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Abstract: This work proposes a method for surface wave (SW) coupling along with flexible complex
amplitude modulation of its wavefront. The linearly polarized incident plane wave is coupled into
the surface mode with complex wavefront by exploiting the spin-decouple nature of a reflective chiral
meta-atom. As verification, two kinds of metasurface couplers are designed. The first kind contains
two examples for SW airy beam generation with and without deflection under linearly polarized
illumination, respectively. The second kind is a bi-functional device capable of SW focusing under
left-handed circularly polarized illumination, and propagating wave deflection under right-handed
circularly polarized illumination, respectively, to verify the fundamental spin-decoupled character.
Simulated and experimental results are in good agreement. We believe that this method provides
a flexible approach for complex SW applications in integrated optics, optical sensing, and other
related fields.

Keywords: surface wave; metasurface; spin-decouple

1. Introduction

As a special bounded eigenmode at the metal/dielectric interface, surface wave
(SW) [1] has been attracting a lot of attention due to its potential in the frontiers of photon-
ics [2–6]. The coupling of the propagating wave (PW) to the SW with a tailored wavefront
is crucial for various applications, in which the independent control of the amplitude and
phase of the generated SW remains challenging.

Metasurface [7] is one of the most popular platforms for SW coupling and modulation,
benefiting from its excellent amplitude and phase control ability on a subwavelength scale.
The phase-gradient-metasurface (PGM) [8] has been proposed to realize the PW-to-SW con-
version with high efficiency by constructing an artificial transverse phase gradient [8–10].
To further introduce the abrupt phase or amplitude shift to the generated SW, other ap-
proaches have been explored by altering the initial phase of the PGM [11,12] or utilizing the
polarization-dependent coupling efficiency of the inclusions [13–17], respectively. Recently,
a novel approach is proposed to realize the arbitrary complex wavefront manipulation of
the SW utilizing a stand-along transmissive meta-coupler [18], which can independently
control the amplitude and phase of the transmission field of a particular polarization.
However, the separate design makes it relatively sensitive to dimensional deviations and
is relatively high-profile. A compact meta-device that is capable of independent control
of the amplitude and phase of SW is still in great need in complicated and integrated
application scenarios.

In this work, a meta-device design method based on reflective metallic Fermat Spirals is
proposed to address the aforementioned issue. Based on the theory of Aharonov-Anandan
(AA) geometric phase and the Pancharatnam-Berry (PB) [19–21] geometric phase, the
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monolithic meta-device demonstrates the high-efficient SW coupling and phase modula-
tion capability under left-handed circularly polarized (LCP) and right-handed circularly
polarized (RCP) illumination by simply altering the orientation angle of the starting point
and the overall structure of each spiral, respectively. Furthermore, independent control of
the amplitude and phase of the coupled SW can also be realized under linear polarization il-
lumination, which benefits from the spin-decouple nature of the inclusions. Concerning the
existing methods, our approach enables the simultaneous coupling and arbitrary complex
amplitude controlling of the SW within a monolithic compact meta-device. On the other
hand, benefiting from the nature of the AA phase and PB phase, only two orientation angles
are needed for the design process, which avoids the time-consuming multi-dimensional
parameter searching process. Two kinds of metasurface couplers are numerically and
experimentally characterized for verification. The first device of the first kind is for nor-
mal SW airy beam generation with finite energy under linear polarization illumination,
the second device of the first kind is capable of SW finite-energy airy beam generation
with beam deflection of 10◦ under linear polarization illumination, and the second kind
of metasurface coupler is designed for bi-function SW and PW manipulation under the
respective illumination of distinct spins. The outcomes provide a new approach for the
high-performance SW photonics devices design in different frequency regimes ranging
from microwave to optical frequency.

2. Concept and Meta-Atom Design

The PGM is an important approach for PW-to-SW conversion by constructing the
proper momentum matching [8]. Based on PGM, phase control of the SW wavefront
can be further achieved by altering the initial phase of the supercells [11,12]. Following
this approach, a polarization-delinked bi-functional meta-device is proposed utilizing
the polarization decouple meta-atoms [11]. To achieve the amplitude modulation of the
SW, dimensions of the nano-slits including the size and orientation angle are exploited to
achieve a continuous amplitude response for specific reflectance components [22].

In this work, we further realize the full-range independent amplitude and phase
control over the SW under linear polarized illumination based on a spin-decoupled meta-
atom that follows the AA phase mechanism. The concept of this work is shown in Figure 1.
Under linear polarized illumination, the full range amplitude covering [0, 1] and full range
phase covering [0, 2π) of the coupled SW wavefront can be achieved by a reasonable
combination of the starting point polar angles and the angles of the overall metallic Fermat
Spirals that constitute the meta-device. Thus, a finite-energy airy beam with a deflection
angle of 10◦ is generated on the interface of the waveguide and the air, as shown in Figure 1b.
For the circularly polarized illumination cases, following the spin-decouple nature of the
meta-atoms, independent phase gradients for the LCP and RCP incidence components
are respectively assigned by altering the aforementioned two degree of freedom (DOF).
For the LCP incidence case, the combined phase gradients along the x and y axis result in
the coupling of the PW to the SW with a focused wavefront, while for the RCP incidence
case, the corresponding phase gradient forces the PW illumination to reflect back to the
upper free space with a designed angle instead of being converted to the SW as shown in
Figure 1a, which is dominated by the phase gradient of the meta-coupler along the x-axis.

The spin-decoupled metasurface [23–28] is one of the current research foci in multi-
channel encryption display [29–31], multi-functional metaplate [32], and vortex modes
detection [33], etc. It is commonly implemented by combining the PB phase with the
propagation phase or detour phase. These approaches usually depend on multi-DOFs
optimization, including the physical dimensions and orientation angles of the individual
meta-atom, or even the relative position between neighboring elements in the array. Al-
though the emergence of deep learning techniques [34–36] demonstrates great potential in
various fields, including metasurface, even complex-amplitude modulation and demod-
ulation, the multi-DOFs optimization procedure requires a lot of computing resources
and is time-consuming for large-scale meta-device applications. On the other hand, chi-
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ral structures are exploited to achieve spin-decoupled full-range phase modulation by
combing the AA phase with the PB phase [28,37]. This approach works by simply altering
the polar angle of the starting and ending point of the chiral structures and achieves a
spin-decouple property at the meta-atom level, which makes it much more compact for
miniaturization and integration of the meta-devices. Furthermore, as only two angular
DOFs are needed, the design processes for large-scale and complicated meta-devices get
simplified by avoiding the time-consuming parameter searching process.Micromachines 2023, 14, x FOR PEER REVIEW 3 of 12 
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beam. 
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boundary conditions is shown in Figure 2b. The parameters are adopted as the period p = 
8.5, the thickness of the spacer h = 2 mm, the thickness of the copper layer t = 0.018 mm, 
the spiral line width w = 0.2 mm, and the scaling factor a = 1. The calculation of the unit 
cells and the following meta-devices in this work are all implemented with the commer-
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Figure 1. Schematic of complex-amplitude modulation of surface waves. (a) Demonstration of the
spin-decouple phase control nature of the Fermat spiral structure. Distinct behaviors for different
polarization states are encoded into the same device, in which the RCP-polarized incident wave
is deflected back to the space with a specially designed angle, while the LCP-polarized incident
wave is coupled to the surface mode of the dielectric waveguide. (b) Advanced complex amplitude
modulation ability of the coupled surface wave that is used to generate the finite-energy airy beam
with a main lobe deflection angle of 10◦. The blue dashed line indicates the main lobe trace of the
airy beam.

The meta-atom is shown in Figure 2a, which consists of two metallic layers of thickness
t and a dielectric spacer (F4B, εr = 2.65, tg = 0.0017) of thickness h. The bottom metallic layer
is a continuous copper film as the reflective backboard. The upper layer consists of two
centrosymmetric Fermat Spirals of line width w, saying that the gray one is constructed by
rotating the yellow one by 180◦ around the original point. Here we take the yellow one as
an example, the trace of which follows Fermat’s spiral equation

r = aθ1/2. (1)
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where eif(α) represents the LCP co-polarization reflection phase factor that is determined 
by the polar angle of the starting point of the Fermat Spiral, and eiσ2β (σ = ±1 for RCP and 

Figure 2. (a) Schematic of the meta-atom structure; (b) Calculated reflectance spectra of the meta-atom
with parameters of (α, β) = (10◦, 0◦) under circular polarization basis; Calculated reflection phase
of the (c) LCP-to-LCP component and (d) the RCP-to-RCP component versus the polar angle α of
the starting point and the overall orientation angle β; Calculated (e) amplitude and (f) phase of the
Y-to-X reflection component versus α and β.
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The polar coordinates (r, θ) are defined as shown in Figure 2a and a represents the
scaling factor of the radius. The polar angle of the starting point P1 and ending point P2 are
θ1 = α and θ2 = 810◦, respectively. Besides, an additional in-plane rotation angle β around
the original point is applied to the overall spiral. First of all, for the structure parameter of
an unrotated state, (α, β) = (10◦, 0◦), the calculated reflectance under periodical boundary
conditions is shown in Figure 2b. The parameters are adopted as the period p = 8.5, the
thickness of the spacer h = 2 mm, the thickness of the copper layer t = 0.018 mm, the
spiral line width w = 0.2 mm, and the scaling factor a = 1. The calculation of the unit cells
and the following meta-devices in this work are all implemented with the commercial
software Eastwave (version 7.0) [38]. In the meta-atom calculation, the periodic boundary
conditions for the x and y directions, the PML boundary condition for the +z direction, and
the PEC boundary condition for the −z direction is applied. To ensure the convergence
and accuracy of the calculation, the meshgrid density is set up to 20 lines per wavelength.
The waveguide port is used to analyze the scattering behaviors of the orthogonal linear or
circular polarization states. As we can see, the co-polarization reflectance of greater than
98% in 8.5~9.5 GHz is realized for both LCP and RCP incidence. For the center frequency
of about 9 GHz, the co-polarization reflection phases are further analyzed in the parameter
space of α ∈ [0, 360◦] and β ∈ [0, 180◦), as shown in Figure 2c,d. It is obvious that the
co-polarization reflection phase for the RCP incidence case responds only to the overall
orientation angle β, which follows the PB phase modulation scheme. On the other hand, it
does not change with respect to the polar angle α of the starting point P1; while, for the LCP
incidence case, the co-polarization reflection phase shows both the PB phase dependence
that is related to the overall orientation angle β, and the AA phase dependence resulting
from the change of the polar angle of the spiral’s starting point. Basically speaking, the full-
range co-polarization reflection phase control abilities for both the LCP and RCP incident
waves are realized by combing the PB phase and AA phase mechanisms, noting that the
accompanying reflectance is larger than 89% in the frequency band of interest.

According to the calculated reflection properties, the reflection Jones calculus of
the meta-atom under circular polarization basis in the frequency band of interest can be
expressed as

Mcirc =

(
RLL RLR
RRL RRR

)
=

(
ei[ f (α)−2β] 0

0 ei2β

)
, (2)

where eif(α) represents the LCP co-polarization reflection phase factor that is determined by
the polar angle of the starting point of the Fermat Spiral, and eiσ2β (σ = ±1 for RCP and
LCP incidence, respectively) shows the PB phase factor introduced by the overall rotation
of the structure. Equation (2) can be rewritten as

Mcirc = eiϕ
(

e−2iφ 0
0 e2iφ

)
. (3)

ϕ = f (α)/2, φ = β − f (α)/4 are two independent variables that are related to α and β.
Through basis transformation, the Jones calculus under linear polarization basis can be
derived as

Mlin =

(
RXX RXY
RYX RYY

)
= eiϕ

(
cos2φ sin2φ
sin2φ −cos2φ

)
= eiϕR(−φ)

(
1 0
0 −1

)
R(φ),

(4)

where R(φ) =

(
cosφ sinφ
−sinφ cosφ

)
denotes the rotation matrix. The last three factors in

Equation (4) describe an idle half-wave plate with its optical axis rotated by φ, while the
first factor shows a global phase factor for all the reflection components. It is clear that,
for all the elements in Mlin, the parameter φ results in full-range amplitude modulation
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with an accompanying phase of 0 or π, while the parameter ϕ brings the independent
full-range phase modulation. This is possibly explained by the nature of the physics system
that is described by Equation (4); that is, as an ideal half-wave plate rotated by φ, the
optical element totally reflects the incident linear polarized incident wave and changes its
polarization direction by 2φ, hence resulting in the amplitude modulation of the observed
projection component in the x or y direction. Meanwhile, the isotropic propagation phase
introduced by ϕ for all the reflection components mimics an offset reference plane from the
surface of the equivalent optical element.

Now briefly speaking, multiple amplitude and phase modulation functions emerge
based on the proposed metallic spiral structure by properly tuning two DOFs of the starting
point polar angle α ∈ [0, 360◦] and the overall orientation angle β ∈ [0, 180◦). Firstly, the
full-range co-polarization reflection phase control can be independently realized for the
LCP and RCP incidence cases. Secondly, for both the co-polarization and cross-polarization
reflection components of linear polarization incidence cases, full-range reflection amplitude
control covering [0, 1] and full range reflection phase control covering [0, 360◦) can be
realized independently, which is vital for the complex wavefront tailoring in both PW and
SW applications.

3. Meta-Device Design
3.1. Supercell Analysis

With our meta-atoms’ reflection amplitude and phase control properties fully revealed,
we now use them to demonstrate two kinds of metasurface coupler with polarization-
dependent SW modulation functionalities. The first kind of metasurface coupler, including
two examples with different functions, is designed for advanced SW coupling together
with independent amplitude and phase control of the SW wavefront in the microwave
regime. The second kind of metasurface coupler is designed for demonstration of the
fundamental spin-decouple nature and its bi-functional wavefront tailoring ability. As
we know, the surface plasmon polaritons cannot be excited in this regime, so we adopt
the guided SWs that are supported in a dielectric waveguide. As shown in Figure 3a,
the metallic-backed dielectric waveguide has a thickness of 2 mm in the z direction, the
same as the meta-atom spacer. Considering the center frequency 9 GHz of the meta-atoms,
the wave vector of SW mode can be calculated following the dielectric waveguide theory,
which results to be kSW = 1.0296k0 with k0 being the wave vector in free space. Following
the supercell approach [8], we construct the momentum matching by introducing the
phase gradient at the supercell level. As aforementioned, by altering the initial phase of
the leftmost element of the supercell or uniformly tuning the reflectance, supercells with
different complex amplitudes can be constructed. By consecutively arranging a number of
such supercells side by side, the specific aperture distribution can be realized. Figure 3a
depicts the supercell configuration of this work. It consists of 12 unitcells along the x-axis,
the reflection phase distribution of which is adopted as ϕx to fulfill the phase gradient of
|∆ϕx/∆x| = kSW for the SW coupling. Hence, the phase difference needed for adjacent
unitcells can be calculated as around 94.6◦.

We first calculate and analyze the properties of the supercell. A y-polarized plane
wave source is set to generate a normal incident wave, which is coupled into the SW modes
to the dielectric waveguide by the supercell and then propagate rightwards along the
+x direction in Figure 3a. For the supercell calculation, the boundary conditions for the y
and z directions are the same as for the meta-atom calculation, while for the x directions the
PML are adopted. Besides, a planewave port is applied at the simulation boundary of the
+z direction and an electric field monitor that covers the entire simulation region is added
to record the three-dimensional vector electric field distribution information. The SWs are
characterized by sampling the Ez filed component at 1 mm above the dielectric waveguide
and 200 mm (~6 λSW) away from the right boundary of the coupler, as denoted by point Q
in Figure 3a.
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triangles in (d) represent the calculated phase values; (e) Continuous phase modulation and (c) the
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Firstly, for evaluating the amplitude modulation property, a supercell is
constructed by assigning the cross-polarization reflection coefficient distribution of
RXY = exp[−ikSW(nx − 1)p], where nx = 1, 2, 3, . . ., 12 denotes the index of the 12 meta-
atoms that constitute the supercell, noting that RXY indicates the perfect cross-polarization
conversion by assuming a unit reflection amplitude. Then, the parameters (αnx, βnx) of
each meta-atom in the supercell can be determined according to the relationship shown
in Figure 2e,f. Next, we keep the parameter αnx constant and synchronously rotate all the
meta-atoms in the supercell by an angle of ∆β to get a new supercell with parameters (αnx,
βnx + ∆β). After calculating one set of supercells for ∆β ∈ {−90◦: 5◦: 0}, the Ez components
at the sampling position Q are extracted. Figure 3b,d shows the SW intensity |Ez|2 (nor-
malized to the corresponding value when ∆β = 0) and phase arg(Ez), respectively. It is
clear that SW intensity varies regularly and shows great agreement with the |cos2∆β|2

relationship represented by the dashed line. At the same time, the SW phase remains near
constant in the left and right half intervals, respectively, noting that the phase inversion
occurs where the intensity vanishes, as is predicted in Equation (4).

On the other hand, for evaluating the amplitude modulation property, we construct
another set of supercells with the cross-polarization reflection coefficient of
RXY = exp{−i[kSW(nx − 1)p + ϕtarget]}, where ϕtarget ∈ {0: 30◦: 360◦} denotes the desired
phase of the coupled SW wavefront. By conducting the same operation as above-mentioned,
we get the calculated normalized intensity and phase of the SW at the sampling position
Q, as shown in Figure 3c,e. Notice that the calculated phase values agree very well with
the goals and the accompanying normalized amplitudes are basically above 0.8 even if
experiencing a certain amount of fluctuation. Thus, the results of the two sets of supercell
calculation verify the excellent independent SW amplitude and phase control ability of the
proposed meta-atom and supercells.

3.2. Meta-Device Design for Airy Beam Generation

Next, we use the aforementioned supercells to construct two metasurface couplers
of the first kind for SW airy beam generation with and without deflection, respectively.
As a paraxial self-accelerating and non-diffraction beam, airy beam [39] is promising in
imaging [40], particle manipulation [41], and light bullets [42,43]. Without losing generality,
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we focus on one-dimensional (1-D) SW airy beam deflection for proof of principle, while
the proposed meta-atom and supercell are ready for generating two-dimensional SW airy
beams. For 1-D finite energy airy beam that is normally lunched and propagates along the
x-axis in the xoy plane, the complex electric field distribution on its initial position can be
described as

U(y, 0) = A · Ai
(
(y− y0)

w

)
exp

(
α(y− y0)

w

)
, (5)

where A is the amplitude, Ai represents the Airy function, α is the decay factor, w is the
aperture scaling factor, and y0 is a reference coordinate for normalization. For devices that
generate airy beam with a normal lunch angle, only continuous amplitude modulation
in [0, 1] and two segments of 0 and π phase modulation are required [44], as depicted by
the solid lines in Figure 4a,b where the parameters are chosen to be A = 1, y0 = 12 mm,
w = 28.5 mm, α = 0.01. Therefore, in order to verify the full-range independent amplitude
and phase modulation property of the proposed structure, the second meta-device is
constructed with an additional linear phase gradient ky introduced to deflect the lobes of
the airy beam by 10◦ towards the +y direction, which is determined by ky = kSW·sin10◦. The
phase of the excitation field for the deflected airy beam is shown in Figure 4c, while the
amplitude is the same as that for the undeflected one shown in Figure 4a.
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Now, we can construct these meta-devices following the aforementioned supercell
design process. Each of the meta-devices consist of Ny = 51 supercells along the y direction,
so the total meta-atoms needed is Ny × Nx = 612. Following Equation (5), the cross-
polarization reflection amplitude RXY of each meta-atom of the device depends on its
y-coordinate, which is achieved by adding up the 0 or π phase and the linear gradient
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phase −kynyp, where ny = −25, −24, . . ., 0, . . ., 24, 25. Specifically, the latter term vanishes
for the case of norm launch of the airy beam. Besides, the cross-polarization reflection
amplitude RXY of each meta-atom keeps uniform in the x-direction, but with a linear
gradient phase −kSW(nx − 1)p for PW-to-SW coupling. Finally, the total phase can be
derived by summing the x and y components. After obtaining the total cross-polarization
reflection amplitude and phase of RXY, the structure parameters (αnx,ny, βnx,ny) of each
meta-atom can be derived following the aforementioned process.

In the full-wave simulation of the meta-devices, a plane wave source with y-polarization
is adopted. A near-field monitor is set to record the 3-D vector electromagnetic field over
the whole simulation region, from which the Ez component on the horizontal plane 1 mm
over the meta-device aperture is extracted. Here the boundary condition setup is the same
as the supercell calculation, except that the boundary conditions for the y direction is also
set as PML. The calculated SW airy beam field intensity with and without deflection at
9 GHz is depicted in Figure 4d,e, respectively, where the green dashed lines reveal their
main lobe traces, noting that the calculated and measured intensities in this work are
normalized to their corresponding global maximums. As is shown in Figure 4f,g, all results
agree well with the calculated ones, each illustrating a noticeable parabolic trajectory with or
without deflection angle, respectively, as depicted by the green dashed lines. These results
confirm the feasibility of the proposed design method of full-range complex amplitude
modulation over the coupled SW. It is worth noting that some stripes exist in the measured
Ez fields in Figure 4 and they are supposed to be mainly caused by the inevitable scattering
from the edges of the finite-sized samples, which form the standing waves in the measured
areas, while these interferences are too weak to destroy the main lobe propagation of the
airy beams.

The devices analyzed here and in the following section are manufactured using the
traditional printed circuit board (PCB) technique on F4B substrates (Taconic
TLT-6). The PCB technique is a mature process and can provide precise control of the
pattern shapes and layer alignment. The devices share the same overall dimensions of
Lx × Ly = 590 mm × 440 mm. The anechoic environment used for field measurement
is depicted in Figure 5g, where the horn antenna is adopted as the source with linear or
circular polarization that depends, and the probes are mounted on a translation stage
for a near-field scan with Keysight PNA-X 5242A Network Analyzer (Penang, Malaysia).
Specifically, a small monopole antenna is adopted for SW measurement, as shown by the
bottom right inset of Figure 5g, while a small helix antenna is used for RCP PW sampling,
as shown by the bottom left inset of Figure 5g. A global scanning step of 5 mm is adopted
for all the near-field sampling experiments in this paper. On the other hand, the far-field
measurement is also conducted in an anechoic chamber using the standard process, in
which the sample is placed on a sample stage that rotates by step of 1◦ with a bounded
horn antenna as the normal incident source. The fixed receiving horn antenna is placed
5 m away from the sample stage to record the reflected RCP signals from the sample.
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Figure 5. Spin-decoupled bi-functional meta-device design. (a) Phase distribution along the
y-direction for SW focusing; (c) Simulated and (e) measured SW focusing; (b) Phase distribution along
the x-direction for PW beam deflection; (d) Simulated and measured far-field PW beam deflection
results, where the blue arrow indicates the wavevector of the incident wave; (f) Simulated near-field
PW deflection results. The black arrows indicate the wavevector of the incident and deflected PWs,
respectively. The black circular arrows represent the polarization states of the incident and deflected
PWs, respectively. (g) Near field sampling experimental setups. Insets: (upper) photo of the spin-
decoupled bi-functional meta-device sample and the probes for (bottom left) PW near-field and
(bottom right) SW near-field sampling.

3.3. Polarization Delinked Wavefront Manipulation

In addition, to confirm and verify the spin-decoupled wavefront tailoring properties of
the proposed meta-atoms, we design another meta-device with spin-selective functions of
the SW focusing and PW deflection for LCP and RCP planewave illuminations, respectively.
The overall dimensions of this meta-device are the same as the above airy beam devices
and contain Nx × Ny = 12 × 51 meta-atoms.

Firstly, for the LCP illumination cases, the required complex-amplitude distributions
on the SW focusing metalens’ aperture can be expressed as

ϕLCP
f ocus(y) = ksw

(√
y2 + f 2 − f

)
, (6)

where y = nyp is the physical y-coordinate of the meta-atoms. In addition, the PW-to-SW
coupling phase along the x-axis is ϕLCP

couple = −kSW, where x = (nx − 1)p. Thus, the overall
phase distribution for LCP incidence turns out to be

ϕLCP = ϕLCP
f ocus + ϕLCP

couple. (7)

On the other hand, for the RCP incidence case, only a phase gradient along the x-axis
is needed to deflect the incident wave by an angle γ in the xoz plane,

ϕRCP = k//x, (8)

where k// = k0 sinγ. For γ = 20◦and f = 300 mm, structure parameters of all the meta-atoms
can be uniquely determined based on ϕLCP and ϕRCP through the interpolation process.
That is, for meta-atom (nx,ny), its overall orientation angle βnx,ny is firstly interpolated in
Figure 2c to acquire the specific value of ϕRCP

nx,ny, and the polar angle of the starting point
αnx,ny of the Fermat Spiral is next determined in Figure 2d to meet the specific value of
ϕLCP

nx,ny. All the meta-atoms in the Nx × Ny array can be uniquely determined following
this approach. In Figure 5a, the red stars depict the phases of the leftmost column of
the meta-atoms array extracted from Figure 2a,b based on the parameters (αnx,ny, βnx,ny),
whereas the black solid line illustrates the theoretical phase distribution for SW focusing
with the focus length of f = 300 mm. Similarly, the blue triangles in Figure 5b represents
the sampled phases of the elements along the x-direction for PW deflection by 20◦, and
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the black solid line represents the corresponding theoretical values. It can be seen that the
phase interpolation results obtained by the above process are in good agreement with the
target values.

The SW focusing performance is simulated under LCP planewave illumination on
the meta-device aperture. The calculated focal length shown in Figure 5c is located at
around x = 298 mm, which is quite close to the design value of 300 mm. On the other
hand, for the RCP incidence case, the calculated far-field pattern of PW beam deflection
is shown by the black solid line in Figure 5d. The main lobe clearly points to about 20◦,
which is consistent with the design target. This spin-dependent bifunctional meta-device is
also manufactured with the PCB technique and experimentally measured in an anechoic
chamber. The measured results under RCP and LCP illumination are depicted in Figure 5e
and the red points in Figure 5f, respectively. The measured data also agree well with the
calculated results. In addition, to fully reveal PW beam deflection performances, we also
measure the near-field distribution of the co-polarization reflection component. As depicted
in Figure 5f, the reflected wavefront basically propagates along the black arrow indicating
the designed deflection direction, thus verifying the performance of the meta-device. It is
worth mentioning that the measured reflection near-field demonstrates a slightly irregular
wavefront. This is believed to be attributed to the weak scattering from the left edge of the
sample, which can also be distinguished in the far-field results in Figure 5d, where a small
depression appears at about 10◦. However, this undesired character does not evidently
affect main lobe propagation, and can be suppressed by expanding the distance between
the coupling area and the left edge of the sample.

4. Conclusions

To summarize, we have presented a metasurface coupler design method for coupling
PWs into SWs with a full range of complex-amplitude wavefront modulation. By combin-
ing the AA phase and PB phase through altering the two orientation angles of the Fermat
Spiral meta-atom, an arbitrary combination of amplitude and phase can be achieved for
the linear polarized illumination case. For verification, two SW airy beam generators
respectively for norm launch and 10◦ beam deflection are fabricated and characterized
in a microwave regime. The fundamental spin-selective character is also verified with
another spin-decoupled bi-functional device. The geometric-phase-based concept signifi-
cantly reduced design complexity and also provides a compact approach for flexible SW
manipulation in integrated optics, optical sensing, and other related fields ranging from
microwave to terahertz and optical regimes.
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