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Abstract: Microfluidic methods have proven to be effective in separation and isolation of cells for
a wide range of biomedical applications. Among these methods, physical trapping is a label-free
isolation approach that relies on cell size as the selective phenotype to retain target cells on-chip for
follow-up analysis and imaging. In silico models have been used to optimize the design of such
hydrodynamic traps and to investigate cancer cell transmigration through narrow constrictions.
While most studies focus on computational fluid dynamics (CFD) analysis of flow over cells and/or
pillar traps, a quantitative analysis of mechanical interaction between cells and trapping units is
missing. The existing literature centers on longitudinally extended geometries (e.g., micro-vessels) to
understand the biological phenomenon rather than designing an effective cell trap. In this work, we
aim to make an experimentally informed prediction of the critical pressure for a cell to pass through
a trapping unit as a function of cell morphology and trapping unit geometry. Our findings show
that a hyperelastic material model accurately captures the stress-related softening behavior observed
in cancer cells passing through micro-constrictions. These findings are used to develop a model
capable of predicting and extrapolating critical pressure values. The validity of the model is assessed
with experimental data. Regression analysis is used to derive a mathematical framework for critical
pressure. Coupled with CFD analysis, one can use this formulation to design efficient microfluidic
devices for cell trapping and potentially perform downstream analysis of trapped cells.

Keywords: microfluidic cell trapping; hydrodynamic trapping; physical trapping; finite element
method; cell isolation

1. Introduction

Microfluidic trapping of cells has emerged as a promising tool for advancing med-
ical and biological research by enabling investigations into cell-to-cell interactions and
signaling [1,2], immunotherapies [3], drug responses [4], and stem cell differentiation [5].
Passive cell trapping using physical obstacles, such as post arrays, is a commonly employed
microfluidic strategy. In this approach, cells are hydrodynamically trapped by blocking
the flow of cells larger than the gap between adjacent posts. The size of the post spacing
must be adjusted in proportion to the target cell size, with the gap typically designed to be
approximately 25% of the captured cell size [6]. The shape, dimensions, and layout of these
posts have been shown to improve capture efficiency, reduce clogging, and reduce cellular
shear stress [7].

Arrays of polygonal microposts, including triangular and diamond shapes, have been
found to be effective in size-based trapping as cells and cell clusters can be held at vertex
angles. Sarioglu et al. [8] reported the use of triangular posts for label-free capture of
circulating tumor cell (CTC) clusters from whole blood, while Gao et al. [9] applied such
posts to block CTCs and white blood cells. Trapping with diamond microposts is also an
efficient size-based trapping method, as the diamond post shape reduces the gap length
between any two pillars and decreases pressure at the filter region, thus improving trapping
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efficiency and cell viability [7]. Zhu et al. [10] optimized the trapping array with diamond-
shaped pillars in a zigzag layout, while Zhou et al. [11] designed a diamond-shaped post
array to capture CTCs from blood.

Cell trapping at high efficiency is particularly critical for CTCs and their clusters due to
rarity. CTCs are known to disseminate to distant sites in the body through the bloodstream
as part of the cancer metastatic process and are often found in extremely low numbers,
with fewer than 100 CTCs or 10 clusters per 10 million leukocytes and 5 billion erythrocytes
in 1 mL of whole blood [12]. While immunoselection [13,14], magnetophoresis [15–19],
or dielectrophoresis [20,21] can be used to isolate these rare cells directly from blood,
microfluidic size-based physical cell traps have emerged as a popular alternative.

When designing microfluidic devices for cell trapping, the critical pressure is an im-
portant parameter to optimize, as it determines the effective pressure required to capture
the target cells while avoiding the capture of unwanted cells [22]. It is influenced by various
factors such as cell size, cell shape, pillar spacing, and pillar geometry. By optimizing these
design variables, it is possible to improve the efficiency and selectivity of cell trapping
and minimize the loss of target cells during downstream analysis. However, experimental
determination of these design parameters is challenging and time-consuming. Numerical
simulations can be used in conjunction with experimental analysis to better optimize the
geometric parameters of the device [23]. While there are examples of trapping device opti-
mization using numerical methods, these are mainly computational fluid dynamic (CFD)
studies that focus on particle-fluid dynamics rather than particle-pillar interactions [24–29].
As a result, these works lack a comprehensive mechanical analysis.

Optimization of microfluidic trapping devices is crucial for the effective isolation
of CTCs, as they are extremely rare. Various models have been developed to describe
the behavior of cancer cells as they pass through micro-constrictions. Previous work [30]
obtained consistent results by describing a cell as a spring-connected network whose
interaction with the fluid is implemented using Immersed Boundary Method (IBM). Balogh
et al. [31] proposed the membrane model, a hybrid approach that enables the representation
of cells as solid membranes enclosing a viscous fluid. The solid membranes provide a stable
and rigid framework that can maintain its shape, while the viscous fluid enclosed within
the membrane can flow and change shape over time. However, these models may not
be applicable for optimizing the geometry of trapping devices that use physical obstacles
to capture CTCs since the concept of trapping is opposite to that of passage through a
microcapillary. Therefore, a different approach is needed to optimize the geometry of
trapping devices and determine the critical pressure for trapping cancer cells.

In this work, we propose an in silico model that can be used to analyze the behavior
of cancer cells as they come into contact with pillars in a microfluidic trapping unit. By
numerically simulating this process, we aim to provide a robust estimation of the critical
trapping pressure with respect to changes in cell morphology and trapping unit geometry
(i.e., post spacing). This can help set the working conditions of the device to ensure that the
critical pressure of blood cells is exceeded while the critical pressure of the target CTCs is
not, thus enhancing the efficiency and size selectivity of CTC isolation. In summary, the key
novelty of this work includes a purely mechanical analysis of cell trapping in microposts
of reduced geometry, derivation of a simple and robust model to estimate the effective
trapping pressure for capturing CTCs inside microposts, and integration of the model
across various cell types and geometries to demonstrate its generalizability beyond the
scenario experimentally evaluated in this study.

2. Experimental and Numerical Methods
2.1. Device Fabrication

The microfluidic device contained an array of diamond posts of 70 µm × 70 µm
(diagonals)× 50 µm (height) with decreasing gap size from the inlet to the outlet (Figure 1a).
The post array was organized into four columns: the 1st column (closest to the inlet), with
gap size progressively decreasing from 50 to 14 µm; the 2nd array, with a gap size of
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10 µm; the 3rd array, with a gap size of 8 µm, and the 4th array (closest to the outlet) with a
gap size of 4 µm. The 50 µm high microchannel was fabricated in polydimethylsiloxane
(PDMS) using dry film photoresist masters, as we described previously [32]. Briefly, dry
films (ADEX 50, DJ MicroLaminates Inc., Sudbury, MA, USA) were used to pattern the
microchannels on 3′′ silicon wafers. The microchannels were then replicated in PDMS
(Sylgard 184, Dow Corning®, Midland, MI, USA) and bonded to 1′′ × 3′′ glass slides
(Fisher Scientific, Hampton, NH, USA) to form sealed devices after oxygen surface plasma
treatment (PE-50, Plasma Etch Inc., Carson City, NV, USA) for 20 s. Inlet and outlet ports
were manually cored using a biopsy punch with an outer diameter of 1.5 mm (TedPella
Inc., Redding, CA, USA).
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Figure 1. Model schematics and FEM discretization. (a) Sketch of the trapping device with diamond
pillars interposed between the inlet, the outlet, and the cancer cells (colored light blue). For illustrative
purposes, a homogenous spatial distribution of pillars is shown. (b) Top view 2D representation of
the computational domain as the space between two adjacent posts (marked in red). (c) The same
area is represented in the simulation. The gap region, modeled as a discrete rigid body, is meshed
with linear triangular elements. The computational cost of the simulation is reduced by using the
local node definition: a finer mesh is adopted in the region closest to the capture area, and a coarser
mesh is selected in the non-contact regions. (d) Lateral view of the 3D trapping unit. (e) Cancer cells
meshed with quadratic tetrahedral elements.

2.2. Sample Preparation

The non-small-cell lung cancer (NSCLC) cell line A549 was purchased from ATCC
(Manassas, VA, USA) and maintained as specified. The cell line was incubated in RPMI 1640
medium supplemented with 10% (v/v) fetal bovine serum (FBS) and 1% (v/v)
100× antibiotic-antimycotic solution. Cells were maintained at 37 ◦C and 5% CO2. For
trapping experiments, cells at 70–80% confluency were treated with 0.25% trypsin-EDTA,
centrifuged at 1000 rpm for 5 min, and re-suspended in 2 mL of PBS with a final concen-
tration of 50,000 cells/mL. All cell culture supplies were purchased from Fisher Scientific
(Waltham, MA, USA). Fetal bovine serum (FBS) was purchased from GeminiBio Inc. (West
Sacramento, CA, USA).

2.3. Cell Trapping Experiments

Cell sample solution (50,000 cells/mL in PBS) was loaded in a syringe (Norm-Ject®,
Air-Tite Inc., Jonesboro, AR, USA), which was connected to 1/16′′ Tygon® tubing (Cole-
Parmer, Vernon Hills, IL, USA) using proper fittings (IDEX Health and Science LLC, New
York, NY, USA). The other end of the tubing was secured to the device inlet. To avoid
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cell loss, both the connecting tubing and the syringe were treated overnight with an anti-
adherence solution. A syringe pump (Legato 200, KD Scientific Inc., Holliston, MA, USA)
was used to sustain a stable flow rate of 10 µL/min.

2.4. Experimental Data Acquisition and Analysis

The microchannel was placed on the stage of an inverted microscope (IX83, Olympus
America, Center Valley, PA, USA). Bright-field images were acquired using a high-resolution
sCMOS camera (Andor Zyla 5.5, Oxford Instruments, Santa Barbara, CA, USA) mounted
on the microscope along with the cellSense imaging software (v4.1, Olympus America,
Center Valley, PA, USA). At least 50 images were acquired with magnification 20× to 60×.
All images were analyzed using ImageJ® (v1.53t, NIH, Bethesda, MD, USA) to enumerate
trapped cells and to confirm gap dimensions. The gap efficiency was computed as the
fraction of occupied traps for each gap size.

2.5. Computational Domain

To model the mechanics of physical trapping in a microfluidic device, we conducted
finite element analysis using Abaqus/Explicit (v2020, Dassault Systemes Simulia, Inc.,
Johnston, RI, USA). Because the physical trapping process involves contact between de-
formable cells and the trapping unit and cell deformation can be quite large, the finite
element method (FEM) with explicit time integration (e.g., Abaqus/Explicit) is preferred
over FEM with implicit time integration (e.g., Abaqus/Standard). The simulation domain
consisted of a single 3D trapping unit formed by two adjacent diamond-shaped pillars with
gap distance varying from 4 µm to 10 µm (Figure 1b). We modeled the trapping unit as a
rigid body because the relatively higher stiffness of PDMS (~1.7 MPa) compared to that of
cells (350–650 Pa) leads to a significant reduction in computational cost. The motion of the
rigid constraint was determined solely by the reference node rigidly fixed at the center of
the gap, and the rigid shape remained static throughout the simulation. For the domain
mesh, extra fine rigid triangular elements (R3D3) were employed on the contact region
to guarantee accurate results, while a coarser mesh was employed around to reduce the
computational effort (Figure 1c,d).

2.6. Computational Model of Cancer Cells and Loading Conditions

Cancer cells were modeled as 3D deformable spherical bodies with a diameter ranging
from 10 to 30 µm [33]. We considered the cell as a homogeneous elastic body and neglected
the detailed internal structures, such as the nucleus, because we will use the effective
moduli (such as Young’s modulus) measured experimentally, which reflects the overall
mechanical properties of the cell (including the nucleus) rather than local stiffness. Further,
our main purpose in this study is to estimate the critical pressure required to push the
cell through rather than the detailed stress distribution in the cell or its surface. Based
on our experimental observations and evidence from the literature [34], we employed a
neo-Hookean hyperelastic model to describe the material constitutive behavior of the cell.
Young’s modulus of the cells we used (A549 cells) was measured in a range of 350 Pa to
650 Pa [35,36], reflecting the higher plasticity and invasiveness that malignant tumor
exhibits during metastatic spreading. Poisson’s ratio was set to 0.3. Designed to be used
in complex contact simulations, modified quadratic tetrahedral elements (C3D10M) were
adopted to finely mesh the single cell (Figure 1e).

To accurately estimate the hydrodynamic pressure between pillars, a CFD analysis
was conducted in COMSOL Multiphysics (v5.6, COMSOL Inc., Burlington, MA, USA).
Based on the assumption of a laminar regime, the incompressible Navier–Stokes equations
were solved under the steady state condition inside a computational domain representing
the trapping device. The flow parameters were obtained by solving the conservation of
momentum and mass, which can be articulated as follows:

ρ(u·∇)u = ∇·
(
−pI + µs

(
L + LT

))
(1)
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∇·u = 0 (2)

where ρ, µs, and I are the fluid density, solvent viscosity, and identity matrix, respectively.
L is the velocity gradient tensor. Fluid density and solvent viscosity were set to 1000 kg/m3

and 1 mPa·s, respectively. The fluid velocity was prescribed at the inlet based on the flow
rate of the microfluidic syringe pump, while zero pressure was prescribed at the outlet.
The walls were ascribed with no-slip boundary conditions. The pressure drop along the arc
length of a path going through a gap was estimated in the context of 6 µm gap and flow
rates of 1, 5, and 10 µL/min.

To convey the fluid dynamic results into the mechanical simulation, the cell was
partitioned into two regions, and a parabolic pressure was applied in the front region
to mimic the flow pressure in the trapping zone. The analytical expression field for the
pressure acting in the x direction was defined as follows:

f (y, z) = 1−
(

y2

r2 +
z2

r2

)
(3)

where r is the cell radius. The contact between deformable cells and the rigid PDMS wall
surfaces was modeled as a contact frictionless problem acting at the interface, with general
contact constraining nodes of one surface from penetrating the other. A hard pressure
overclosure was adopted to minimize surface penetration at gap locations.

2.7. Numerical Data Analysis and Critical Pressure Evaluation

To determine the critical pressure relationship with the input variables, a nonlinear
regression analysis was conducted in Matlab (R2021b, Mathworks Inc., Natick, MA, USA).
This analysis allowed us to identify the functional form of the relationship between pressure
and the input variables and to estimate the values of the parameters in the relationship. To
assess the predictive capability of the model, new data were generated, and the simulated
pressure was compared with the estimated pressure. The mathematical model was vali-
dated experimentally by using results reported in the literature [31], and the accuracy and
precision of the model were assessed through statistical analysis.

3. Results and Discussion
3.1. Cell Trapping in Microfluidic Device

To evaluate trapping performance, it was important to assess the size of the A549
cells that we used in this work. A549 is a non-small-cell lung cancer (NSCLC) cell line that
has been used to mimic lung cancer CTCs in prior studies [37–39]. A mean diameter of
17.27± 2.91 µm was measured for A549 cells, although others have reported smaller values
closer to 15 µm [40]. The range of the measured cells was quite broad, from about 12 µm
to nearly 28 µm. Based on the previously described criteria of using 25% of the captured
cell size [6], to capture A549 cells, the gap between trapping posts must be approximately
3 µm for the smallest cells in the range and approximately 7 µm for the largest cells. The
trapping array spacing of >10 µm should not yield any trapped cells.

The microfluidic chip was designed to trap cells using diamond pillars that allow
cells to maintain their integrity and healthy state, as reported from viability studies by
Zhou et al. [11]. From a mechanical standpoint, the diamond shape provides several
benefits. While the frontal cellular interaction with micro-posts remains constant when
using triangular-shaped posts, the lateral interaction is improved in symmetric diamond-
shaped obstacles due to a consistent reduction in the shear stresses. In addition, compared
to the triangular profile, the exposed surface is larger in diamond obstacles, implying
that the physical trapping method can be enhanced with surface-treated approaches. The
diamond post array in the microfluidic chip gradually reduced the gap size between posts
from the inlet towards the outlet to allow a step-by-step analysis of the trapping process.
This design is illustrated in Figure 2a. Arrays of trapping posts of various spacing were
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placed inside a broad microfluidic chamber. The larger gap spacing was used near the inlet
for the capture of larger cells, while smaller cells were expected to traverse the trapping
array toward the smaller trapping spacing near the outlet. The four specific gap sizes in
the post array were >14 µm, 10 µm, 8 µm, and 4 µm. Figure 2b illustrates a representative
bright field image of A549 cells trapped in the arrays with 8 µm and 4 µm gap spacing. A
further close-up image in Figure 2c shows individual cells trapped between posts with an
8 µm gap. Thus, as anticipated, the microfluidic chip was capable of trapping A549 cells.
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Figure 2. Physical trapping of A549 cells in microfluidics. (a) Bright-field image of the trapping
device with vertical arrays of diamond micro-posts (scale bar: 1 mm). Based on the column spacing,
the device comprises 4 different regions (marked with the green lines). The leftmost has a gap size
greater than 14 µm and serves as a filtering device for cell aggregates. The two middle regions are
designed with gap sizes of 10 µm and 8 µm to trap single cells. The arrays closer to the outlet are
characterized by tiny spaces aimed at retaining highly deformable cells. (b) Bright-field image of
A549 cells trapped in the arrays closer to the outlet (scale bar: 200 µm) with column spacing between
10 (leftmost arrays) and 4 µm (rightmost arrays). (c) A zoomed image of effective trapping in 8 µm
gap size (scale bar: 20 µm). (d) Columns chart representing the normalized number of single cancer
cells captured in two different chips for each column spacing. (e) Diameter distribution of A549
cancer cells. The histogram shows a correspondence between the diameter distribution of cells and
their trapping distribution, with smaller cells being associated with trapping in smaller gaps closer to
the outlet, while larger cells were trapped in the initial arrays with larger gap sizes. Green, purple,
orange, and blue colors represent gap spacing of 4, 8, 10, and >14 µm, respectively.

The uneven disposition of posts created a polarization in the distribution of captured
cells. When a constant flow rate of 10 µL/min was imposed, the A549 cells easily passed
through gaps > 14 µm, with only 5% trapped in this first array. The smaller gap sizes of
10 µm, 8 µm, and 4 µm resulted in trapping of 13%, 23%, and 59%, respectively. Similar
results were obtained over multiple experiments in two microfluidic chips (Figure 2d).
The results in Figure 2e suggest a correlation between the two distributions, whereby
smaller cells with diameters ranging from 12 to 17 µm constituted the majority (60%) of the
population, which were found to be associated with trapping in smaller gaps located closer
to the outlet. Likewise, cells with diameters of 18 and 19 µm formed 23% of the population
and were found to be associated with gap sizes of 8 µm, while cells with diameters of
20 to 22 µm, forming 13% of the population, were associated with gap sizes of 10 µm.
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Notably, cells with diameters larger than 23 µm constituted 5% of the population and
were trapped in the initial arrays with larger gap sizes. These findings reaffirm the notion
that cell size, in conjunction with compliance of cell walls, has a substantial impact on
the ability to hydrodynamically trap them. These findings also suggest that the proposed
capture criterion of 25% of cell diameter [6] works for the smaller cells, while the larger cell
population does not seem to follow this rule. Next, we will apply numerical simulations
to investigate the underlying physics behind the trapping process and propose a way to
predict critical pressure values based on cell morphology and post-spacing.

3.2. Computational Model of Physical Trapping

The computational domain was established by selecting the space between two adja-
cent diamond posts and precisely reproducing the smoothness of their PDMS surfaces. Ac-
curate characterization of the material is crucial to capture the cellular response during colli-
sions with the posts. Cancer cells exhibit greater susceptibility to deformation than healthy
cells and tend to undergo softening as they navigate through confined spaces [26,41,42]. A
linear elastic model of tumor cells fails to account for this behavior. Despite the limitations
of the viscoelastic model in describing the trapping process, various techniques such as
micropipette aspiration [43], optical tweezers [44,45], atomic force microscopy [46], and
magnetic tweezing cytometry [47] have been developed to assess the viscoelastic properties
of cells in recent decades. However, different measuring techniques lead to significant
variability in the viscoelastic data, which also varies considerably from cell to cell [48].
Experimental data suggest that metastatic cells undergo stress-induced softening as they
navigate through narrow gaps (Figure 3a). We tested various material models and found
that the neo-Hookean hyperelastic model is not only simple and robust but also able to
capture the experimental observations (Figure 3b,c).
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Figure 3. In vitro experiments vs. in silico models. (a) De-trapping progression of A549 cancer cells
in the testing device (scale bar: 50 µm). Three consecutive frames capture the same device region and
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de-trapping (marked in light green). (b) The corresponding phases trapping phases are illustrated
in the numerical framework. (c) Cell deformability and tendency to elude the obstacles are well
captured in the model.
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Another important consideration was the selection of the Poisson’s ratio, which is
known to vary across biological systems from the cell membrane to the nucleus. Based on
experimental measurements reported by others [49], a Poisson’s ratio of 0.3 was selected
as it provided the most accurate description of the cell’s peripheral properties in contact
with the pillars. This choice was deemed crucial in accurately modeling the mechanical
response of the cell during hydrodynamic trapping.

During the trapping experiment, the cell suspension flowed from the inlet toward the
outlet of the microfluidic device and would have passed undisturbed if not for the presence
of the obstacles. Our analysis focused on studying the mechanical contact between the
cancer cells and pillars. However, to gain a comprehensive understanding of the local
dynamics, it was necessary to consider the fluid as well. Rather than directly modeling
the fluid flow with the cell together, an indirect approach with two sequential steps was
taken. First, the fluid velocity and pressure were predicted using CFD simulations in
COMSOL. The simulation results indicated that the fluid flow in the proximity of obstacles
exhibited a velocity distribution with a parabolic shape (Figure 4a). The pressure magnitude
along the arc length of a 6 µm gap is obtained from the CFD simulation (Figure 4b),
revealing a negligible longitudinal pressure gradient for the flow rates typically employed
in microfluidic trapping experiments. This information was then used to define the pressure
distribution applied on the cell membrane in the model, which is a good approximation of
the actual pressure experienced by the cell in the actual device (Figure 4c).
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Figure 4. Loading conditions and region of interest. (a) CFD simulation of the velocity distribution
in the microfluidic trapping device, illustrating multiple traps. (b) CFD simulation of the pressure
drop along the flow direction in a single trapping unit with a 6 µm gap across flow rates of 1, 5, and
10 µL/min. (c) The trapping unit area is depicted in an optical image of the experimental device (scale
bar: 20 µm), and the same area is represented in the computational model reported on the right side.
The simulation accurately replicates the smoothness of the pillar’s shape and the cell deformability
when interfacing with the constraint.

3.3. Relationship for Estimating Critical Pressure

The approach herein consisted of conducting parallel in vitro and in silico analyses to
evaluate the maximum pressure value that enables high throughput while keeping high
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trapping efficiency. Thus, a range of gap sizes and cell morphologies were evaluated, and a
mathematical formula was obtained. A thorough examination of the process from a physical
standpoint revealed predominantly a surface-based nature. Thus, the computational model
was formulated as a contact problem involving the interaction between a deformable sphere
and a rigid body obstructing its free path. To elaborate further, the exposed cellular area
and the gap opening can significantly affect the critical pressure. Specifically, larger gaps
would provide a more accessible pathway for cells to exit the trapping unit, thus reducing
the minimal pressure value required to retain the target in the device. Conversely, thinner
spaces create the most suitable condition for increasing the imposed pressure without losing
cells (Figure 5a). Moreover, it was observed that the critical pressure is strongly influenced
by the size of the target in question. In particular, when the size ratio between the cell
and gap dimensions significantly favored the cell, a noticeable rise in critical pressure was
needed to enable the cell to escape from the obstacle. Conversely, in situations where the
cell size was relatively small, and the ratio between the cell and pillar spacing (i.e., gap
size) was reduced, the threshold for critical pressure was expected to decrease markedly
(Figure 5b). Lastly, the pressure trend was suspected to be influenced by cellular elastic
properties that remained in the linear range during the entire simulation of the contact
process (Figure 5c).
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Figure 5. To explicitly define the effect of the optimization parameters on the critical pressure, the
critical pressure is plotted against gap size for various cell elasticity when the cell size is kept constant
(a). Similarly, the gap size is maintained constant, and the corresponding curves are drawn for cell
size at varying elasticity (b) and cell elasticity at varying cell diameters (c).

The present study used nonlinear regression analysis on numerical simulation data
to develop a simple formula of critical pressure based on the geometrical and mechanical
parameters characterizing the trapping experiment. Consistent with experimental observa-
tions, explicit finite element analysis revealed that successful cell entrapment and escape
are significantly affected by the surface contact between the cell membrane and the PDMS
pillars. Specifically, the critical pressure (Pc) was found to be quadratically dependent on
the ratio of cell diameter (a) and gap size (g), yielding the following expression:

Pc = 0.027× E×
(

a
g

)2
(4)

where E is cell modulus of elasticity. An examination of the computational dataset and
the nonlinear regression analysis produced a high R2 = 0.965 and a low standard error
SE = 0.44. These statistical metrics indicate a strong correlation between the variables
examined, supporting the validity of the empirical model.

To ensure a comprehensive analysis, the relationship between critical pressure and
the cell-gap size ratio was further investigated by comparing the quadratic model with
linear and cubic models. The results showed that the quadratic model more closely
matched the simulated data compared to the linear model (R2 = 0.798) and the cubic model



Micromachines 2023, 14, 1665 10 of 13

(R2 = 0.78). This observation highlighted that when performing hydrodynamic trapping in
microfluidic chips, the specific geometry of the trapping unit and the cancer cell dimension
must be considered to set the pump operations. To ensure inclusiveness in our simulation
study, several test instances were conducted with input parameters not included in the
original dataset. Thus, the parameter space was comprehensively explored, and average
SE = 0.097 and R2 = 0.9034 confirmed the ability of the model to predict pressure values
when cellular morphology and trapping unit geometry significantly vary from the initial
dataset. Our findings differ from those of Kojić et al. [50], who identified a linear relation-
ship between critical pressure and cell size and elasticity without considering the impact
of the constriction. Through the incorporation of gap size in both our experimental and
numerical simulations, we were able to demonstrate that it exerts a significant influence on
the critical pressure behavior.

3.4. Experimental Validation

To assess the reliability of the model in describing the physical trapping process,
experimental data found in the literature [31] were used to validate the model. Namely,
the critical pressure associated with L1210 cancer cells and constrictions ranging from
6.9 µm up to 9.8 µm were evaluated by adopting our empirical model. Input values were
carefully selected to accurately reproduce the experiment under investigation, and the
predicted critical pressure behavior was compared with the measured trend. These results
are presented in Figure 6a. Our empirical model was found to be highly predictive of
the dataset, with regression coefficient R2 = 0.9095. The statistical significance (p < 0.01)
indicates that our model accurately captures the relationship between the input parameters
and the critical pressure values. Additionally, the Pearson correlation analysis yielded a
coefficient r = 0.98, confirming the strong correlation between the published experimental
results and our model. This validation shows the model to be capable of accurately
extrapolating critical pressure values for input parameters outside the initial dataset.

Table 1. Summary of morphological parameters of tumor cells.

Cell Type Diameter (µm) Stiffness (Pa)

A549 17 (this work) 430 [40]
MCF-7f 20 [51] 360 [40]
PC3-9 18 [52] 130 [52]
HeLa 15 [53] 387 [52]

MDA-MB-231 15.5 [52] 206 [52]
SW480 11 [53] 580 [54]

Overall, the combination of strong statistical significance, high correlation coefficient,
and effective extrapolation capabilities demonstrated our model to be robust, reliable, and
accurate in predicting the critical pressure values to trap tumor cells using the confinement
effect (Figure 6a). Nevertheless, our model can be employed to set the working conditions
of the syringe pump when on-chip trapping is performed: the user should select an input
pressure below the critical value based on the cell type and the design of the device
(Figure 6b). For example, A549 and MDA-MB-231 cells, which are of comparable cell size
but different stiffness (430 vs. 206 Pa, Table 1), yield similar critical pressure for larger
gaps > 8 µm. However, the critical pressure for trapping A549 is nearly 2× higher than
for MDA-MB-231 cells when the gap size is reduced to 4 µm. These data can allow
improvement in trapping efficiency without limiting the throughput of the device.
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4. Conclusions

In this work, numerical methods were used to determine a quantitative description
of the critical pressure for capturing cancer cells using a microfluidic device with arrays
of posts. The mathematical framework was carefully constructed based on the available
data, theoretical considerations, and numerical analysis. An existing work [50] introduced
a pressure size-stiffness relationship; however, the lack of the gap influence limits the
accuracy and versatility of the above in describing the trapping process. Based on our
empirical model, the critical pressure is quadratically proportional to the cell-gap size ratio,
which means that the distance between pillars strongly affects the entrapment. To our
knowledge, this is the first time such a formula has been analytically established to consider
the gap size and experimentally validated. A more accurate multiphase description of the
physical phenomenon could be developed by including fluid effects using CFD tools, such
as possible lubrication between cells and the pillar walls.
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