, we use a fixed ρ value of 0.001.

3. Results and Discussion

According to Equation (9), it is necessary to determine the OFD of each spectral
channel. The OFD can be obtained by illuminating the imaging sensor with a point light
source. Figure 4 illustrates the amount of bandwise defocus variation with changes in
depth, measured as the full-width-half-maximum (FWHM) of a point light source imaged
by the M4DI sensor. The depth corresponding to the minimum value of the FWHM is the
OFD. Figure 4 measures the OFD as d4 = 1.4 m, d3 = 4 m, d2 = 2.3 m, and d1 = 1.6 m. Note
that this OFD is a fixed value in our system because the focal length in each channel and
the lens are fixed.

The image processing process of the M4DI sensor is shown in Figure 5. At a single
exposure, four spectral images are separated from the original images. The spectral images
are normalized, and then their gradient is calculated. We use the Canny edge detector to
perform edge detection and estimate the depth at the edge (sparse depth). Finally, a depth
map is obtained by filling the sparse depth according to the normalized spectral images.

A plane sample was placed at intervals of 10 cm in the range of 1~4 m to test the
accuracy and range of depth estimation. The result of the depth estimation is shown in
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Figure 6a. The true depth, illustrated by the black curve, was measured using a laser range
sensor, which has 1 mm accuracy for a depth range within 5 m. When three channel images
of 620 nm, 525 nm, and 450 nm are used as input images, the depth estimation range is
1.3~2.8 m. When three channel images of 525 nm, 450 nm, and 415 nm are used as input
images, the depth estimation range is 1.1~1.4 m. Therefore, the depth estimation range
of the M4DI sensor is 1.1 to 2.8 m. The maximum relative error of the M4DI sensor is
within 7%. Our team further applied the M4DI sensor to recover the trajectory of a box
printed with tiny characters. The central pixel position and depth of the character “U” (size:
10 × 17 mm) are given by template matching. The trajectories sampled at 16 different
positions are shown in Figure 6b. This shows that the M4DI sensor could be applied to the
field of target recognition and tracking.
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Figure 4. Variations in each spectral channel defocus of the dispersive optical lens. 

The image processing process of the M4DI sensor is shown in Figure 5. At a single 
exposure, four spectral images are separated from the original images. The spectral im-
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to perform edge detection and estimate the depth at the edge (sparse depth). Finally, a 
depth map is obtained by filling the sparse depth according to the normalized spectral 
images. 
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We further conducted a qualitative evaluation to test whether the M4DI sensor could
conduct 3D sensing of a complicated object. Experimental samples were placed at different
depths. The result of depth estimation is shown in Figure 7. Multiple factors could affect
the depth measurement accuracy. One is the uneven reflectivity of the surface material,
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which would enhance the received light intensity, and hence, the gradient of a particular
band if the reflectivity peaks at that band. Strong reflectivity in any one of the four narrow
bands causes an apparently shallower depth than the real depth. Another is that no
texture information is obtained, which means no information for depth in the passive depth
estimation method. Specifically, as shown in Figure 7, the sample has no texture (symbol A),
strong specular reflection (symbol B), and weak illumination (symbol C). Even with these
error-inducing factors, the far–near relationship between samples can be distinguished,
that is, a < b < c, d < e, f < g, and h < i.
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Figure 7. Depth estimated by the M4DI sensor: the first row shows the images of four different scenes
captured by a smartphone; the second row shows four pseudocolor images composed of 620 nm,
525 nm, and 450 nm channel images; the third row shows the sparse depth (only at edges) for the
four scenes; and the fourth row shows the dense depth map for the four scenes.
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4. Conclusions

In conclusion, this paper presents an M4DI sensor for multispectral depth imaging,
which can obtain narrow-band spectral images of four channels, and the relative error in
the depth recovery is less than 7% in the depth range of 1.1 to 2.8 m. The M4DI sensor was
developed by integrating a mono-chromatic imaging sensor with a miniaturized narrow-
band microarrayed spectral filter mosaic, which made it have the same volume as the
integrated mono-chromatic imaging sensor. The advantages of the proposed M4DI sensor
include its high efficiency of generating 4D cubic data, its extended depth of focus when
combining its various spectral bands, its compactness, its light weight, and its ability to
work in passive environments. These advantages make it unique among SAD imaging
methods, as none of the existing SAD imaging methods can obtain a multispectral depth
image in a single frame without increasing the volume of the imaging sensor. The M4DI
sensor was applied to sense the depth of objects and to track tiny target trajectories. The
M4DI sensor, as a miniaturized real-time imaging system, has the potential to identify and
track targets in a narrow space.
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