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Abstract: The market for microfluidic chips is experiencing significant growth; however, their
development is hindered by a complex design process and low efficiency. Enhancing microfluidic
chips’ design quality and efficiency has emerged as an integral approach to foster their advancement.
Currently, the existing structural design schemes lack careful consideration regarding the impact of
chip area, microchannel length, and the number of intersections on chip design. This inadequacy leads
to redundant chip structures resulting from the separation of layout and wiring design. This study
proposes a structural optimization method for microfluidic chips to address these issues utilizing a
simulated annealing algorithm. The simulated annealing algorithm generates an initial solution in
advance using the fast sequence pair algorithm. Subsequently, an improved simulated annealing
algorithm is employed to obtain the optimal solution for the device layout. During the wiring stage,
an advanced wiring method is used to designate the high wiring area, thereby increasing the success
rate of microfluidic chip wiring. Furthermore, the connection between layout and routing is reinforced
through an improved layout adjustment method, which reduces the length of microchannels and the
number of intersections. Finally, the effectiveness of the structural optimization approach is validated
through six sets of test cases, successfully achieving the objective of enhancing the design quality of
microfluidic chips.

Keywords: microfluidic chip; simulated annealing algorithm; fast sequence pair algorithm; structural
design; optimization algorithm

1. Introduction

Microfluidic technology is a scientific and technological system that integrates funda-
mental operational units, such as sample preparation, reaction, separation, and detection,
into a chip, automating the analysis process [1–3]. Microfluidic chips serve as the pri-
mary platform for microfluidic technology, utilizing microfluidic channels and reaction
chambers to process and manipulate small liquid volumes. Compared with traditional
technology platforms, microfluidic chips enable faster completion of tasks that originally
took hours, such as separation, isolation, and chemical and biological reactions, resulting
in significantly improved detection efficiency [4–6].

The structure of a microfluidic chip primarily consists of a fluid layer and a control
layer [7,8]. The fluid layer facilitates the reaction process of the experimental reagent. In
contrast, the control layer connects to external pressure sources to regulate the flow and
stoppage of the reagent within the fluid layer. The connection between the fluid layer and
the control layer is established through microvalves, which serve as connectors and can also
form devices within the microfluidic chip [9,10]. Figure 1 shows the chip reaction device
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and a hybrid device containing microvalves. Microvalves will be placed at the crossing
point when microchannels cross due to the need for experiments. A typical microfluidics
chip can be integrated into hundreds of microvalves. Wiring between microvalves and
control ports is required. A large number of microvalves will make wiring difficult. Due to
the fact that channel crossing is not allowed in the control layer, the number of microvalves
is huge. Once the position of the arrangement is incorrect, it will lead to malfunctions in the
control layer. Therefore, it is necessary to reduce the number of microvalves and place them
in appropriate positions [11–13]. Meanwhile, when the microchannel length is too long,
the strong output of an external mechanical pump will affect the execution efficiency and
time accuracy of biochemical experiments [14–16]. Secondly, when the area of microfluidic
chips is too large, it will also cause a waste of raw materials and increase manufacturing
costs [17–19]. Hence, the number of microchannel intersections, the microchannel length,
and the chip area are critical indicators for evaluating the quality of chip structural design.
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Reference [20] proposed a component extension method that introduces heuristic
diagonals in component extension. References [21,22] proposed an arbitrary angle routing
algorithm. In response to storage issues, References [23,24] proposed a distributed channel
storage method. References [25–27] proposed a weighted sum algorithm for the total length
of microchannels. References [28,29] proposed a chip synthesis method for minimizing
microvalves. However, in the above research, the layout of components and the routing
of microchannels were considered separately, ignoring the interaction between the two,
resulting in a decrease in quality and execution efficiency. To consider the interaction
between the component layout and runner routing stage, Reference [30] proposed an
effective layout and routing algorithm which allows iterative layout adjustment based on
feedback information during micro runner routing. It uses a simulated annealing algorithm
in the component layout stage, a negotiation-based routing algorithm in the routing stage,
and iterative layout adjustment based on micro runner routing information. However, this
method’s convergence rate is slow, and the convergence quality is uneven.

Based on a Monte Carlo iterative solution strategy, the simulated annealing algorithm
is a stochastic optimization algorithm commonly employed for combinatorial optimization
problems [31,32]. Drawing inspiration from the annealing process of solid materials in
physics, this algorithm provides an effective approximate solution for issues with non-
deterministic polynomial (NP) complexity [33–35]. The traditional sequence pair algorithm
is a classical layout representation method in the field of electronic design automation. It
provides a coding method for the layout scheme of a given device set, which can speed up
the enumeration and calculation of layout schemes [36,37].

Focusing on the goal of microfluidics chip structure optimization, this paper uses
the improved Fast Sequence Pair (FAST-SP) algorithm to generate the initial solution of
the simulated annealing algorithm, improves the cooling speed function of the simulated
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annealing algorithm, and improves the Rate of convergence of the simulated annealing
algorithm. Subsequently, the layout of devices and the routing of microchannels are
integrated through layout adjustment using a chip layout quality evaluation function,
which reduces the length of microchannels and the number of intersections. Finally, the
comparison of data from six experiments demonstrates that the optimization algorithm
proposed in this paper effectively enhances the design quality of microfluidic chips.

2. Structure Optimization of a Microfluidic Chip
2.1. Structural Modeling of Microfluidic Chips

1. Definition of a structural optimization problem

Problem input: experimental process, device summary, device connection relationship,
and design constraints.

Problem output: design results, including device layout and microchannel routing results.
Optimization objects: chip area, microchannel length, and number of microchannel

intersections.
Design goal: minimize the weighted sum of the chip area, the length of microchannels,

and the number of microchannel intersections.

2. Structural design modeling

The structural design of microfluidic chips mainly includes device layout, channel
routing, and device layout adjustment [38,39]. Figure 2 is a structural design modeling
diagram of the microfluidic chip, and Figure 2a is an experimental sequence diagram
showing the observed reaction’s specific flow and the device’s connection relationship. Each
node represents a particular operation, such as detection, mixing, etc. Figure 2b summarizes
the experimental apparatus. Figure 2c is a schematic diagram of the device layout and
channel routing of the microfluidic chip, where the gray channel is the microchannel of
the chip.
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2.2. Algorithm Design

In this paper, the FAST-SP algorithm [40–42] represents the initial setting scheme of
the device layout. The exact position of each device on the microfluidics chip is calculated
through the improved simulated annealing algorithm. Then, the chip layout design scheme
is output according to the change process of heating, isothermal, cooling, and search
strategies. As shown in Figure 3, the algorithm design process is as follows.
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Upon completion of the layout, wiring the microchannels directly would result in
experimental redundancy. To address this issue, the devices intended for connection are se-
quentially linked end to end, utilizing line segments as microchannel lengths in accordance
with the experimental sequence diagram. The number of microchannel intersections can
be determined by counting the intersection points between these line segments. Once the
routing phase is finalized, the optimized layout adjustment algorithm can be employed
to rectify the device layout and microchannel routing. The optimized layout adjustment
algorithm preserves the initial sequence generated by FAST-SP, but adjusts the component
spacing to allow for more routing possibilities. The objective is to eliminate unnecessary
microchannel intersections, minimize the number of microvalves, and reduce the overall
length of microchannels. Compared with the traditional sequence pair algorithm, the
FAST-SP algorithm reduces the complexity of decoding time. After the longest common
subsequence (LCS) algorithm is integrated, it speeds up the time to evaluate the layout of
sequence pairs, making it more practical. Given a sequence pair, the structure’s starting
point, the device’s width and height, and the layout direction can be obtained, and then
a configuration can be generated. The starting point refers to the position where the first
device is placed. When calculating the relative position between devices, the device’s size
is required, and the layout direction is conducive to minimizing the area of the chip. This
paper adopts the layout scheme from bottom left to top right.

It is relevant to generate a layout from sequence pairs and find the longest weighted
common subsequence in two sequence pairs. Determining the x coordinate of each device is
equivalent to calculating LCS (SX, SY), choosing the y coordinate of each device is equivalent
to calculating LCS (SX

R, SY
R), and SX

R is the inverse sequence of SX (Tables 1 and 2). For the
device constraint relationship, each sequence unit in the sequence pair (SX, SY) represents
each device. Given two devices, a and b, in the sequences SX and SY, if a is before b, then a
is on the left of b; in sequence SX, if a is before b, and in sequence SY, if a is after b, then a is
above b.
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Table 1. Sequence pair algorithm.

Input: sequence pair (SX, SY), width (length) of n devices, width [n] (heights [n]).
Output: x (y) coordinates x_coords (y_coords), the W (H) dimension of the layout structure.

1. for(i = 1 to n)
2. weights [i] = widths [i] //Weight of device-width
3. (x_coords, W) = LCS (SX, SY, weights) //X coordinate, total width W
4. for(i = 1 to n)
5. weights [i] = heights [i] //Weight of device height
6. SX

R[i] = SX[n + 1 − i] //Reverse SX
7. (y_coords, H) = LCS(SX

R, SY, weights) //Y coordinate, total height H

Table 2. LCS algorithm.

Input: sequences S1 and S2, weights of n devices [n]
Output: position of each module, total length L

1. for(i = 1 to n)
2. block_order[S2[i]] = i //Index of each device in S2
3. lengths[i] = 0 //Total length initialization of all devices
4. for(i = 1 to n)
5. block = S1[i] //Current device
6. index = block_order[block] //Index of current device in S2
7. positions[block] = lengths[index] //Calculate the position of the device
8. t_span = positions[block] + weights[block] //Determine the current fast length
9. for(j = index to n)
10. if(t_span > lengths[j])

11. lengths[j] = t_span //The length of the current device replaces
the former

12. else break
13. L = lengths[n] //Total length

As shown in Figure 4, given a set of sequence pairs, the grid represents their corre-
sponding constraint relationships. Draw a grid graph of n × n, mark the grid lines from
top to bottom with a positive sequence, and mark the grid lines from left to right with an
inverse arrangement. Rotate −45◦ to obtain the oblique grid of sequence pairs <a c d b e>
and <c d a c b>. Given this group of sequence pairs, the layout vertical constraint graph
(VCG) and layout horizontal constraint graph (HCG) can be obtained according to the start
and endpoints.
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Lines 1–2 are used to initialize the width of n devices. Line 3 searches for the longest
weighted common subsequence of SX and SY and calculate the x coordinate of each device.
Lines 4–5 initialize the height of n devices. Row 6 is used to obtain the reverse-order
column SX

R of SX. Line 7 calculates the y-coordinate of each device according to the longest
weighted common subsequence of SX

R and SY.
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Lines 1–2 represent vector blocks_order, which records the index of each device in
S2. Line 3 initializes the vector length to 0, saving the maximum length of each device.
Lines 4–5 indicate that the variable block is equivalent to the current device in S1. Line 6
indicates that the index is the index of the current device in S2. The block’s position in Line
7 is defined as the position not occupied by other devices at first. Lines 9–12 update the
lengths. The last quantity of Line 13 stores the total determined length.

(1) Calculate the weighted LCS width of two sequences, S1 and S2, and use the vector
block order to record the index of each device in S2.

(2) Initialize vector lengths to 0 to store each device’s maximum quantity (length or width).
(3) The variable block is defined as the current device in S1, and the index is the index

of the current device in S2. All the items on the left of the block are arranged into
intervals with the length of the block, and the block is then placed.

(4) The total length of the updated layout is length, and length [n] indicates the full length
after n devices are determined.

(5) It is updated if the length [j] exceeds the current length.

Extract the LCS algorithm when S1 = SX, S2 = SY, and weights = width, which can
define the x coordinate of the layout. Extract the LCS algorithm when S1 = SX

R, S2 = SY,
and weights = heights, which can define the y coordinate of the layout.

2.3. Layout Calculation Optimization

The traditional simulated annealing algorithm has the problem that the parameters
greatly impact the experimental results, and the convergence quality is not high when
dealing with layout problems [43,44]. For this reason, this paper improves the simulated
annealing algorithm, and the main improvement strategies are divided into two types:
1© changing the factors of the algorithm itself; 2© changing the search strategy, speeding up

the search, and improving the search quality.

(1) Change of algorithm cooling function

The control methods of simulated annealing in temperature cooling are divided into
rapid cooling mode (RSA) and general cooling mode (CSA).

RSA: T = T0/log(1 + N); CSA: T = qT0 + k, where q is the cooling rate and k is
a constant.

Since the initial cooling rate of RSA and CSA is too fast to obtain the global optimal
solution, this paper improves the algorithm from the cooling rate and proposes an improved
simulated annealing algorithm (ISA), as shown in Formula 1:

T = T0 × e(−N3/T2
0) (1)

T0 is the temperature at the initial time, N is the number of iterations required by the
algorithm in the external cycle, and T is the current temperature.

As shown in Figure 5, compared with RSA and CSA, the ISA algorithm proposed in
this paper decreases slowly in the high-temperature stage, achieving a global search of the
algorithm, which is more conducive to generating the optimal solution.

The slow cooling rate can easily cause the slow global Rate of convergence. The
convergence rate can be accelerated by combining the priority scheme of the FAST-SP
algorithm with the ISA algorithm. The improvement methods are as follows:

(1) Use reverse transformation to select two device units and reverse all units between
the two units.

(2) Select three device units and switch the unit between the two device units to the back
of the third unit.
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(2) Change of algorithmic search strategy

(1) Expand the recording function. During the implementation of the algorithm, the
particularity of its selection probability may cause the problem that even if the optimal
solution is generated, it may be abandoned. The extended recording function can save the
optimal solution in this cycle for comparison with the results generated later.

Add a memory matrix (I) and a function (F) in the simulated annealing algorithm.
Initially, there is an element i0 in I, and F = f (i0). When generating a new solution, each
time a new solution (j) is obtained, compare F with f (j). If f (j) < F, let F = f (j), and store j
in I. After the algorithm is completed, the optimal solution is compared with the solution
recorded in I to select the optimal solution as the final solution of the algorithm.

(2) For the solution of the initial solution, the simulated annealing algorithm with the
recording function is used first. After the trial run of the entire algorithm is completed, the
final result obtained is searched locally until the local algorithm search is conducted. Then,
the final solution, namely the optimal solution, is output.

2.4. Routing Algorithm Optimization

The wiring of microfluidic chips can be divided into two stages. In the first stage, the A*
algorithm is mainly used for routing because there is no microchannel intersection [45–47].
If the wiring is successful, the result will be output. If the wiring fails, the second stage will
be carried out. In the second stage, the microchannels are allowed to generate intersections
during routing. Then, the routing is carried out through the improved A* algorithm, adding
additional generation value to the grid. Whether it is the first or second stage, the existing
algorithms use routing based on the experimental response order [48,49]. Although the
extra generation value of the routing grid can be iterated to obtain the routing scheme, the
routing quality is not high.

As shown in Figure 6a, the blue box is a device, and the black line is a microchan-
nel. When six devices are wired, a microchannel intersection will be generated, and the
experimental reaction sequence is af, bf, and dcef. As shown in Figure 6b, the intersection
disappears when the microchannel of connector f is wired first. It can be seen that key
devices are essential to the results of microchannel wiring, and the probability that key
devices can be wired in this area is higher than in other areas.
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For this reason, in the wiring stage of a microfluidic chip, this paper gives priority to
the wiring of devices with multiple microchannels, defines the high wiring area (in the red
dotted box) to distinguish it from other regions, and then wires the chip microchannels
based on the improved wiring algorithm. In addition, the main purpose of wiring is to
shorten the length of the microchannel and speed up the biochemical reaction time in the
microchannel. To this end, three types of wiring modes, as shown in Figure 7, can also be
selected to reduce the number of cross-points in microchannels.
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2.5. Adjustment Algorithm Optimization

The previous device layout and microchannel routing results must be adjusted in the
layout adjustment phase. Fine-tune the devices while keeping the relative position of the
devices unchanged in the congested area; that is, keep the sequence pair order intact. The
congestion area contains most devices, microchannels, and microchannel intersections.
After adjustment, the next iteration will be carried out if the layout and wiring results are
better than the previous work. They will be discarded if they are not as good as the earlier
work [50–52]. However, this method only adjusts the congestion area, and the adjustment
spacing is too small, which affects the overall layout quality to a certain extent and may
result in the failure of layout adjustment.

For this reason, when adjusting the device layout and microchannel routing, this paper
adjusts the devices in all areas where there are microchannel intersections and multiple
channels, moving two units of length to the left, down, or right while maintaining the
same relative position and moving one unit of measurement for devices in areas where
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there is no microchannel intersection. The purpose is to provide space for machine and
microchannel adjustment in other congested areas and ensure the algorithm can optimize
the layout results without defects. If the result after adjustment is better than the previous
scheme, the optimal solution will be output.

2.6. Improved Algorithm Flow

On the premise of device set and device connection relationships and with the device
layout scheme obtained by the FAST-SP algorithm as the input, the following conditions
are defined:

1. The distance between device mi and device mj on its right or above is defined as rx
and axe.

2. The width and height of all device set spacing are defined as WX and WY. The
constraint condition of elements between WX and WY is [emin, emax]. WX and WY
form the initial solution S.

3. In the simulated annealing algorithm, the initial temperature is defined as T, the
number of external cycles is N, the end temperature is Tend, the current temperature
is T0, the chain length is L, and the quality function for evaluating the chip layout
is E (S).

The algorithm flow is:

(1) Initialize WX and HY: emin < rx, rx < emax.
(2) Set the state variables S = (SX, SY, WX, HY) and the initial temperature T. When the

initial test temperature exceeds the minimum temperature, the iteration starts.
(3) Adjust the state variable S -> S1, randomly generate the variables rx1 and ax1, and

compare them with emin and emax. When rx1 < emin, let emin = rx1; when rx1 > emax,
let emin = rx1. The ax1 is obtained in the same way.

(4) Utilize Metropolis guidelines [53–55]:

df = E
(
S′
)
− E(S) (2)

P =

{
1, df < 0

exp(−df/T), df ≥ 0
(3)

P′ =

{
1, df < 0

exp
(
−df/

(
T0 × e(−N3/T2

0)
))

, df ≥ 0
(4)

If df < 0, the newly generated layout result will be accepted; otherwise, the new layout
result will be obtained with probability exp (−df/T).

(5) Cool down. Use the new cooling rate function to cool down. Stop iterating and output
the current result if T0 exceeds the end temperature.

Formula (4) is obtained by combining Formulas (2) and (3). The improved simulated
annealing algorithm proposed in this paper converges quickly and can obtain a better
solution when facing more devices.

For example, the parameters are emin = 3, emax = 5, T = 10,000, Tend = 10−4, and L = 200,
and the cooling rate is 0.95.

Evaluate the chip layout quality functions:

E(S) = αA + βB + γC + θC2 (5)

where A is the chip layout area, B is the number of microchannel intersections, C is the
length of the microchannel segment, and C2 is the square of the total segment. The main
purpose is to minimize and enhance the length of the microchannel. Set the weight values
of α to 1, β to 300, γ to 20, and θ to 0.001.
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After the layout is completed, the A* algorithm can be used to find the shortest path
after the layout. The input of the algorithm includes the following:
1© Non-negative edge weight graph G (WX, HY).
2© A starting source node s.
3© One target end node t.

Then, two sets, M and N, are introduced, where M contains the point of the shortest
path that has been found and the length of the shortest route, and N is the point of the
shortest path that has not been found and the distance from the point to the source node.

Initialize the two sets M and N, find the shortest path point from the N set, add it
to the M set, then update the devices in the N set, iterate circularly until the end of the
traversal, and find the best routing result of the microfluidic chip.

3. Experimental Results and Analysis

We compared the proposed comprehensive optimization algorithm with the manual
layout and existing algorithms [56] to verify the effectiveness of the proposed algorithm.
Among them, the existing algorithm uses the basic simulated annealing algorithm, and
this paper optimizes on this basis. Manual layout refers to a layout that has not undergone
algorithm-optimization adjustments. The algorithm in this article was implemented using
C++ programming language. The experimental platform was a 64-bit Windows server,
configured with a 2.40 GHz Intel processor and 32 GB of memory to implement.

As shown in Table 3, in order to better compare the performance of algorithms, this
paper selects six groups of test examples that can be completed without control layer
iteration. Among them, the number of devices in the polymerase Chain reaction (PCR)
group is 16, the number of devices in the InVitro-1~InVitro-3 groups is 30, 45, and 60,
and the number of devices in the ProteinSplit-1 and ProteinSplit-2 groups is 30 and 66,
respectively. The experimental results show that the integrated optimization algorithm in
this paper reduced the chip area by 17.6%, the microchannel length by 20.9%, the number
of microchannel intersections by 24.0%, and the convergence time was reduced by 16.9%
on average, with the optimization ratio of PCR reaching 47.3%, compared with existing
algorithms. From the improvement percentage, it can be concluded that when the number
of devices was 45, the comprehensive optimization algorithm in this paper was optimal.

Table 3. Comparison of experimental results.

Test Case

Chip Area (mm2)
Existing Algo-

rithm/Optimization
Algorithm

Microchannel
Length (mm)

Existing Algo-
rithm/Optimization

Algorithm

Microchannel
Intersection (pcs)

Existing Algo-
rithm/Optimization

Algorithm

CPU Time (s)
Existing Algo-

rithm/Optimization
Algorithm

Percent
Improvement

(%)

PCR 2958/2850 522/509 1/1 42.7/22.5 3.6
InVitro-1 5110/3906 802/765 1/1 84.1/63.7 23.5
InVitro-2 8232/5688 1485/1203 8/5 179.7/170.9 30.9
InVitro-3 11,187/8460 1864/1568 6/3 301.3/245.6 24.3

ProteinSplit-1 4914/4422 1162/713 5/3 114.0/106.9 10.0
ProteinSplit-2 17,030/14,690 3247/1749 42/35 528.0/527.7 13.7

Figures 8–10 compare the integrated optimization algorithm, the existing algorithm,
and manual layout in the total chip area, the number of microchannel intersections, and
the total length of microchannels. The figure shows the effectiveness of the integrated
optimization algorithm in the structural design of microfluidic chips and the necessity of
the mechanical structural optimization design of microfluidic chips.
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The experimental results show that the optimization algorithm proposed in this paper
can meet the automatic design requirements of microfluidic chips. The advantages of the
optimization algorithm in the structural design of microfluidic chips are verified through
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the reduction of the chip area, the shortening of the microfluidic channels, and the reduction
of the number of intersections.

4. Conclusions

This FAST-SP algorithm addresses the challenges in chip layout design. By leverag-
ing the FAST-SP algorithm, the proposed method accelerates the convergence rate of the
simulated annealing algorithm, enhances its cooling rate and search strategy, mitigates the
impact of parameters on the outcomes, and improves convergence quality. This approach
targets the limitations of existing layout design methods for microfluidic chips, which
often lack global optimization capabilities. Additionally, it enhances the routing method
to minimize the number of intersections between microchannels. The key contribution is
strengthening the interaction between microchannel routing and device layout. Six test
cases were reconducted to evaluate the proposed algorithm’s effectiveness, with chip area,
microchannel length, and the number of intersections serving as optimization objectives.
The results clearly state the superiority of the optimization algorithm presented in this
paper compared with existing design methods in these three areas. Notably, the experi-
mental data reveal that when the number of devices reaches 45, the algorithm achieves the
optimal improvement percentage, highlighting its capability to obtain optimal solutions
and exhibit robustness.

Through enhancements, the optimization algorithm achieved an average reduction of
17.6% in the total chip area, 20.9% in the overall microchannel length, 24.0% in the number
of microchannel intersections, and 16.9% in the convergence time. These quantitative
results unequivocally validate the effectiveness of the proposed optimization algorithm in
optimizing the structure of microfluidic chips and enhancing their design quality paper,
introducing an improved simulated annealing algorithm that builds upon the FAST-SP.
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