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Abstract: In this paper, we consider a new bubble-based microswimmer composed of two contacting
bubbles. Under the action of an acoustic field, both bubbles are oscillating, and locomotion of
the two-bubble system is observed. A theory is developed that allows one to calculate the acoustic
radiation interaction forces between two gas bubbles in an incompressible viscous liquid for any small
separation distance between the bubbles. This theory is used to demonstrate that two acoustically
excited bubbles can create a self-propelled microswimmer due to a nonzero net force experienced by
the bubbles when they come in contact. Experimental evidence of the creation of such a swimmer
and of its motion is provided.
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1. Introduction

Interest in artificial self-propelled microswimmers, which could be used in microfluidic
and biomedical applications, has existed for decades. The range of possible applications of
microswimmers is very wide: cargo transport, micromixing, sensing, targeted drug delivery,
indirect manipulation of cells, and other microscopic objects, such as microsurgery, etc.

Different types of microswimmers have been proposed [1], which are actuated by vari-
ous external energy sources such as light [2], electric [3], magnetic [4] or acoustic [5] fields.
One of the promising ways is the development of acoustically controlled bubble-based
microswimmers [6–8], which have attracted great attention due to their non-invasiveness
and cheap implementation. Acoustically-driven swimmers have been used to capture and
move micro-objects [9], to mix fluids [10], and to drive the assembly of microparticles,
cells, or microstructures [11]. Bubble-based swimmers are usually composed of a rigid
microcapsule that contains an air bubble inside [6,7]. Upon the application of an acous-
tic field, periodic oscillations of the bubble are induced, resulting in the motion of the
capsule. Publications devoted to these investigations commonly attribute the source of
locomotion to acoustic microstreaming generated by the bubble. With the aim of accurately
manipulating and controlling acoustically-powered swimmers, microrobots composed of
two bubbles have been recently designed [8,12]. In addition to the translational motion of
the robot, a rotational motion is observed that results from the asymmetry in the bubble
oscillations amplitudes and the induced microstreaming. Such asymmetry is generated by
switching the frequency of the driving acoustic field between the resonant frequencies of
each of the two bubbles. For a two-bubble robot composed of bubbles with equilibrium
radii of about 45 µm and driven at a frequency of 40 kHz [8], it has been shown that the
translational velocity can reach 8 mm/s, which corresponds to almost 50 body lengths per
second. The predominant propulsion mechanism was established to be the bubble-induced
microstreaming, while the radiation pressure exerted by the acoustic field on the swimmer
was shown to be negligible.
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In this paper, we propose a new acoustically powered system composed of two
contacting bubbles driven by an acoustic field. We demonstrate that two acoustically
excited contacting bubbles can create a self-propelled microswimmer due to the radiation
interaction force acting between the bubbles. It is worth noting that a similar geometry
has been considered by Pak et al. [13] in relation to two contacting rigid spheres that rotate
about their axis of symmetry. This structure was called “snowman” by the authors. In our
paper, we will refer to the robot based on two contacting bubbles as a “bubbleman”.

When two bubbles are subjected to an acoustic field, the scattered wave generated by
one bubble produces a time-averaged force on the other bubble, and vice versa. These forces
make the bubbles attract or repel each other. This effect was first reported by C. A. Bjerknes
and his son V. F. K. Bjerknes [14], and since then it has been well known in acoustics. In
modern literature, this force is referred to by several names: radiation interaction force,
secondary radiation force, Bjerknes force, or secondary Bjerknes force [15,16]. C. A. Bjerknes
has derived an analytical expression for the time-averaged interaction force between two
bubbles, assuming that the bubbles pulsate radially in an incompressible nonviscous liquid
and that the separation distance between the bubbles is large compared to the bubble radii.
Under such conditions, the system of two interacting bubbles is conservative, which means
that the forces on the bubbles are equal and opposite. Doinikov [17,18] has shown that in a
viscous liquid, the interaction forces experienced by two bubbles are no longer equal and
opposite as the liquid viscosity breaks the conservatism of the system of two interacting
bubbles. However, the assumption that the separation distance between the bubbles is
large compared to the bubble radii, which was used in his derivation, does not allow one
to apply his results to bubbles in contact.

In the present paper, a theory is developed that allows one to calculate the radiation
interaction forces between two bubbles in an incompressible viscous liquid for any small
separation distance between the bubbles. This theory reveals that if the bubbles come in
contact, their agglomerate experiences a nonzero net force, which causes locomotion of the
bubbleman. We also provide experimental evidence of this effect.

2. Theory
2.1. Interaction Force between Two Bubbles in an Acoustic Field

We begin with the calculation of the radiation interaction force, also referred to as the
secondary radiation force, which acts between two spatially separated gas bubbles in an
acoustically excited liquid. This calculation is based on the theory developed by Doinikov
et al. [19] for acoustic microstreaming generated by two interacting bubbles. The bubbles
are assumed to be immersed in a viscous, incompressible liquid and undergo axisymmetric
oscillations. We used two spherical coordinate systems, (r1, θ1, ε1) and (r2, θ2, ε2), which
originate at the equilibrium centers of bubbles 1 and 2, respectively, and in which the
direction θ1 = θ2 = 0 corresponds to the z axis; see Figure 1. The distance between the
equilibrium centers of the bubbles is denoted by d.

We assume that each bubble can undergo several oscillation modes, which can have
different frequencies because some of the modes can be excited parametrically. By defi-
nition, the radiation interaction force is a time-averaged quantity. Since time averaging
annihilates terms that arise from the interaction of modes with different frequencies, a con-
tribution to the force can only come from the interaction of modes with the same frequency.
Therefore, the modes can be divided into groups in accordance with their frequencies and
the contributions of such groups can be considered independently.
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Figure 1. Coordinate systems used in calculations.

Let us assume that the jth bubble (j = 1, 2) undergoes Nj modes with a frequency ω.

Let these modes have numbers M(j)
1 , M(j)

2 ,. . ., M(j)
Nj

. Then, the perturbation of the bubble
surface produced by these modes can be represented by

r(j)
s = Rj0 + e−iωt

M(j)
Nj

∑
n=M(j)

1

s(j)
n Pn(µj), (1)

where r(j)
s is the radial coordinate of the surface of the jth bubble, Rj0 is the equilibrium

radius of the jth bubble, Pn is the Legendre polynomial of degree n, µj = cos θj, and s(j)
n is

the complex amplitude of the nth mode of the jth bubble, which is assumed to be known,
measured experimentally [19], or evaluated theoretically [20,21].

The time-averaged acoustic radiation force on the jth bubble can be represented as [22]

Fj =
∫
Sj0

{
−ρ
〈
(nj · v)v

〉
+ 2η(nj · ∇)vE + ηnj × (∇× vE)− pEnj

}
dSj0, (2)

where Sj0 is the surface of the jth bubble at rest, nj is the unit outward normal to Sj0, ρ is the
liquid density, v is the first-order liquid velocity generated by the bubbles, η is the dynamic
liquid viscosity, vE is the Eulerian velocity of acoustic streaming, pE is the time-averaged
pressure corresponding to vE, and 〈〉means the time average.

The total first-order liquid velocity generated by both bubbles is given by

v = v(1) + v(2), (3)

where v(j) is the first-order liquid velocity generated by the jth bubble. The components of
v(j) are shown in [19] to be calculated by

v(j)
r (rj, θj) = −

e−iωt

rj

∞

∑
n=0

(n + 1)

a(j)
n

(
Rj0

rj

)n+1

+ b(j)
n nh(1)n (kvrj)

Pn(µj), (4)

v(j)
θ (rj, θj) =

e−iωt

rj

∞

∑
n=1

a(j)
n

(
Rj0

rj

)n+1

− b(j)
n

[
h(1)n

(
kvrj

)
+ kvrjh

(1)/
n
(
kvrj

)]P1
n(µj), (5)

where h(1)n is the spherical Hankel function of the first kind, kv = (1 + i)/δ is the viscous
wavenumber, δ =

√
2ν/ω is the viscous penetration depth, ν = η/ρ is the kinematic liquid
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viscosity, the prime denotes the derivative with respect to the argument in brackets (such as
the term h(1)/n

(
kvrj

)
in Equation (5)), and P1

n is the associated Legendre polynomial of the

first order and degree n. Expressions for the constants a(j)
n and b(j)

n , called linear scattering
coefficients, are provided in Appendix A of [19].

Equations (4) and (5) give the components of v(j) in the coordinates of the jth bubble.
However, to make use of Equation (2), we also need to know how these components
are expressed in the coordinates of the other bubble, i.e., how the components of v(1) are
expressed in the coordinates (r2, θ2) of bubble 2 and vice versa. Necessary equations are pro-
vided in Appendix A of [19]; see Equations (A11), (A13), (A15) and (A16) therein. By using
these equations, the components of the total first-order liquid velocity are represented by

vr(rj, θj) = e−iωt
∞

∑
n=0

V(j)
rn (rj)Pn(µj), (6)

vθ(rj, θj) = e−iωt
∞

∑
n=1

V(j)
θn (rj)P1

n(µj), (7)

where V(j)
rn (rj) and V(j)

θn (rj) are calculated by

V(1)
rn (r1) = − n+1

r1

[
a(1)n

(
R10
r1

)n+1
+ b(1)n nh(1)n (kvr1)

]
+ n

r1

( r1
d
)n ∞

∑
m=0

(−1)mCnmξm+1
2 a(2)m

−(2n + 1)in
√

n(n + 1) jn(kvr1)
r1

∞
∑

m=1

√
m(m+1)

(2m+1)im b(2)m
∞
∑

l=0
i−l(2l + 1)Cm0

n0l0Cm1
n1l0h(1)l (kvd),

(8)

V(2)
rn (r2) = − n+1

r2

[
a(2)n

(
R20
r2

)n+1
+ b(2)n nh(1)n (kvr2)

]
+ (−1)nn

r2

( r2
d
)n ∞

∑
m=0

Cnmξm+1
1 a(1)m

−(2n + 1)in
√

n(n + 1) jn(kvr2)
r2

∞
∑

m=1

√
m(m+1)

(2m+1)im b(1)m
∞
∑

l=0
(−1)l i−l(2l + 1)Cm0

n0l0Cm1
n1l0h(1)l (kvd),

(9)

V(1)
θn (r1) =

1
r1

{
a(1)n

(
R10
r1

)n+1
− b(1)n

[
h(1)n (kvr1) + kvr1h(1)/n (kvr1)

]}
+ 1

r1

( r1
d
)n ∞

∑
m=0

(−1)mCnmξm+1
2 a(2)m

− (2n+1)in√
n(n+1)

jn(kvr1)+kvr1 j/n (kvr1)
r1

∞
∑

m=1

√
m(m+1)

(2m+1)im b(2)m
∞
∑

l=0
i−l(2l + 1)Cm0

n0l0Cm1
n1l0h(1)l (kvd),

(10)

V(2)
θn (r2) =

1
r2

{
a(2)n

(
R20
r2

)n+1
− b(2)n

[
h(1)n (kvr2) + kvr2h(1)/n (kvr2)

]}
+ (−1)n

r2

( r2
d
)n ∞

∑
m=0

Cnmξm+1
1 a(1)m

− (2n+1)in√
n(n+1)

jn(kvr2)+kvr2 j/n (kvr2)
r2

∞
∑

m=1

√
m(m+1)

(2m+1)im b(1)m
∞
∑

l=0
(−1)l i−l(2l + 1)Cm0

n0l0Cm1
n1l0h(1)l (kvd).

(11)

Here, Cnm = (n + m)!/(n!m!), ξ j = Rj0/d, jn is the spherical Bessel function, and

CLM
l1m1l2m2

are the Clebsch–Gordan coefficients [23–25]. The superscript (j) in V(j)
rn and V(j)

θn
emphasizes that these quantities are taken in the coordinates of the jth bubble. According
to the theory developed in [19], Equations (8)–(11) are valid for rj < d. This is sufficient for
our purpose because we will see below that the expression for the interaction force only
contains the values of V(j)

rn and V(j)
θn at rj = Rj0.

Equations (6) and (7) allow us to calculate the first term in the integrand of Equation (2).
To calculate the other terms, we again use the results of [19].

According to Equations (2.17) and (2.18) of [19], the components of the Eulerian
streaming velocity vE are given by

vEr(rj, θj) = −
1
rj

∞

∑
n=1

n(n + 1)Ψ(j)
n (rj)Pn(µj), (12)

vEθ(rj, θj) = −
1
rj

∞

∑
n=1

[
Ψ(j)

n (rj) + rjΨ
(j)/
n (rj)

]
P1

n(µj), (13)
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where Ψ(j)
n (rj) and Ψ(j)/

n (rj) are calculated by Equations (C8) and (C17) of [19]. Equations (12)
and (13) allow us to calculate the terms of Equation (2) that depend on vE and pE.

With the help of Equations (6), (7) and (A1)–(A4) from Appendix A of the present
paper, the first term in the integrand of Equation (2) brings

T(j)
1 = −

∫
Sj0

ρ
〈
(nj · v)v

〉
dSj0 = −πρR2

j0ezRe
π∫

0

v∗r (vr cos θj − vθ sin θj) sin θjdθj

= −πρR2
j0ezRe

 ∞

∑
n,m=0

V(j)
rn (Rj0)V

(j)∗
rm (Rj0)

1∫
−1

Pn(µj)Pm(µj)µjdµj

−
∞

∑
n = 1
m = 0

V(j)
θn (Rj0)V

(j)∗
rm (Rj0)

1∫
−1

P1
n(µj)Pm(µj)

√
1− µ2

j dµj


= −2πρR2

j0ezRe

{
V(j)

r0 (Rj0)V
(j)∗
r1 (Rj0) +

∞

∑
n=1

1

(2n + 1)2

{
V(j)

rn (Rj0)
[
nV(j)∗

r(n−1)(Rj0) + (n + 1)V(j)∗
r(n+1)(Rj0)

]
−n(n + 1)V(j)

θn (Rj0)
[
V(j)∗

r(n+1)(Rj0)−V(j)∗
r(n−1)(Rj0)

]}}
. (14)

The contribution of the second term is calculated as follows:

T(j)
2 = 2η

∫
Sj0

(nj·∇)vEdSj0 = 4πηR2
j0ez

1∫
−1

(
∂vEr
∂rj

µj −
∂vEθ

∂rj

√
1− µ2

j

)
rj=Rj0

dµj

= 4πηR2
j0ez

− ∞

∑
n=1

n(n + 1)

Ψ(j)/
n (Rj0)

Rj0
−

Ψ(j)
n (Rj0)

R2
j0

 1∫
−1

Pn(µj)µjdµj

−
∞

∑
n=1

Ψ(j)
n (Rj0)

R2
j0

−
Ψ(j)/

n (Rj0)

Rj0
−Ψ(j)//

n (Rj0)

 1∫
−1

P1
n(µj)

√
1− µ2

j dµj


=

16
3

πηR2
j0ez

2Ψ(j)
1 (Rj0)

R2
j0

−
2Ψ(j)/

1 (Rj0)

Rj0
−Ψ(j)//

1 (Rj0)

. (15)

Making use of the equation

nj × (∇× vE) =
eθ j

rj

[
∂vEr
∂θj
−

∂(rjvEθ)

∂rj

]
, (16)

the calculation of the third term results in

T(j)
3 = η

∫
Sj0

nj × (∇× vE)dSj0

= 2πηRj0ez
∞
∑

n=1

[
n(n+1)

Rj0
Ψ(j)

n (Rj0)− 2Ψ(j)/
n (Rj0)− Rj0Ψ(j)//

n (Rj0)
] 1∫
−1

P1
n(µj)

√
1− µ2

j dµj

= − 8
3 πηR2

j0ez

[
2Ψ(j)

1 (Rj0)

R2
j0
− 2Ψ(j)/

1 (Rj0)
Rj0

−Ψ(j)//
1 (Rj0)

]
. (17)
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To calculate the fourth term of Equation (2), we first need to calculate pE. In order
to perform this calculation, we only need the expression of pE at rj = Rj0. In addition,
it is reasonable to assume that the time-averaged gas pressure inside the jth bubble has
the same value at all points of the gas medium, which means that pE should be constant,
independent of θj, at rj = Rj0. It is easy to check that, in this case, the fourth term of
Equation (2) does not contribute to the force.

To calculate Ψ(j)
1 (Rj0), Ψ(j)/

1 (Rj0) and Ψ(j)//
1 (Rj0), we use Equations (C8), (C17) and

(C18) of [19],

Ψ(j)
1 (Rj0) = C(j)

110 +
C(j)

210
R2

j0
+ Rj0C(j)

310 + R3
j0C(j)

410, (18)

Ψ(j)/
1 (Rj0) = −

2C(j)
210

R3
j0

+ C(j)
310 + 3R2

j0C(j)
410, (19)

Ψ1(j)//(Rj0) = 6C210(j)Rj04 + 6Rj0C410(j), (20)

where the constants C(j)
110–C(j)

410 are calculated by Equations (C30)–(C33) of [19].
With the help of Equations (18)–(20), one obtains

Ψ(j)
1 (Rj0)

R2
j0

−
Ψ(j)/

1 (Rj0)

Rj0
−

Ψ(j)//
1 (Rj0)

2
=

C(j)
110

R2
j0
− 5Rj0C(j)

410. (21)

Combining Equations (14), (15), (17) and (21) brings the following expression for the
radiation interaction force on the jth bubble:

Fj =
16π

3 η
(

C(j)
110 − 5R3

j0C(j)
410

)
−2πρR2

j0Re
{

V(j)
r0 (Rj0)V

(j)∗
r1 (Rj0) +

∞
∑

n=1

1
(2n+1)2

{
V(j)

rn (Rj0)
[
nV(j)∗

r(n−1)(Rj0) + (n + 1)V(j)∗
r(n+1)(Rj0)

]
−n(n + 1)V(j)

θn (Rj0)
[
V(j)∗

r(n+1)(Rj0)−V(j)∗
r(n−1)(Rj0)

]}}
, (22)

where C(j)
110 and C(j)

410 are constants that are calculated by Equations (C30) and (C33) of [19],
Re means “the real part of”, and the asterisk denotes complex conjugate. Note that the
force is directed along the line joining the equilibrium centers of the bubbles, i.e., along the
z axis in Figure 1. Therefore, Fj > 0 means that the force acts in the positive direction of the
z axis, while Fj < 0 means that the force acts in the negative direction of the z axis.

In this subsection we have derived an analytical formula that allows one to calculate
the interaction forces on two bubbles in the case that the bubbles undergo strong shape
modes, which are excited parametrically, and for which we know the magnitudes and the
phases of these modes.

2.2. Linear Scattering Coefficients When Parametric Excitation Is Absent

If the parametric excitation of shape modes is absent, a(j)
n and b(j)

n can be expressed
in terms of the amplitude of the imposed acoustic pressure. In this case, Equation (1) is
transformed to

r(j)
s = Rj0 + e−iωt

∞

∑
n=0

s(j)
n Pn(µj), (23)

The linearized equations of an incompressible viscous liquid are given by [26]

∇ · v = 0, (24)

∂v
∂t

= −1
ρ
∇p + ν∆v, (25)
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where p is the first-order liquid pressure.
In the case of two bubbles, a solution for v is sought as

v = v(1) + v(2), (26)

where v(j) is represented by

v(j) = ∇ϕ(j) +∇×ψ(j), (27)

with the scalar, ϕ(j), and the vector, ψ(j), velocity potentials defined by [27]

ϕ(j) = e−iωt
∞

∑
n=0

a(j)
n

(
Rj0

rj

)n+1

Pn(µj), (28)

ψ(j) = e−iωtψ(j)(rj, θj)eεj = e−iωteεj

∞

∑
n=1

b(j)
n h(1)n (kvrj)P1

n(µj), (29)

where eεj is the unit azimuth vector of the jth bubble. Note that axial symmetry allows us
to set ε1 = ε2 and eε1 = eε2.

Substituting Equation (27) into Equation (25) and taking into account that ψ(j) obeys
the equation (∆ + k2

v)ψ
(j) = 0 [27], one finds that the first-order scattered pressure gener-

ated by the jth bubble is given by

p(j) = iωρϕ(j). (30)

Note that the total first-order scattered pressure is equal to p = p(1) + p(2).
We use the boundary condition for normal stress at the surface of the jth bubble,

Pgj

(
Vj0

Vj(t)

)γ

= p|rj=Rj0
− 2η

∂vr(rj, θj)

∂rj

∣∣∣∣∣
rj=Rj0

+ p(j)
st + Pac(t) + P0, (31)

where the gas pressure within the bubbles is assumed to be spatially homogeneous
and to obey the adiabatic law, Pgj is the equilibrium gas pressure inside the jth bubble,
Vj0 = (4/3)πR3

j0 is the equilibrium volume of the jth bubble, Vj(t) is the instantaneous
volume of the jth bubble, γ is the specific hear ratio of the gas, P0 is the hydrostatic pressure
in the liquid, Pac(t) = Pae−iωt is the imposed acoustic pressure, and p(j)

st is the pressure of
surface tension on the surface of the jth bubble, given by [28]

p(j)
st =

2σ

Rj0
+ e−iωt σ

R2
j0

∞

∑
n=0

(n− 1)(n + 2)s(j)
n Pn(µj), (32)

where σ is the surface tension coefficient.
Accurate to first-order terms, Vj(t) is calculated by

Vj(t) =
r(j)

s∫
0

r2dr
π∫

0

sin θjdθj

2π∫
0

dε j =
2π

3

1∫
−1

(r(j)
s )

3
dµj ≈ Vj0

(
1 + e−iωt 3s(j)

0
Rj0

)
. (33)

To apply Equation (31) and thus calculate a(j)
n and b(j)

n , we need to know ϕ(1) and v(1)r

in the coordinates (r2, θ2) and ϕ(2) and v(2)r in the coordinates (r1, θ1). To this end, we use
Equations (A5), (A6), (A11) and (A13) of [19], which give

ϕ(1)(r2, θ2) = e−iωt
∞

∑
n,m=0

a(1)n ξn+1
1 (−1)mCnm

( r2

d

)m
Pm(µ2), (34)
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v(1)r (r2, θ2) = e−iωt
∞

∑
n,m=0

Pm(µ2)

{
(−1)mm

d
Cnmξn+1

1 a(1)n

( r2

d

)m−1

− jm(kvr2)

r2

√
n(n + 1)

(2n + 1)in (2m + 1)im
√

m(m + 1)b(1)n

∞

∑
l=0

(−1)l i−l(2l + 1)Cn0
m0l0Cn1

m1l0h(1)l (kvd)

}
, (35)

ϕ(2)(r1, θ1) = e−iωt
∞

∑
n,m=0

(−1)na(2)n ξn+1
2 Cnm

( r1

d

)m
Pm(µ1), (36)

v(2)r (r1, θ1) = e−iωt
∞

∑
n,m=0

Pm(µ1)

{
(−1)nm

d
Cnmξn+1

2 a(2)n

( r1

d

)m−1

− jm(kvr1)

r1

√
n(n + 1)

(2n + 1)in (2m + 1)im
√

m(m + 1)b(2)n

∞

∑
l=0

i−l(2l + 1)Cn0
m0l0Cn1

m1l0h(1)l (kvd)

}
. (37)

With the help of Equations (30) and (32)–(37), applying Equation (31) at j = 1 and j = 2,
one obtains for n = 0,

s(1)0 =
ω

ω2
10R10

[
(2τ1 − i)a(1)0 − i

∞

∑
m=0

(−1)mξm+1
2 a(2)m −

Pa

ρω

]
, (38)

s(2)0 =
ω

ω2
20R20

[
(2τ2 − i)a(2)0 − i

∞

∑
m=0

ξm+1
1 a(1)m −

Pa

ρω

]
, (39)

for n = 1,
(6τ1 − i)a(1)1 + 2τ1[h

(1)
1 (x1)− x1h(1)/1 (x1)]b

(1)
1

−iξ1

∞

∑
m=0

(−1)m(m + 1)ξm+1
2 a(2)m + 3

√
2iτ1[j1(x1)− x1 j/

1 (x1)]
∞

∑
m=1

κ
(2)
1m b(2)m = 0, (40)

(6τ2 − i)a(2)1 + 2τ2[h
(1)
1 (x2)− x2h(1)/1 (x2)]b

(2)
1

+iξ2

∞

∑
m=0

(m + 1)ξm+1
1 a(1)m + 3

√
2iτ2[j1(x2)− x2 j/

1 (x2)]
∞

∑
m=1

κ
(1)
1m b(1)m = 0, (41)

and for n ≥ 2,

ω2
1nR10

(n + 1)ω
s(1)n = [(n + 1)(n + 2)τ1 − i]a(1)n + n(n + 1)τ1[h

(1)
n (x1)− x1h(1)/n (x1)]b

(1)
n

+[n(n− 1)τ1 − i]ξn
1

∞

∑
m=0

(−1)mCnmξm+1
2 a(2)m + τ1in(2n + 1)

√
n(n + 1)[jn(x1)− x1 j/

n (x1)]
∞

∑
m=1

κ
(2)
nmb(2)m , (42)

ω2
2nR20

(n + 1)ω
s(2)n = [(n + 1)(n + 2)τ2 − i]a(2)n + n(n + 1)τ2[h

(1)
n (x2)− x2h(1)/n (x2)]b

(2)
n

+(−1)n[n(n− 1)τ2 − i]ξn
2

∞

∑
m=0

Cnmξm+1
1 a(1)m + τ2in(2n + 1)

√
n(n + 1)[jn(x2)− x2 j/

n (x2)]
∞

∑
m=1

κ
(1)
nmb(1)m , (43)

where xj = kvRj0,

ωj0 =
1

Rj0

√√√√1
ρ

(
3γPgj −

2σ

Rj0

)
(44)
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is the natural frequency of the radial mode of the jth bubble,

ωjn =

√
(n2 − 1)(n + 2)

σ

ρR3
j0

(45)

is the natural frequency of the nth shape mode of the jth bubble (n ≥ 2),

τj =
2ν

ωR2
j0

, (46)

κ
(j)
nm =

√
m(m + 1)

(2m + 1)im

∞

∑
l=0

(−1)jl i−l(2l + 1)Cm0
n0l0Cm1

n1l0h(1)l (kvd). (47)

It also follows from Equation (31) that

Pgj = P0 +
2σ

Rj0
. (48)

To make the system of Equations (38)–(43) closed, we use Equations (A19)–(A38)
of [19], which were obtained there from the boundary conditions for the normal component
of the liquid velocity and the liquid tangential stress. The above equations give for n = 0,

a(1)0 = iωR10s(1)0 , (49)

a(2)0 = iωR20s(2)0 , (50)

and for n ≥ 1,

a(1)n + f (1)n b(1)n − n
∞

∑
m=0

α2nma(2)m +
∞

∑
m=1

β2nmb(2)m =
iωR10

n + 1
s(1)n , (51)

a(2)n + f (2)n b(2)n − n
∞

∑
m=0

α1nma(1)m +
∞

∑
m=1

β1nmb(1)m =
iωR20

n + 1
s(2)n , (52)

a(1)n + g(1)n b(1)n −
n2 − 1
n + 2

∞

∑
m=0

α2nma(2)m +
∞

∑
m=1

γ2nmb(2)m = 0, (53)

a(2)n + g(2)n b(2)n −
n2 − 1
n + 2

∞

∑
m=0

α1nma(1)m +
∞

∑
m=1

γ1nmb(1)m = 0, (54)

where the coefficients f (j)
n , g(j)

n , αjnm, β jnm and γjnm are calculated by Equations (A25)–(A34)
of [19].

Combining Equations (38), (39), (49) and (50), one obtains(
1−

ω2
10

ω2 + 2iτ1

)
a(1)0 +

∞

∑
m=0

(−1)mξm+1
2 a(2)m =

iPa

ρω
, (55)

(
1−

ω2
20

ω2 + 2iτ2

)
a(2)0 +

∞

∑
m=0

ξm+1
1 a(1)m =

iPa

ρω
. (56)

Combining Equations (42), (43), (51) and (52), one obtains for n ≥ 2,[
1− ω2

1n
ω2 + i(n + 1)(n + 2)τ1

]
a(1)n +

{
in(n + 1)τ1

[
h(1)n (x1)− x1h(1)/n (x1)

]
− ω2

1n
ω2 f (1)n

}
b(1)n

+
∞
∑

m=0

{
(−1)mCnm[n(n− 1)iτ1 + 1]ξn

1 ξm+1
2 + n ω2

1n
ω2 α2nm

}
a(2)m
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+
∞

∑
m=1

{
τ1in+1(2n + 1)

√
n(n + 1)

[
jn(x1)− x1 j/

n (x1)
]
κ
(2)
nm −

ω2
1n

ω2 β2nm

}
b(2)m = 0, (57)

[
1− ω2

2n
ω2 + i(n + 1)(n + 2)τ2

]
a(2)n +

{
in(n + 1)τ2

[
h(1)n (x2)− x2h(1)/n (x2)

]
− ω2

2n
ω2 f (2)n

}
b(2)n

+
∞
∑

m=0

{
(−1)nCnm[n(n− 1)iτ2 + 1]ξn

2 ξm+1
1 + n ω2

2n
ω2 α1nm

}
a(1)m

+
∞

∑
m=1

{
τ2in+1(2n + 1)

√
n(n + 1)

[
jn(x2)− x2 j/

n (x2)
]
κ
(1)
nm −

ω2
2n

ω2 β1nm

}
b(1)m = 0. (58)

Equations (40), (41), (53), and (54) do not contain the mode amplitudes s(j)
n and

therefore remain unchanged.
Equations (40), (41), (53), (54) and (55)–(58) form a system of equations in the unknowns

a(j)
n and b(j)

n . The number of the equations, just as the number of the coefficients a(j)
n and b(j)

n ,
is infinite. However, since a(j)

n and b(j)
n decrease for n→ ∞ , their number can be truncated

at some value of n = N. Doing so, we obtain a finite system of 4N + 2 equations, which
can be solved numerically,(

1−
ω2

10
ω2 + 2iτ1

)
a(1)0 +

N

∑
n=0

(−1)nξn+1
2 a(2)n =

iPa

ρω
, (59)

N

∑
n=0

ξn+1
1 a(1)n +

(
1−

ω2
20

ω2 + 2iτ2

)
a(2)0 =

iPa

ρω
, (60)

(6τ1 − i)a(1)1 − iξ1

N

∑
m=0

(−1)m(m + 1)ξm+1
2 a(2)m

+2τ1[h
(1)
1 (x1)− x1h(1)/1 (x1)]b

(1)
1 + 3

√
2iτ1[j1(x1)− x1 j/

1 (x1)]
N

∑
m=1

κ
(2)
1m b(2)m = 0, (61)

iξ2

N

∑
m=0

(m + 1)ξm+1
1 a(1)m + (6τ2 − i)a(2)1

+3
√

2iτ2[j1(x2)− x2 j/
1 (x2)]

N

∑
m=1

κ
(1)
1m b(1)m + 2τ2[h

(1)
1 (x2)− x2h(1)/1 (x2)]b

(2)
1 = 0, (62)

[
1− ω2

1n
ω2 + i(n + 1)(n + 2)τ1

]
a(1)n +

N
∑

m=0

{
(−1)mCnm[n(n− 1)iτ1 + 1]ξn

1 ξm+1
2 + n ω2

1n
ω2 α2nm

}
a(2)m

+

{
in(n + 1)τ1

[
h(1)n (x1)− x1h(1)/n (x1)

]
− ω2

1n
ω2 f (1)n

}
b(1)n

+
N

∑
m=1

{
τ1in+1(2n + 1)

√
n(n + 1)

[
jn(x1)− x1 j/

n (x1)
]
κ
(2)
nm −

ω2
1n

ω2 β2nm

}
b(2)m = 0, 2 ≤ n ≤ N, (63)

N
∑

m=0

{
(−1)nCnm[n(n− 1)iτ2 + 1]ξn

2 ξm+1
1 + n ω2

2n
ω2 α1nm

}
a(1)m +

[
1− ω2

2n
ω2 + i(n + 1)(n + 2)τ2

]
a(2)n

+
N
∑

m=1

{
τ2in+1(2n + 1)

√
n(n + 1)

[
jn(x2)− x2 j/n (x2)

]
κ
(1)
nm −

ω2
2n

ω2 β1nm

}
b(1)m

+

{
in(n + 1)τ2

[
h(1)n (x2)− x2h(1)/n (x2)

]
−

ω2
2n

ω2 f (2)n

}
b(2)n = 0, 2 ≤ n ≤ N, (64)
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a(1)n +
1− n2

n + 2

N

∑
m=0

α2nma(2)m + g(1)n b(1)n +
N

∑
m=1

γ2nmb(2)m = 0, 1 ≤ n ≤ N, (65)

1− n2

n + 2

N

∑
m=0

α1nma(1)m + a(2)n +
N

∑
m=1

γ1nmb(1)m + g(2)n b(2)n = 0, 1 ≤ n ≤ N. (66)

Equations (51) and (52) at n = 1 are not used when a(j)
n and b(j)

n are calculated. They
define the amplitudes of the translational oscillations of the bubbles, s(1)1 and s(2)1 .

Changing N in Equations (59)–(66), one can calculate the linear scattering coefficients
a(j)

n and b(j)
n with any desired accuracy.

2.3. Net Force Experienced by Two Contacting Bubbles

The theory developed above allows one to calculate the forces on the bubbles, F1
and F2, at any distance d between the bubbles. For the bubbles in contact, we should set
d = R10 + R20. The problem is that at this value of d division by zero appears in equations
obtained in [19] for acoustic microstreaming, which are used in the present paper. To
overcome this problem, the forces on the bubbles can be calculated at a very small but
nonzero distance between the bubbles’ surfaces and then the sum F1 + F2 can be used as
approximation of the net force acting on the two bubbles in contact. It is reasonable to
assume that this approach should provide the net force on two contacting bubbles with
acceptable accuracy.

3. Numerical Simulations

We consider the case without parametric excitation and calculate the linear scattering
coefficients by means of the equations derived in Section 2.2. The following material
parameters are used: ρ = 1000 kg/m3, η = 0.001 Pa s, σ = 0.0727 N/m, γ = 1.4,
P0 = 101.3 kPa, Pa = 10 kPa, f = ω/2π = 30 kHz. These parameters correspond to air
bubbles in water.

When parametric excitation is absent, dominant oscillation modes are the radial
mode (mode 0) and the translational mode (mode 1). As an example, Figure 2 shows
the magnitudes of the mode amplitudes s(j)

n for two contacting bubbles (bubbleman)
with R10 = 20 µm and R20 = 50 µm. As one can see, for bubble 1 (smaller bubble),
the translational mode is dominant, while for bubble 2 (bigger bubble), the radial mode
is dominant.

Figure 2. The magnitudes of the mode amplitudes s(j)
n for a bubbleman with R10 = 20 µm and

R20 = 50 µm in the case that parametric excitation is absent. The calculation was carried out by the
equations derived in Section 2.2.
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Figure 3 shows the net force experienced by the bubbleman. The equilibrium radius of
bubble 2 is kept fixed, R20 = 50 µm, while the equilibrium radius of bubble 1 is varied. The
calculation was made for three values of the liquid viscosity η. As one can see, the force
magnitude decreases with increasing viscosity. For lower viscosity, the net force is always
directed from the smaller bubble to the bigger bubble, while for higher viscosity, the force
can act in the opposite direction. As expected, the net force vanishes for R10 = R20 and for
R10 → 0 .

Figure 3. Net force experienced by a bubbleman in the case that parametric excitation is absent. The
equilibrium radius of bubble 2 is kept fixed, R20 = 50 µm, while the equilibrium radius of bubble 1
is varied.

Figure 4 shows the magnitude of the shape modes developing on bubble 1 as a function
of R10. The equilibrium radius of bubble 2 is kept fixed, R20 = 50 µm, η = 0.001 Pa s, and
the other parameters are as in Figure 3. The comparison of Figures 3 and 4 suggests that
the trough in the upper curve of Figure 3 is caused by the resonance of mode 2 of bubble 1,
as at R10 = 29.065 µm, the driving frequency of 30 kHz is equal to the natural frequency of
the second shape mode; see Equation (45).

Figure 5 shows the contributions of the force components, given by Equations (14),
(15) and (17), to the net force on the bubbleman as a function of the acoustic pressure
amplitude Pa for two values of the liquid viscosity, η = 0.001 Pa s and η = 0.004 Pa s.
It is assumed that R10 = 20 µm, R20 = 50 µm and f = 30 kHz. The solid curve shows
the net force F1 + F2, the short-dash curve shows the contribution of the terms T(j)

1 given

by Equation (14), and the long-dash curve shows the contribution of the terms T(j)
2 and

T(j)
3 given by Equations (15) and (17). As one can see, at η = 0.001 Pa s, the dominant

contribution comes from the terms T(j)
1 , while the terms T(j)

2 and T(j)
3 , which arise due to

acoustic microstreaming, reduce the net force slightly. At η = 0.004 Pa s, the contribution
of the terms T(j)

2 and T(j)
3 becomes comparable to the contribution of the terms T(j)

1 , which
results in a considerable reduction in the net force.
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Figure 4. The magnitude of the shape modes developing on bubble 1 as a function of R10. The
equilibrium radius of bubble 2 is kept fixed, R20 = 50 µm, η = 0.001 Pa s, and the other parameters
are as in Figure 3.

Figure 5. The contributions of the force components, given by Equations (14), (15) and (17), to
the net force F1 + F2 on the bubbleman as a function of the acoustic pressure amplitude Pa for
(a) η = 0.001 Pa s and (b) η = 0.004 Pa s. R10 = 20 µm, R20 = 50 µm, f = 30 kHz.

4. Experiments

The experimental design of the proposed microswimmer requires controlling the
approach and the contact of two gas bubbles in an infinite medium. To this end, we take
advantage of an experimental setup that allows one to control the coalescence of two
bubbles in an acoustic levitation chamber. The setup and the experimental technique have
already been described in detail in one of our previous studies [29], so here we only describe
shortly the main experimental activities. Figure 6 depicts the experimental setup that is
used for the creation of a two-bubble microswimmer (bubbleman) as well as for the capture
of its oscillation dynamics and its translational trajectory in two orthogonal planes.
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Figure 6. Schematic of the experimental setup used for the creation of a two-bubble microswimmer
(bubbleman) and for the capture of its oscillation and translation dynamics.

An 8 cm-edge cubic tank is filled with a viscous fluid medium constituted of sodium
alginate power mixed with water (at a concentration of 2 g/L), whose viscosity has been
measured by using a Anton Paar rheometer (MCR302 equipped with parallel plate) at
4.3 mPa s. Single bubbles are nucleated by short laser pulses using a Nd: YAG pulsed
laser (λ = 532 nm New Wave Solo PIVIII), focused by a lens set. This laser-nucleation
system allows generating microbubbles with a radius ranging from 20 µm to 50 µm. A
30.8-kHz Langevin transducer, which is in contact (by means of an echographic gel) with
the underside of the tank, generates an acoustic standing wave field inside the tank, the
driving frequency of which corresponds to a certain acoustic resonant mode of the cubic
cavity. The standing wave has at least one pressure antinode that is located approximately
at the middle-top part of the tank. This pressure antinode is a stable equilibrium location
for bubbles with radii smaller than the resonance radius at the driving frequency, which is
estimated by Equation (44) to be about 110 µm.

The process of the creation of a bubbleman is illustrated by Figure 7. A first bubble is
nucleated by the laser at a distance of a few millimeters from the pressure antinode. Due
to the driving acoustic field, this bubble oscillates spherically and is subject to a primary
radiation force that makes it move to the nearest pressure antinode and settle there; see the
trapped bubble on the right side of Figure 7a.

A second bubble is then nucleated; see the bubble on the left side of Figure 7a. The
trajectory of this bubble is first determined by the primary radiation force and then by
the secondary radiation (interaction) force that acts between the two bubbles when they
are in close proximity. The interaction force exerted on the first (right) trapped bubble
results in a small translational motion towards the approaching (left) bubble, as one can
see in Figure 7a. At the final stage of the bubble approach, they can either coalesce to
form a bigger bubble or come into contact and remain in this state. The exact mechanism
underlying the coalescence and the contact of two bubbles is not yet well understood.
The transition from coalescence to contacting bubbles surely depends on the velocities of
approach of the bubbles, the amplitude of their spherical oscillations their equilibrium
radii and their surface contamination. Anyway, although coalescence can happen in the
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levitation chamber, its absence is regularly observed and contacting bubble pairs often
occur. Figure 7b–e show the last steps of the approach and the contact of two bubbles,
which result in the creation of a bubbleman. Once the bubbleman is created (see Figure 7d),
it moves slowly to a new trapping location, shown in Figure 7e, which results from a
balance between the primary radiation force on the bubbleman and the buoyancy force.

Figure 7. (a) Bubble trajectories prior to the contact. A first bubble (right side) is trapped at a stable
location in the acoustic standing wave. Once a second bubble is nucleated (left side), it moves due to
the primary radiation force towards the same stable location. When the bubbles come to proximity,
the radiation interaction force makes them come into contact. (b,c) The last moments prior to the
contact. (d) The bubbles come into contact and remain in this state. (e) As soon as the bubbles come
into contact, the bubbleman moves to a new stable location.

Since the bubbleman is located at a pressure antinode, both bubbles continuously
undergo spherical oscillations and experience an interaction force, which is the source of a
net propulsion force. However, if the interaction force does not exceed the trapping force
caused by the primary radiation force, the bubbleman remains trapped. When the applied
acoustic pressure is increased, the interaction force also increases and the net propulsion
force can exceed an energy barrier that provides the trap of the contacting bubbles. As a
result, the bubbleman begins to move and leaves the pressure antinode. Figure 8 shows the
trajectory of the bubbleman captured from two orthogonal views. One camera (Phantom
v12.1 equipped with a 12× Navitar objective lens, Vision Research, USA) captures the
motion of the bubbleman from the side. A frame size of 1280 × 800 pixels (magnification
of 4.6 µm/px) is used at a 60-Hz frame rate. Backlight illumination is provided by a con-
tinuous light-emitted diode (LED) light source. This allows capturing with high accuracy
the shape of the bubbleman and ensures that it is spherically oscillating; see Figure 8b.
Another camera (Basler ac640–750 µm) captures the top view of the bubbleman motion
with a 640 × 480 frame size (magnification of 22 µm/px) at a 60-Hz frame rate. Due to
experimental constraints, it is not possible to used backlight for the top view observation.
The bubbleman is visualized thanks to the scattered light from the LED light source. The
exposure time of the camera is therefore increased significantly in order to capture a bright
spot corresponding to the propeller; see Figure 8a. The bubbleman under study is con-
stituted of two bubbles with equilibrium radii of R10 = 60 µm and R20 = 25 µm. The
propeller exhibits quasi-circular orbits around the pressure antinode with a predominant
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motion in the plane orthogonal to the direction of gravity. As one can see from the side
view, the largest travelled distance is ~1 mm. From the top view, the diameter of the largest
orbit is around 4 mm. The propeller velocity has been estimated to reach 0.8 cm/s, which
corresponds to 47 body lengths per second. The motion of the bubbleman can last as long
as 10 s. For an acoustic frequency of 30.8 kHz, this corresponds to a bubbleman performing
spherical oscillations for more than 300,000 acoustic periods. It is worth noting that such
velocities correspond to the fastest acoustically-powered microswimmers mentioned in
the literature. At the end of the motion, the intensity of the propulsion force decreases
and the bubbleman becomes trapped again, returning to its equilibrium location. This
loss of propulsion efficiency probably comes from a change in the bubble equilibrium
radii due to rectified diffusion, a phenomenon that occurs on long timescales. Such a size
modification can change drastically the magnitude of the net propulsion force, resulting
then in a lack of motion. This effect can be prevented by coating bubble surfaces, which
should enhance the size stability of the bubbles. At this stage, we cannot easily compare
the experimental trajectories to the theoretical modelling. The main reason is that the
theoretical modelling allows the calculation of the net propulsion force but not of the
motion of the system within the levitation chamber. In order to describe the trajectories of
the bubbleman, it is necessary to derive the equation of motion of the two-bubble system
in the three-dimensional acoustic field by including the forces acting on the system: the
buoyancy, the drag force, the radiation interaction force, and the primary radiation force
(induced by the ultrasound field onto the bubbleman itself). This requires knowledge of
the 3D pressure field around the trapping location, and relevant experiments are currently
in progress in order to quantitatively determine the pressure field in the levitation chamber
and hence to predict and control the trajectory of the bubbleman.

Figure 8. (a) Trajectory of the bubbleman captured from above. The diameter of the quasi-circular
trajectory can reach 4 mm. (b) A zoom of the trajectory captured from the side. The bubbleman is
clearly visible, showing that both bubbles remain spherical during the motion.

5. Conclusions

In this paper, a theory has been developed that allows one to analytically calculate
the acoustic radiation interaction forces between two gas bubbles in an incompressible
viscous liquid for any small separation distance between the bubbles. This theory has been
used to demonstrate that two acoustically excited bubbles experience a nonzero net force
when they come into contact. This result suggests a new mechanism that can be used for
the development of artificial self-propelled microswimmers actuated and controlled by an
acoustic field.
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Appendix A. Mathematical Formulas Used in Calculations

Here, we provide auxiliary mathematical formulas that are used in our derivation [23],

1∫
−1

Pn(µ)Pm(µ)dµ =
2

2n + 1
δnm, (A1)

µPn(µ) =
n

2n + 1
Pn−1(µ) +

n + 1
2n + 1

Pn+1(µ), (A2)

√
1− µ2P1

n(µ) =
n(n + 1)
2n + 1

[Pn+1(µ)− Pn−1(µ)], (A3)

1∫
−1

P1
n(µ)P1

m(µ)dµ =
2n(n + 1)

2n + 1
δnm, (A4)

where δnm is the Kronecker delta.
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