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Abstract: This article describes a closed-loop detection MEMS accelerometer for acceleration mea-
surement. This paper analyzes the working principle of MEMS accelerometers in detail and explains
the relationship between the accelerometer zero bias, scale factor and voltage reference. Therefore, a
combined compensation method is designed via reference voltage source compensation and terminal
temperature compensation of the accelerometer, which comprehensively improves the performance
over a wide temperature range of the accelerometer. The experiment results show that the initial
range is reduced from 3679 ppm to 221 ppm with reference voltage source compensation, zero-bias
stability of the accelerometer over temperature is increased by 14.3% on average and the scale factor
stability over temperature is increased by 88.2% on average. After combined compensation, one
accelerometer zero-bias stability over temperature was reduced to 40 µg and the scale factor stability
over temperature was reduced to 16 ppm, the average value of the zero-bias stability over temperature
was reduced from 1764 µg to 36 µg, the average value of the scale factor stability over temperature
was reduced from 2270 ppm to 25 ppm, the average stability of the zero bias was increased by 97.96%
and the average stability of the scale factor was increased by 98.90%.

Keywords: MEMS accelerometer; combined compensation; voltage reference; temperature compensation

1. Introduction

An accelerometer is a typical inertial sensor, which has a wide range of important
applications in aviation, navigation, aerospace, weapons and civilian fields. However, the
large size and high price of traditional accelerometers limit their application. With the
development of MEMS (microelectromechanical system) technology, a variety of MEMS
accelerometers have emerged, and their small size, small power consumption and wide
application range have aroused the interest of research from all walks of life. At present, the
sensitive structure of high-performance accelerometers mostly uses an all-silicon structure,
which has developed rapidly due to its advantages of full-temperature performance, such
as Safran’s Colibrys sandwich all-silicon accelerometer with a zero-bias stability of 30 µg in
2020 [1]. As a typical representative, the Litton SiACTM silicon accelerometer has a range of
more than 100 g, a zero bias better than 20 µg and a scale factor stability better than 50 ppm.
In addition to the improvement of sensitive structures, there are some improvements in the
circuit to enhance the accuracy of MEMS accelerometers. A 2012 Colibrys article introduced
a navigation-grade Sigma-Delta MEMS accelerometer [2]. The accelerometer interface
used a preamplifier and an ADC (analog-to-digital conversion) in part, and the rest of the
circuitry was carried out digitally. At the same time, the closed-loop structure is adopted to
reduce the equivalent noise and quantization noise of the structure, improve the linearity
of the structure and ensure performance within the vibration environment.

Multiple ways have been proposed to improve the thermal behavior of MEMS ac-
celerometers. Some studies propose the structure in [3–7], other studies reduce the thermal
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drift via compensating circuits and algorithm [8–19]. In 2015, Sergei A. Zotov et al. in-
troduced a high-quality-factor resonant MEMS accelerometer [3]. To address drift over
temperature, the MEMS sensor die incorporates two identical tuning forks with opposing
axes of sensitivity. Demodulation of the differential FM output from the two simultaneously
operated oscillators eliminates common mode errors and provides an FM output with
continuous thermal compensation. Allan deviation of the differential FM accelerometer
revealed a bias instability of 6 µg at 20 s, along with an elimination of any temperature drift
due to increases in averaging time. In 2018, Giuseppe Ruzza et al. introduced the thermal
compensation of low-cost MEMS accelerometers for tilt measurements [4], which have
developed a miniaturized thermal chamber mounted on a tilting device to account for tilt
angle variation. It can be determined whether it is warming or cooling the cycles, then select
the corresponding compensation equation. After compensation, the RMS errors calculated
for both the x- and y-axes decreased by 96%, but increased the complexity of the technique.
In 2018, Wei Xu et al. reported a dual-differential accelerometer with an all-silicon structure
with 3-times improved full temperature stability [5]. In 2020, Niu H et al. reported a comb
accelerometer made of an all-silicon structure with a zero-bias stability of 100 µg [6]. In
2021, Liu Dandan et al. introduced an in situ compensation method for the scale factor
temperature coefficient of a single-axis force-balanced MEMS accelerometer [7], which
integrates the thermistor with the accelerometer to detect the temperature change of the
accelerometer in real time, compensates for the change of the scale factor and reduces the
temperature coefficient in the range of 25 ◦C to 50 ◦C for 6 ppm/◦C.

In 2015, Qingjiang Wang et al. introduced the thermal characteristics of typical mi-
croelectromechanical system (MEMS) inertial measurement units (IMUs) with a reliable
thermal test procedure [8]. The first-order piecewise function is introduced to establish
the thermal models. The performance of both IMUs and inertial navigation systems im-
proved significantly after compensation with the established thermal models. In 2019, Qing
Lu et al. introduced a fusion algorithm-based temperature compensation method for a
high-g MEMS accelerometer [10], which combines empirical mode decomposition (EMD),
wavelet thresholding and temperature compensation to process measurement data from a
high-g MEMS accelerometer. The experimental data show that the acceleration random
walk changes from 1712.66 g/h/Hz0.5 to 79.15 g/h/Hz0.5 and the zero-deviation stability
changes from 49,275 g/h to 774.7 g/h. In 2020, Vasco L et al. introduced a small-size,
vacuum-packaged capacitive MEMS accelerometer through Sigma-Delta modulation [11],
using an FPGA (field-programmable gate array) to achieve three different modulation
levels, allowing for the flexible real-time adjustment of loop parameters. In 2021, Javier
Martínez et al. introduced a lightweight thermal compensation technique for a MEMS ca-
pacitive accelerometer [12,13]. In this work, a light calibration method based on theoretical
studies was proposed to obtain two characteristic parameters of the sensor’s operation:
the temperature drift of the bias and the temperature drift of the scale factor. This method
requires less data to obtain the characteristic parameters, allowing for faster calibration. In
2021, Pengcheng Cai et al. introduced an improved difference temperature compensation
method for MEMS resonant accelerometers [14], which proposed an improved temper-
ature compensation approach, called proportional difference, for accelerometers based
on differential frequency modulation. Experiment results demonstrate that the tempera-
ture sensitivity of the prototype sensor was reduced from 43.16 ppm/◦C to 0.83 ppm/◦C
within the temperature range of −10 ◦C to 70 ◦C using the proposed method. In 2022, Qi
Bing et al. introduced a novel accurate temperature drift error estimation model using
microstructural thermal analysis [15], which obtains the complete temperature correlated
quantities through structural thermal deformation. Moreover, the particle swarm opti-
mization genetic algorithm back propagation neural network [16] was used to improve the
accuracy and real-time recognition of accelerometer models. Compared with the traditional
model, the accuracy was improved by 16%, and the number of iterations reduced by up
to 99.86%. In 2023, Gangqiang Guo et al. introduced temperature drift compensation of
a MEMS accelerometer based on DLSTM and ISSA [17], which improved bias instability,
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rate random walk and rate ramp with an increase of 96.68% on average. In 2023, Bo Yuan
et al. presented a calibration and thermal compensation method for triaxial accelerometers
based on the Levenberg–Marquardt (LM) algorithm and polynomial methods [18]. Within
the temperature range of −40 ◦C to 60 ◦C, the temperature drifts of x- and y-axes reduced
from −13.2 and 11.8 mg to −0.9 and −1.1 mg, respectively. The z-axis temperature drift
was reduced from −17.9 to 1.8 mg. In 2023, Mingkang Li et al. reported an approach of
in-operation temperature bias drift compensation based on phase-based calibration for
a stiffness-tunable MEMS accelerometer with double-sided parallel plate (DSPP) capaci-
tors [19]. The demodulated phase of the excited response exhibits a monotonic relationship
with the effective stiffness of the accelerometer. Through the proposed online compen-
sation approach, the temperature drift of the effective stiffness can be detected through
the demodulated phase and compensated in real time by adjusting the stiffness-tuning
voltage of DSPP capacitors. The temperature drift coefficient (TDC) of the accelerometer is
reduced from 0.54 to 0.29 mg/◦C, and the Allan variance bias instability of about 2.8 µg is
not adversely affected.

Due to its excellent characteristics, all-silicon accelerometers can be used in navigation
and guidance fields, such as the navigation and control of small UAVs, short-range tactical
weapon guidance, etc. This article analyzes the operating principle of capacitive accelerom-
eters and focuses on the factors that affect the full-temperature performance of capacitive
accelerometers. In this paper, an all-silicon comb accelerometer with anchor zone stress
cancellation technology will be analyzed [20], and a combined compensation method is
designed to improve the full-temperature performance of the accelerometer via reference
voltage source compensation and terminal temperature compensation of the accelerometer,
which provides a basis for the development of capacitive accelerometers with a high range,
high precision and high sensitivity.

2. MEMS Accelerometer Composition

As shown in Figure 1, the MEMS accelerometer includes and the accelerometer-
sensitive structure which shown in Figure 2, capacitor–voltage conversion module, low-
pass filter, PID controller, torque meter, temperature sensor, analog-to-digital conversion
module and temperature compensation algorithm module [21,22].
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Figure 1. Block diagram of a MEMS accelerometer. Figure 1. Block diagram of a MEMS accelerometer.
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3. MEMS Accelerometer Principle

As shown in Figure 1 above, when the external acceleration input occurs, the sensitive
structure of the accelerometer is displaced relative to the carrier coordinate system. The
distance between the sense electrode 1 and the sensing structure increases, so that the sense
capacitance CS1 decreases, and the sense electrode 2 decreases with the sensitive structure
comb electrode, so that the sense capacitance CS2 increases.

The sense capacitance CS1 and the sense capacitance CS2 convert the two capacitor
values into two voltage values through the capacitance–voltage conversion circuit, and
obtain the differential voltage via differential operation. This differential voltage is output
to the analog-to-digital conversion module through a low-pass filter and PID controller. At
the same time, the output of the PID controller is amplified by torque 1 and torque 2, and
then feed back to the drive electrode 1 and 2, respectively. Drive electrode 1 forms drive
capacitance with the sensing structure electrode CF1, and drive electrode 2 forms drive
capacitance with sensing structure electrode CF2. Because the torque applied to the two
drive voltages differs, the electrostatic attraction of CF1 is greater than that of CF2, ultimately
forcing the accelerometer-sensitive structure to remain near the initial position at all times.
The output voltage of the PID controller is fed into the analog-to-digital conversion module
and converted into a digital signal, and finally, the digital output of the temperature sensor
performs temperature compensation calculations and outputs the final acceleration signal.

When the electrostatic force is equilibrated, the position of the movable comb (the
electrical zero point) deviates from the mechanical zero point, δ. For the movable comb, the
electrostatic force balance equation is:

Kmδ + Fe + ma = 0 (1)

In this equation, Km is the mechanical stiffness of the accelerometer cantilever beam,
Fe is the electrostatic force, m is the mass of the accelerometer sensitive structure and a is
the acceleration input.

According to the static equilibrium analysis of the accelerometer closed-loop sys-
tem [22], the output when the electrostatic force equilibrium is obtained is:

Vf b =
VR

(
d0
δ + δ

d0

)
2K f b

±
VR

(
d0
δ −

δ
d0

)
2K f b

√√√√1 +
2Km

C f

(
δ

VR

)2
+

2maδ

C f V2
R

(2)

Which can be expanded to:

Vf b =
δVR

d0K f b
− (Kmδ + ma)d0

2C f VRK f b
(3)

In this equation, Cf is the sense capacitance, VR is the driving reference voltage, Km is
the mechanical stiffness of the accelerometer cantilever beam, Vfb is the feedback output,
Kfb is the feedback coefficient, m is the mass of the accelerometer sensitive structure, a is the
acceleration input, d0 is the comb gap and Fe is the electrostatic force.

Equation (3) provides a quadratic model of the static equilibrium state, so a zero-bias
K0 is:

K0 =
δVR

d0K f b
− Kmδd0

2C f VRK f b
(4)

The primary term coefficient K1 is:

K1 = − md0

2C f VRK f b
(5)

As seen from Equations (4) and (5), the zero bias and scale factor are all related to the
drive reference voltage VR. From this, the temperature characteristics have a direct impact
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on the performance of the circuit. Figure 3 shows the flow direction of the main reference
voltage of the closed-loop control circuit. It can be confirmed that the band-gap reference
(BGR) used by the ASIC is the final source of the subsequent drive reference voltage, so its
temperature characteristics have a direct impact on the temperature characteristics of the
entire accelerometer.
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4. Temperature Compensation Method
4.1. Reference Voltage Source Compensation

A common band-gap reference circuit [23,24] is based on the principle of adding two
voltages of equal magnitude and opposite temperature coefficients to obtain a temperature-
independent voltage. The negative temperature coefficient voltage is realized through the
base-emitter voltage, VBE, of the substrate tertiary transistor. The positive temperature
coefficient is accomplished through the base-emitter voltage difference, ∆VBE, of two tran-
sistors operating at different current densities. In practice, the sum of the two temperature
coefficients is not exactly zero. A typical band-gap reference is shown in the Figure 4 below.
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In the Figure 4, VOS is the offset voltage and the emitter area of bipolar transistor Q2
is n times that of Q1. Under the action of the op amp, the voltages of nodes X and Y are
equal, the current flowing through bipolar transistors Q2 and Q1 is also equal and the
base-emitter voltage difference between Q1 and Q2 is:

∆VBE = VT ln n (6)

VT = kT/q, k is the Boltzmann constant, T is the absolute temperature and q is the
electron charge. VBE2 is a negative temperature coefficient. The reference voltage output
with the offset in this case is [23]:

VREF = VBE2 + (1 +
R2

R3
)(VT ln n + VOS) (7)

By selecting the appropriate ratio of n to resistors R2 and R3, a temperature-independent
output reference voltage can be obtained. In integrated circuit design, for symmetry con-
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siderations, n is generally taken as 8, and R2 and R3 are implemented through the resistor
repair network and controlled via digital registers or other means.

The Figure 5 shows the simulation results of the temperature characteristics of the
output voltage. The maximum change in output voltage is 1.55 mV and the temperature
coefficient is 9 ppm/◦C, from −50 ◦C to 85 ◦C.
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Figure 5. Simulation of temperature characteristics of band-gap references.

The number of transistors in the ASIC design process is a definite value. The tempera-
ture characteristics are determined by the acceleration sensor itself and are affected by the
processing process. Thus, the resistor can be adjusted later by forming a resistor network.

According to Equation (5), the scale factor of the system is directly related to the high
drive voltage, VR, so the temperature characteristics of the scale factor will be directly
affected by the characteristics of the high drive voltage and therefore also by the temperature
characteristics of the band-gap reference.

Limited by the ASIC chip pin count and anti-interference design, the direct output of
the band-gap reference is not easy to measure, so we selected the 4.5 V output point of the
chip to evaluate the temperature characteristics of the reference.

Due to the deviation between the ASIC design value and the actual processing, the
actual measured temperature characteristics of the 4.5 V reference voltage are shown in
Figure 6 below, with an initial range of 3679 ppm, and after adjusting the resistor network
through multiple rounds of iterative experiments, the final range is 221 ppm, as shown in
Figure 7.
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Figure 6. Factory state reference temperature characteristics of the circuit chip.
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Figure 7. Modified reference temperature characteristics of the circuit chip.

4.2. Accelerometer Terminal Temperature Compensation

In order to further improve the performance over a wide temperature range of the
accelerometer, the terminal third-order temperature compensation of the accelerometer
is continued on the basis of the reference voltage source compensation to improve the
performance over a wide temperature range of the accelerometer. Through the stability-
over-temperature modeling experiment of the accelerometer, the temperature sensor output,
Ti, zero-bias K0i and scale factor, K1i, of the accelerometer at each temperature point are
obtained. The third-order polynomial model is fit to the zero bias vs. accelerometer
temperature sensor output, where p0, p1, p2 and p3 are the 0–3-order coefficients of the
model. Then, the accelerometer zero bias K0 is:

K0 = p3T3 + p2T2 + p1T + p0 (8)

The fitting error E is:

E =
n

∑
i=0

[
K0 −

(
p3T3

i + p3T2
i + p1Ti + p0

)]2
(9)

In order to minimize the fitting error, it is necessary to make its various deviations
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∂Ti
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Let the van der Mond matrix V:

V =


1 1 . . . 1
T1 T2 . . . Tn
T2

1 T2
2 . . . T2

n
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1 T3
2 . . . T3

n

 (12)

Sorted out, it is:
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(13)

Therefore:

VVT ·


p0
p1
p2
p3

 = V ·


K01

K02
...

K0n

 (14)

Finally, the third-order fitting coefficient of the zero bias vs. accelerometer temperature
sensor output is obtained: 

p0
p1
p2
p3

 =
(

VVT
)−1

V · K0 (15)

Similarly, a third-order polynomial model of the scale factor change vs. the output of
the accelerometer temperature sensor can be obtained:

K1
′

K1T

= q3T3 + q2T2 + q1T + q0 (16)

K1
′ is the scale factor of the accelerometer at room temperature, K1T is the scale factor

of the accelerometer at each temperature point and q0, q1, q2 and q3 are the 0–3-coefficients
of the model.

The ASIC chip is known to read the temperature sensor data, T, and the accelerom-
eter output measurement, Da. According to Equations (8) and (16), the accelerometer
temperature compensation value Dout is:

Dout = (Da − K0) ·
(

K1
′

K1T

)
(17)

5. Comparative Experiments
5.1. Uncompensated Experiments

Temperature tests have been performed for the −40 ◦C to +60 ◦C range with a
1 ◦C/min temperature gradient. The test data collection is smoothed for 1 s, the bias
and scale factor are calculated using the range and the stability is calculated using the
standard deviation. Figure 8 shows the accelerometer product photo, where the mass is
0.7 g and size 9 × 9 × 2.7 mm3. Figure 9 shows the accelerometer temperature performance
test system, model GWS EG-02JAS. The temperature uncompensated accelerometer’s zero
bias and scale factor as a function of temperature are shown in Figure 10 below. From
Figure 10a, it can be seen that the change (peak–peak) of the zero bias of the five MEMS



Micromachines 2023, 14, 1623 9 of 14

accelerometers with temperature compensation from −40 ◦C to +60 ◦C is distributed
between 4098 µg and 7183 µg, and the zero-bias stability (1σ) over a wide temperature
range is distributed between 1374 µg and 2400 µg. The result of each accelerometer varies
linearly with temperature. From Figure 10b, it can be seen that the temperature variation
(peak–peak) of the scale factor of the five MEMS accelerometers is distributed between
6135 ppm and 7347 ppm, and the stability of the scale factor over a wide temperature range
(1σ) is distributed between 2075 ppm and 2472 ppm. The scale factor of each accelerometer
is also basically linear against temperature.

Micromachines 2023, 13, x FOR PEER REVIEW 9 of 15 
 

 

 ( )

0

11

0

2

3

T

p

p
VV V K

p

p

−

 
 
  = 
 
 
 

 (15) 

Similarly, a third-order polynomial model of the scale factor change vs. the output of 

the accelerometer temperature sensor can be obtained: 

3 21
3 2 1 0

1T

K
q T q T q T q

K


= + + +  (16) 

1K   is the scale factor of the accelerometer at room temperature, 1T
K  is the scale 

factor of the accelerometer at each temperature point and q0, q1, q2 and q3 are the 0–

3-coefficients of the model. 

The ASIC chip is known to read the temperature sensor data, T, and the accelerom-

eter output measurement, Da. According to Equations (8) and (16), the accelerometer 

temperature compensation value Dout is: 

( ) 1
0

1

=

T

out a

K
D D K

K

 
−  

 
 

 (17) 

5. Comparative Experiments 

5.1. Uncompensated Experiments 

Temperature tests have been performed for the −40 °C to +60 °C range with a 

1 °C/min temperature gradient. The test data collection is smoothed for 1 s, the bias and 

scale factor are calculated using the range and the stability is calculated using the stand-

ard deviation. Figure 8 shows the accelerometer product photo, where the mass is 0.7 g 

and size 9 × 9 × 2.7 mm3. Figure 9 shows the accelerometer temperature performance test 

system, model GWS EG-02JAS. The temperature uncompensated accelerometer’s zero 

bias and scale factor as a function of temperature are shown in Figure 10 below. From 

Figure 10a, it can be seen that the change (peak–peak) of the zero bias of the five MEMS 

accelerometers with temperature compensation from −40 °C to +60 °C is distributed be-

tween 4098 μg and 7183 μg, and the zero-bias stability (1σ) over a wide temperature 

range is distributed between 1374 μg and 2400 μg. The result of each accelerometer varies 

linearly with temperature. From Figure 10b, it can be seen that the temperature variation 

(peak–peak) of the scale factor of the five MEMS accelerometers is distributed between 

6135 ppm and 7347 ppm, and the stability of the scale factor over a wide temperature 

range (1σ) is distributed between 2075 ppm and 2472 ppm. The scale factor of each ac-

celerometer is also basically linear against temperature. 

 

Figure 8. Accelerometer product photo. Figure 8. Accelerometer product photo.
Micromachines 2023, 13, x FOR PEER REVIEW 10 of 15 
 

 

 

Figure 9. Accelerometer temperature performance test system. 

 

(a) 

 

(b) 

Figure 10. The reference voltage source is uncompensated for the zero bias and scale factor vs. 

temperature. (a) Zero bias curve against temperature. (b) Scale factor curve against temperature. 

5.2. Accelerometer Stability over Temperature Experiment after Independent Reference Voltage 

Source Compensation 

The zero bias and scale factor of the accelerometer with reference voltage source 

compensation as a function of temperature are shown in Figure 11. As seen in Figure 11a, 

after the reference voltage source compensation, the zero bias of the five MEMS accel-

erometers was distributed between 3367 μg and 6576 μg with the temperature from 

−40 °C to +60 °C, and the zero bias stability over temperature (1σ) was distributed be-

tween 1156 μg and 2196 μg, and the zero bias stability of each accelerometer increased by 

an average of 14.3%, with the result remaining linear against temperature. As seen from 

Figure 11b, the temperature variation (peak–peak) of the scale factor of the five MEMS 

accelerometers was distributed between 564 ppm and 1044 ppm, the stability of the scale 

factor over temperature (1σ) was distributed between 191 ppm and 330 ppm and the 

stability of scale factor of each accelerometer was increased by 88.2% on average. The 

-40 -30 -20 -10 0 10 20 30 40 50 60
-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

 

 

B
ia

s 
re

si
d

u
al

s（
μ

g
）

Temperature（℃）

 acc1

acc2

acc3

acc4

acc5

-40 -30 -20 -10 0 10 20 30 40 50 60
-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

 

 

S
ca

le
 f

ac
to

r 
re

si
d

u
al

s（
p

p
m
）

Temperature（℃）

acc1

 acc2

acc3

 acc4

 acc5

Figure 9. Accelerometer temperature performance test system.
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Figure 10. The reference voltage source is uncompensated for the zero bias and scale factor vs.
temperature. (a) Zero bias curve against temperature. (b) Scale factor curve against temperature.
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5.2. Accelerometer Stability over Temperature Experiment after Independent Reference Voltage
Source Compensation

The zero bias and scale factor of the accelerometer with reference voltage source com-
pensation as a function of temperature are shown in Figure 11. As seen in Figure 11a, after
the reference voltage source compensation, the zero bias of the five MEMS accelerome-
ters was distributed between 3367 µg and 6576 µg with the temperature from −40 ◦C to
+60 ◦C, and the zero bias stability over temperature (1σ) was distributed between 1156 µg
and 2196 µg, and the zero bias stability of each accelerometer increased by an average of
14.3%, with the result remaining linear against temperature. As seen from Figure 11b, the
temperature variation (peak–peak) of the scale factor of the five MEMS accelerometers was
distributed between 564 ppm and 1044 ppm, the stability of the scale factor over tempera-
ture (1σ) was distributed between 191 ppm and 330 ppm and the stability of scale factor
of each accelerometer was increased by 88.2% on average. The comparative experiment
results show that the accelerometer scale factor performance over temperature can be
significantly improved by compensating the reference source temperature. The scale factor
of each accelerometer as a function of temperature also changes from a basic linear curve to
a second-order curve.
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Figure 11. The zero bias and scale factor curves against temperature after reference voltage source
compensation. (a) Zero bias curve against temperature. (b) Scale factor curve against temperature.

5.3. Accelerometer Stability over Temperature Experiment after Independent Terminal
Temperature Compensation

To verify the effectiveness of the combined compensation method, the stability perfor-
mance of the accelerometer after terminal temperature compensation was continued to be
verified. Using the same five accelerometers and terminal temperature compensation, a
plot of the accelerometer zero bias and scale factor as a function of temperature is obtained.
Figure 12a shows that in the range of −40–+60 ◦C, the zero bias total temperature variation
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(peak–peak) of the five accelerometers is distributed in 83–317 µg, and the zero bias stability
over temperature (1σ) is distributed in 26–85 µg. In the same temperature range, the total
temperature variation (peak–peak) of the scale factor of the five accelerometers shown in
Figure 12b is distributed in 71–175 ppm, and the stability of the scale factor over tempera-
ture (1σ) is distributed within 25–48 ppm. Among them, one accelerometer fluctuation is
obviously more severe than the others, mainly because the processed accelerometer still
has poor consistency and some degree of discreteness, but the overall results are still within
the range. Terminal temperature compensation significantly improves accelerometer bias
and scale factor performance over a wide temperature range.
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Figure 12. The zero bias and scale factor curve with temperature after terminal temperature compen-
sation. (a) Zero bias curve against temperature. (b) Scale factor curve against temperature.

5.4. Stability over Temperature Experiment with Combined Temperature Compensation

The combined compensation of reference voltage source compensation and end-
temperature compensation was used for the same five accelerometers to verify its validity.
The zero bias and scale factor of the accelerometers as a function of temperature is shown
in Figure 13. Figure 13a shows that in the range of −40–+60 ◦C, the zero bias temperature
variation (peak–peak) of the five accelerometers was distributed within 79–183 µg, and
the zero-bias stability over temperature (1σ) was distributed within 25–53 µg. Compared
with only terminal temperature compensation, the combined compensation at the five
accelerometers has improved the zero-bias stability at a wide temperature range by an
average of 24.5%. Through combined temperature compensation, the total temperature
variation (peak–peak) of the scale factor of the five accelerometers shown in Figure 13b was
distributed within 43–145 ppm, and the stability of the scale factor over temperature (1σ)
was distributed within 14–51 ppm. The scale factor stability of the five accelerometers was
improved by an average of 25.5% compared to using only terminal temperature compensa-
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tion. This combined compensation method comprehensively improves the accelerometer
performance over a wide temperature range and proves the effectiveness of this method.
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Figure 13. The zero bias and scale factor curve with temperature after the combined compensation.
(a) Zero bias curve against temperature. (b) Scale factor curve against temperature.

Table 1 shows the zero bias and scale factor full temperature experiment data for
an accelerometer numbered ACC3 before and after various compensations. Combined
compensation has obvious advantages over any single compensation method.

Table 1. Comparison of data before and after various compensation for an ACC3 accelerometer.

Name Uncompensated Voltage Reference
Source Compensation

Terminal Temperature
Compensation

Combined
Compensation

Zero bias variation over
temperature (p–p) µg 4098 3367 185 124

Zero bias stability over
temperature (1σ) µg 1374 1156 59 40

Scale factor variation over
temperature (p–p) ppm 6606 765 83 46

Scale factor stability over
temperature (1σ) ppm 2233 242 27 16

6. Conclusions

MEMS accelerometers are characterized by a small size, light weight and low cost.
However, there is also a negative effect of the drift in temperature coefficient of the refer-
ence voltage source. This effect creates errors when the accelerometer operates at a wide
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temperature range, ultimately affecting the output signal of the accelerometer. In order
to reduce the influence of the temperature coefficient of the reference voltage source, a
method of temperature compensation of the reference voltage source is proposed, which
is to reduce the influence of the temperature drift from the reference voltage source. To
further improve the accelerometer performance over a wide temperature range, the ac-
celerometer is compensated for the terminal third-order temperature compensation and the
reference voltage source compensation. The experiment results show that the average value
of zero-bias stability of the accelerometer with combined temperature compensation of
reference voltage source compensation and terminal temperature compensation is reduced
from 1764 µg to 36 µg, and the average stability of the scale factor over temperature is
reduced from 2270 ppm to 25 ppm. The zero-bias stability over temperature is improved
by 97.96% on average. The scale factor stability over temperature is improved by 98.90% on
average. The combined compensation method greatly improves the accelerometer’s perfor-
mance over a wide temperature range, which increases the accelerometer’s high-precision
application capability. The accelerometer is suitable for environments with a short working
time and minimal external temperature influence.
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