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Abstract: Hf0.5Zr0.5O2-based multi-level cell (MLC) ferroelectric random-access memory (FeRAM)
has great potential for high-density storage applications. However, it is usually limited by the issues
of a small operation margin and a large input offset. The study of circuit design and optimization
for MLC FeRAM is necessary to solve these problems. In this work, we propose and simulate a
configuration for a Hf0.5Zr0.5O2-based 3TnC MLC FeRAM macro circuit, which also presents a high
area efficiency of 12F2 for each bit. Eight polarization states can be distinguished in a single fabricated
Hf0.5Zr0.5O2-based memory device for potential MLC application, which is also simulated by a SPICE
model for the subsequent circuit design. Therein, a nondestructive readout approach is adopted
to expand the reading margin to 450 mV between adjacent storage levels, while a capacitorless
offset-canceled sense amplifier (SA) is designed to reduce the offset voltage to 20 mV, which improves
the readout reliability of multi-level states. Finally, a 4 Mb MLC FeRAM macro is simulated and
verified using a GSMC 130 nm CMOS process. This study provides the foundation of circuit design
for the practical fabrication of a Hf0.5Zr0.5O2-based MLC FeRAM chip in the future, which also
suggests its potential for high-density storage applications.

Keywords: FeRAM; nondestructive readout; offset-canceled sense amplifier

1. Introduction

Ferroelectric random-access memory (FeRAM) based on Hf0.5Zr0.5O2 film has at-
tracted great attention because of its potential advantages of fast programming speeds [1,2],
low operating power [3,4], and good CMOS compatibility [5,6]. Therefore, Hf0.5Zr0.5O2-
based FeRAM is usually considered as one of the promising candidates for next-generation
nonvolatile memory. In principle, Hf0.5Zr0.5O2-based FeRAM benefits from its thin thick-
ness and its compatibility to the advanced CMOS process node [7]. It also can meet the
requirements of today’s integrated circuits for high-density storage applications. However,
the scaling of FeRAM capacitors is still limited compared to that of transistors, leading to
low area efficiency. For instance, the ferroelectric capacitor (FeCAP) area was 40 × 103 nm2

for the 28 nm node in Stefan et al.’s work [8], and the FeRAM area was 0.49 um2 for the
130 nm node in Zhao et al.’s work [9]. Considering the above reasons, multi-level cell
(MLC) FeRAM for high-density storage applications has also been continuously explored in
recent studies. For instance, K. Asari et al. used a three-pulse accessing scheme to achieve
multi-level technology for FeRAM-embedded reconfigurable hardware [10]. Kai Ni et al.
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demonstrated one type of MLC non-volatile memory by fabricating three ferroelectric-
insulator layer-based structures [11]. However, some problems still need to be solved
before its practical application, such as the small operation margin of MLC FeRAM and
the large input offset of a readout circuit SA. These issues usually lead to the misreading
of memory states, thus restricting the application of MLC FeRAM to high-density storage.
The circuit design is usually considered as one critical step to make the connection between
the study of a single device and the practical fabrication of microchips. It can help to solve
some problems that cannot be overcome in device studies and can be used in trial-and-error
approaches before chip fabrication to save the economic cost and time cost. Therefore, it is
necessary to solve the issues of a small operation margin and a large input offset of MLC
FeRAM using the circuit design and optimization.

In this work, we propose a configuration of Hf0.5Zr0.5O2-based 3TnC MLC FeRAM
with good area efficiency. The nondestructive readout approach is used, and a capacitorless
offset-canceled SA is designed to solve the abovementioned issues, which leads to a wide
operation margin and read reliability. The experimental electrical characteristics and a
SPICE model of a Hf0.5Zr0.5O2-based FeRAM device are introduced first in this paper,
which presents eight polarization states for MLC. Subsequently, the circuit structure and
the operation of a 3TnC MLC FeRAM macro are presented in the following sections. Then,
the capacitorless offset-canceled SA is proposed to minimize the mismatch of the readout
transistor and the readout circuit. Finally, the layout of the 4 Mb 3TnC MLC FeRAM is
provided with high area efficiency.

2. FeRAM Device Characteristics and SPICE Model

Figure 1a shows that the FeCAP cells are integrated between the metal layers of M5
and M6 in the GSMC 130 nm logic process. After the front-end-of-line (FEOL) process,
the FeCAP device was fabricated by utilizing the back-end-of-line (BEOL) process [12,13],
as shown in the bottom right inset of Figure 1a. Firstly, TiN film was deposited as the
bottom electrode (BE) by using radio frequency (RF) reactive sputtering. Subsequently,
the Hf0.5Zr0.5O2 film with a thickness of 10 nm was deposited on the BE via atomic layer
deposition (ALD), in which the stoichiometric ratio of the Hf and Zr elements was 1:1.
Finally, TiN was deposited as the top electrode (TE) via RF reactive sputtering, followed by a
step of rapid thermal annealing. Through these above fabrication steps, we experimentally
fabricated the Hf0.5Zr0.5O2-based FeCAP devices, and the size of each single device was
0.7 µm × 0.7 µm. The upper right inset of Figure 1a shows the transmission electron
microscopy (TEM) image of a single Hf0.5Zr0.5O2-based FeCAP device, which shows its
metal–ferroelectric–metal structure and confirms the 10 nm thickness of the Hf0.5Zr0.5O2
film. Figure 1b shows the experimentally measured P–V hysteresis curves and the simulated
curve using a SPICE model, in which different sweep voltages of ±1.5 V, ±2.0 V, ±2.5 V,
and ±3.0 V were utilized to perform the multiple level states. The P–V hysteresis curves
were measured using a ferroelectric tester (Precision Premier II, Radiant Technologies, Inc.,
Albuquerque, NM, USA). Taking the sweep voltage of ±1.5 V as an example, the value
of remnant polarization (Pr) was estimated to be 13 µC/cm2. It also can be seen that the
remanent polarization became larger when increasing the applied voltages, while these
different remanent polarization states represent its potential application for multiple-level
storage. Figure 1b summarizes the eight positive and negative polarization states measured
by using different applied voltages, which can be defined as the states from “111” to “000”.
Thus, the eight polarization states can correspond to three bits in one single device of
MLC FeRAM.
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Figure 1. (a) Cross-sectional TEM image of the single Hf0.5Zr0.5O2-based FeCAP device; the inset 
shows the BEOL process of the FeCAP device; (b) measured and simulated polarization–voltage 
curve with different voltages of ±1.5 V, ±2 V, ±2.5 V, and ±3 V; (c) SPICE model of the FeRAM. 

In order to make the subsequent circuit design of MLC FeRAM, stimulation was nec-
essary to ensure a good fit with the experimental P–V curve, thus ensuring the simulation 
result was compatible with the performance of real devices. To simulate the electrical char-
acteristics of our MLC FeRAM, we utilized the physics-based circuit-compatible SPICE 
model based on the single-domain approximation, referring to the literature by Aziz et al. 
[14], as shown in Figure 1c. In fact, this model specifically focuses on the compatibility of 
FEFET-based circuits with efficient design and analysis. This SPICE model is described 
using the time-dependent Landau–Khalatnikov equation [15] as follows: 𝐸 𝜌𝑑𝑃𝑑𝑡 = 𝛼𝑃 + 𝛽𝑃 + 𝛾𝑃  (1)
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device. Further, by setting QP, TFE, and AFE as the polarization charge stored in the FeRAM, 

Figure 1. (a) Cross-sectional TEM image of the single Hf0.5Zr0.5O2-based FeCAP device; the inset
shows the BEOL process of the FeCAP device; (b) measured and simulated polarization–voltage
curve with different voltages of ±1.5 V, ±2 V, ±2.5 V, and ±3 V; (c) SPICE model of the FeRAM.

In order to make the subsequent circuit design of MLC FeRAM, stimulation was nec-
essary to ensure a good fit with the experimental P–V curve, thus ensuring the simulation
result was compatible with the performance of real devices. To simulate the electrical
characteristics of our MLC FeRAM, we utilized the physics-based circuit-compatible SPICE
model based on the single-domain approximation, referring to the literature by Aziz
et al. [14], as shown in Figure 1c. In fact, this model specifically focuses on the compatibility
of FEFET-based circuits with efficient design and analysis. This SPICE model is described
using the time-dependent Landau–Khalatnikov equation [15] as follows:

E− ρdP
dt

= αP + βP3 + γP5 (1)

where ρ is the kinetic coefficient; α, β, and γ are the static parameters of the ferroelectric
layer; P is the FeRAM remanent polarization; and E is the applied voltage on the FeRAM
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device. Further, by setting QP, TFE, and AFE as the polarization charge stored in the
FeRAM, the thickness, and the area of the FeRAM device, respectively, the time-dependent
Landau–Khalatnikov equation can be described as follows:

VFE = VRLK + VCLK =

(
ρ

TFE
AFE

dQP
dt

)
+

[
TFE

(
αQP
AFE

+
βQP

3

A3
FE

+
γQP

5

A5
FE

)]
(2)

FeRAM is modeled as a nonlinear capacitor (CLK) that is connected in series with
a resistor (RLK = ρ × TFE/AFE), in which the nonlinear capacitor is simplified to the
polynomial voltage-controlled voltage source (PVCVS). As the current flows through
RLK and PVCVS, the current is captured through the current-controlled current source
(CCCS). Then, the Ci of 1 F is charged by the current of CCCS, while the voltage across
the CCCS is equal to the QP in FeRAM. Therefore, the dashed block diagram implements
the formula (TFE × (αQP/AFE + βQ3

P/A3
FE + γQ5

P/A5
FE)). Finally, the voltage drop

of FeRAM is equal to the sum of the voltage drop of the nonlinear capacitor CLK and
resistor RLK, which implements the Landau–Khalatnikov equation. The P–V curve can
be simulated by calculating the remanent polarization P = QP/AFE and monitoring the
applied voltage VFE on FeRAM. Table 1 summarizes the parameters used in this model
for MLC FeRAM, in which CFE is the parasitic parameter of FeRAM. By adjusting the
values of PVCVS (α, β, γ) and the parasitic parameter, the P–V hysteresis curves of the
MLC FeRAM device were simulated under different sweep voltages of ±1.5 V, ±2.0 V,
±2.5 V, and ±3.0 V, respectively. As shown in Figure 1b, the simulated P–V curves of this
model can fit well with the experimentally measured data of the FeRAM device, which
also ensures its feasibility in the subsequent circuit design. This model will be used for the
design and simulation of a 3TnC MLC FeRAM macro circuit, as discussed in later sections.

Table 1. The spice model parameters of MLC FeRAM.

Model Parameter α (m/F) β (m5/F/C2) γ (m9/F/C4) RLK (Ω) CFE (F)

±1.5 V simulation −2.25 × 1013 3.06 × 1039 2.3 × 1065 1.0 M 1.0 f
±2 V simulation −2.25 × 1013 2.06 × 1039 8.2 × 1064 0.9 M 1.0 f
±2.5 V simulation −2.24 × 1013 1.62 × 1039 2.6 × 1064 0.8 M 0.9 f
±3 V simulation −2.23 × 1013 1.02 × 1039 1.9 × 1064 0.75 M 0.85 f

3. Circuit Structure and Operation of 3TnC MLC FeRAM Macro

Figure 2 shows the circuit structure of our 4 Mb 3TnC MLC FeRAM macro, which
comprises one 4 Mb bank and the peripheral circuit. The 4 Mb bank consists of eight
512 Kb split banks, while each split bank contains 256 word-lines (WL) or plate-lines (PL)
and 2048 bit-lines (BL). Herein, one split bank includes four 128 Kb segments, where each
segment contains 256 WLs or PLs and 512 BLs. Further, one segment includes sixteen 8 Kb
blocks, where each block contains 256 WLs or PLs and 32 BLs and 32 3TnC arrays. The
3TnC means that there is one pass transistor QPA, one reset transistor QR, one pass transistor
QPA, and one MLC FeCAP in a minimum memory unit. Therein, a reset transistor QR and a
readout transistor QG, as a common read/write circuit, are shared by 256 memory units
in one array. Meanwhile, the pass transistor QPA only has the switch function. Therefore,
the 3TnC also means there are three types of transistors (QR, QG and QPA) and 256 FeCAPs
in one memory array. In the peripheral circuit, one 1/32 column mux corresponds to one
block, while one split bank corresponds to a 16 × 4 column mux. Similarly, one split bank
includes 16 × 4 sense amplifiers. The row driver and decoder are used to address and
decode. The local timing control circuit can drive the pulse sequence of the write operation
and nondestructive readout. Finally, by selecting one of eight split banks and four segments,
the output of 16 bits is obtained for the MLC FeRAM macro.
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Figure 2. The 3TnC MLC array and peripheral circuit.

To expand the reading margin between adjacent storage levels in MLC FeRAM, we
used a nondestructive readout scheme. In the traditional 1T1C array, the destructive
readout scheme usually adopts the operation mode of power supply voltage VDD to read
out and write back. In comparison, the use of VRD (less than the coercive field voltage) in
our nondestructive readout scheme did not destroy the residual polarization between the
adjacent levels of MLC FeRAM, thereby avoiding the misreading of the stored data between
adjacent levels. This scheme is beneficial for improving the read reliability characteristics
of MLC FeRAM [16].

An operation sequence for the nondestructive readout scheme is given according to
Figure 3. Firstly, in the writing phase, a pass transistor QPA and a reset transistor QR turn
on, which corresponds to the WL and the reset line (RL) turning on. Then, either the PL
is applied with the write pulse VWR for the data “111”, or the source line is applied with
the write pulse for the data “000”. Secondly, during the reset phase, a pass transistor QPA
turns off and a reset transistor QR turns on, which corresponds to the WL turning off and
the RL turning on. This step leads to removing the residual charge on the floating gate QG.
Finally, in the readout phase, a pass transistor QPA turns on and a reset transistor QR turns
off, which means the WL is turned on and the RL is turned off. By applying the voltage
VRD (less than the coercive field voltage) to the PL, the FeRAM-stored data are read out
to the BL through the readout transistor QG. In the last step, since the readout scheme is
nondestructive, the readout transistor QG, as a gain cell, can expand the reading margin
of FeRAM [17]. Therein, the sense margin can reach approximately 450 mV between two
adjacent storage levels. This large sense margin can meet the requirement for distinguishing
the eight different states from the “000” state to the “111” state for MLC FeRAM.

Figure 4 shows the overall pulse sequence diagram of the write–verify scheme. Due to
the different residual polarization states of MLC FeRAM obtained by applying different
voltages, the pulse sequence mode should be 2′b01 or 2′b11. However, to ensure the
correctness of the written data for MLC FeRAM, the verify operation is added after the
write operation, that is, the readout operation. If the read data are the same as the estimated
data, which means the verification is correct, the pulse sequence continues to write the next
adjacent storage level of the MLC FeRAM. If the verification is wrong, the pulse sequence
mode enters 2b′00 or 2b′10 until the verification is correct. It should be emphasized that
the polarization reversal of the ferroelectric domains is a relaxation phenomenon. Thus,
the overall pulse sequence of different pulse widths is required to adjust the effectiveness
of the written data for MLC FeRAM.
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Owing to the ideal electrical characteristics of the SPICE model of FeRAM, we adopt
the 2′b01 mode to simulate the distribution condition of the readout voltage for each storage
unit level of the MLC FeRAM. After 10 k Monte-Carlo simulations in the 16 Kb MLC array,
each storage cell level can be effectively distinguished without the overlapping of the
readout voltage distribution, as shown in Figure 5. At the same time, it can be seen that
there is a nearly 450 mV reading margin between each storage unit level of MLC FeRAM.
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4. Capacitorless Offset-Canceled Sense Amplifier

Due to the fluctuation of the CMOS process, there is usually a mismatch phenomenon
in the readout transistor QG of the 3TnC cell array and the readout circuit SA, resulting in a
large input offset. To improve the reliability of the readout stored data between adjacent
storage levels in MLC FeRAM, we propose a capacitorless offset-canceled SA to minimize
the mismatch of SA and readout transistor. Meanwhile, compared with the single-capacitor
offset-canceled SA [18], the capacitorless offset-canceled SA uses the parasitic capacitor of a
transistor to replace the original single metal/insulator/metal (MIM) capacitor, thus saving
the area of whole chip.

The minimization mismatch principle of capacitorless offset-canceled SA is explained
below. Firstly, in the offset cancellation phase, the outputs of inverters are connected to
their inputs in Figure 6a, which correspondingly close the switches of “pset_n”, “nset”, and
“S1” in Figure 6b. The parasitic capacitor of transistor Q collects the trip voltage of inverters,
leading to the formation of two voltages of VL and VR at the two sides of transistor Q.
Secondly, in the precharge phase, one side of the parasitic capacitor of transistor Q is
connected to the ground, which correspondingly closes the switches of “S2R” and “S1B”,
while keeping the other switches open. Therefore, the other side of the parasitic capacitor
of transistor Q obtains the voltage VR − VL, which is the difference between the two trip
voltages of VL and VR. In the BL sampling phase, the switches of “S3R” and “S1B” are
closed, while the other switches are open. The different reference voltage Vref is added
to the voltage VR − VL for different storage levels of MLC FeRAM, which compensates
for the mismatch of the two side inverters, thus canceling out the offset of the SA. Finally,
in the evaluation phase, the switches of “pset_n”, “nset”, and “S1B” are closed, while
the other switches are open. The SA can be quickly sensed thanks to the canceling out
of this offset. Under the conditions of a TT process corner, 3.3 V, and 25 ◦C, Figure 6b
shows the simulation result of the output waveforms of “BL<0>” and “BL<1>” in the SA.
Herein, it is noted that the offset cancellation and precharge phases can be run concurrently
with the reset operation of the 3TnC array, thus avoiding any timing penalty for the
proposed method.
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Figure 7 shows the relationship between the input offset voltage and transistor size for
both the proposed SA (capacitorless SA) and the conventional SA (conv. SA). Generally, the
mismatch of transistors in the SA minimizes with the increment in its size, which means
the input offset of all transistors of the SA also reduces accordingly. Importantly, after 10 k
Monte-Carlo simulations, compared to the conv. SA, the standard deviation of the input
offset can be reduced on average by nearly 45% in the proposed SA due to its minimization
mismatch principle. Meanwhile, compared to the single MIM-capacitor SA with the same
offset voltage and CMOS process, the area of capacitorless SA can be decreased by 35%.
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5. The Layout of 4 Mb 3TnC MLC FeRAM and a Comparison with Other
Memory Works

Figure 8 shows the layout of 4 Mb 3TnC MLC FeRAM, with an area of 3052 × 4306 µm2,
consisting of the 3TnC cell array, the capacitorless SA, and the other peripheral circuits. The
inset shows the layout of the single 3T1C cell array. “AA” and “GATE” mean the active area
and gate electrode of transistor. Table 2 illustrates the performance comparison of our work
with other memory works. The proposed 3TnC MLC FeRAM macro has the advantages of
the high area efficiency of 12F2 for each bit, a large sense margin of 450 mV between each
level of storage data, and a low offset of 20 mV, which are all beneficial for high-density
storage applications. Both the read and write time of the cell are 100 ns, while the max
power consumption is 48.4 µW for a read and a write operation. Here, it should be noted
that the influence of temperature on FeRAM is relatively small, as reported in reference [19];
the variation in the readout voltage of FeRAM is about 50 mV; and the readout margin of
adjacent polarized states of our FeRAM with 3TnC architecture is 450 mV. Therefore, our
3TnC MLC FeRAM chip has good stability.
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Table 2. The performance compared to other memory works.

This Work Ref [8] Ref [9] Ref [19]

Cell structure 3TnC 2TnC 1T1C 1T1C
Technology 130 nm 130 nm 130 nm 130 nm

Multi-level cell Yes Yes No No
Area (F2/bit) 12 51 36 36

SA offset 20 mV N/A 45 mV 18.1 mV
Max sense margin 450 mV 300 mV 270 mV 200 mV

Read time 100 ns 15 µs 150 ns 5 ns
Write time 100 ns 15 µs 150 ns 7 ns

Power consumption 48.4 µW 18 µW N/A N/A

6. Conclusions

In this work, a novel 3TnC MLC Hf0.5Zr0.5O2-based FeRAM with a high area efficiency
of 12F2 for each bit is proposed for high-density storage application. Eight polarization
states (three bits) can be obtained in one MLC FeRAM. The corresponding timing operation
using a nondestructive readout is verified via simulation based on the GSMC 130 nm
CMOS process. Meanwhile, the readout circuit SA has a low offset of 20 mV and a
large sense margin of 450 mV to improve the reliability of the reading of the stored data
between each level of the MLC FeRAM. These advantages of 3TnC MLC FeRAM using
nondestructive readout and capacitorless SA ensure its potential for future high-density
storage applications.
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