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Abstract: In this paper, we propose an alternative road to calculate the transport coefficients of fluids
and the slip length inside nano-conduits in a Poiseuille-like geometry. These are all computationally
demanding properties that depend on dynamic, thermal, and geometrical characteristics of the
implied fluid and the wall material. By introducing the genetic programming-based method of
symbolic regression, we are able to derive interpretable data-based mathematical expressions based
on previous molecular dynamics simulation data. Emphasis is placed on the physical interpretability
of the symbolic expressions. The outcome is a set of mathematical equations, with reduced complexity
and increased accuracy, that adhere to existing domain knowledge and can be exploited in fluid
property interpolation and extrapolation, bypassing timely simulations when possible.

Keywords: nanochannels; molecular dynamics; diffusion coefficient; shear viscosity; thermal conductivity;
slip length

1. Introduction

The utilization of machine learning (ML) techniques in current physics and engineering
problems is anticipated to expand across all fields that involve numerical data. The idea of
creating new knowledge via predictions based on historical simulation or experimental
data is recently trending. Modern computational approaches try to bind techniques with
traditional frameworks, taking advantage of their adaptability and ability to provide
faster and, oftentimes, accurate predictions in scientific and technological applications. To
mention a few, ML-assisted frameworks have been incorporated for atomic-scale force
field extraction [1], fluid flow estimation [2], materials science [3–5], construction [6,7],
energy [8,9], and chemical industry applications [10–12].

A major challenge that drives the evolution of new and existing ML algorithms is the
transparency of the methods employed and interpretability of the results. Towards this
perspective, symbolic regression (SR) methods have emerged. Symbolic regression is an
ML method that derives mathematical equations in closed form based on available data
using Genetic Programming (GP) principles, without prior knowledge of the system under
investigation. A pool of candidate equations is stochastically extracted through crossover
and mutation operations [13] and the user has to select those that best fit the physical
problem. Unlike black-box models, SR allows us to uncover the underlying mechanisms of
the studied system, clarify ambiguous relationships between variables, and provide a more
physical understanding [14].

In such data-driven approaches, the main factor that determines the performance of
each model is based upon the quality and quantity of the input dataset. Keeping in mind
that oftentimes experimental measurements are hard to obtain, the common data acquisition
method is the utilization of simulation or synthetic data to train an ML model. Since the
presence of walls within nano-conduits significantly affects the system, continuum theory
is not applicable, and the calculation of transport coefficients becomes ambiguous, making
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equilibrium methods insufficient [15]. The macroscale approach to fluid dynamics is mainly
based on the Navier–Stokes (NS) equations. However, the fundamental hypothesis of the
no-slip condition fails to anticipate phenomena occurring at the micro- and nano-scale [16].

In bulk systems, static and dynamic property calculation is carried out at the micro-
and nano- scale with relations usually coming from statistical mechanics. In nano- and
macro-devices, confinement between solid surfaces, the implied boundary conditions,
as well as the interaction between fluid and wall atoms lead to fundamentally different
mechanics of their mass and energy transport [17], affect fluid properties [18], and make
their estimation harder [19]. Molecular dynamics (MD) simulations seem to be the most
prominent solution for their investigation, which involves calculating particle positions
under a given potential, incorporating Newton’s second law [20–24]. This characteristic
allows the calculation of transport phenomena accurately via equilibrium MD (EMD) and
non-equilibrium MD (NEMD) frameworks.

Due to the complex nature of the investigated system, e.g., geometrical discontinu-
ities, molecule adsorption on walls, or even the extension of the wall force field inside
neighboring fluid layers [25], EMD approaches are less applicable and NEMD has to be
employed [26]. Nevertheless, both in EMD and NEMD, the calculation of the diffusion coef-
ficient, shear viscosity, and thermal conductivity requires complex relationships, such as the
Green–Kubo (GK) equations, which are computationally intensive and rely on expensive
experimental procedures [27]. This complex nanochannel environment is further amplified
by the breakdown of the no-slip condition [19], which gives rise to a fluid/surface property
known as the slip length [28,29]. This has an impact on material surface properties and
the rate of mass flow. Specifically, surfaces that have been engineered to achieve specific
properties can generate desirable slip lengths to control flow rates in various applications.

In this paper, we propose an alternative approach that relies on data derived from MD
simulations. In the sections that follow, we discuss conventional computational approaches,
present MD simulation details, and argue for SR applicability (Section 2). Furthermore, we
present the generated analytical expressions and compare their accuracy characteristics
(Section 3), dive deep into the physics hidden behind the obtained mathematical operators
(Section 4), and lastly, propose directions for further research that could be incorporated in
designing micro-devices at small scales (Section 5).

2. Computational Methods

Next, we present all theoretical relations and parameters employed in the simulation
model, as well as the SR techniques and methods incorporated to harness the dataset.

2.1. Mathematical Relations
2.1.1. Particle Interaction Potentials

A well-established particle interaction potential for MD simulations is the Lennard–
Jones 12-6 (LJ) potential, uLJ

rij , defined between the i and j particles as [30]

uLJ
rij =

 4ε

[(
σ
rij

)12
−
(

σ
rij

)6
]

, rij < rc

0, rij ≥ rc > σ
(1)

where rij denotes the i and j particle distance, ε and σ are model energy and size parameters,
respectively, and rc is the cutoff radius. The LJ potential is capable of modeling bulk or
multi-particle systems and ε and σ parameters are computed accordingly (see Ref. [31] for
more details). In nanochannel flows, where fluid particles coexist with solid, wall particles,
the wall may be considered either as static or as an array of particles that fluctuate around
their equilibrium positions by applying an elastic spring potential [32],

uwall
(∣∣r(t)− req

∣∣) = 1
2

K
(∣∣r(t)− req

∣∣)2, (2)
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where r(t) refers to the particle’s position at time t, req is its initial lattice position, and K is
the spring constant, with a high value of K denoting a rigid wall.

In the case of polar liquids, coulombic long-range interactions must also be taken into
account, with the electric potential being [32]

E =
Cqiqj

er
r < rc . (3)

Here, qi and qj are atoms’ charges, C is the energy conversion constant, and e is the
dielectric constant.

2.1.2. Transport Properties

The self-diffusion coefficient (D) can be calculated by either the Einstein equation [31],

D = lim
t→∞

1
2dNt

〈
N

∑
j=1

[
rj(t)− rj(0)

]2〉, (4)

or the GK relation,

D =
1

3N

∫ ∞

0

〈
N

∑
j=1

vj(0) · vj(t)

〉
, (5)

where rj denotes the jth particle’s position vector and vj its velocity vector, the dimensional-
ity of the system is d, and N is the total number of particles. The former diffusion coefficient
equation is generally incorporated in equilibrium systems; however, by omitting drift from
the fluid flow, one could apply them in non-equilibrium configurations as well [33].

Similarly, the GK formalization for thermal conductivity (λ) is given by

λ =
1

VkBT2

∫ ∞

0
dt < Jx

q (t) · Jx
q (0) >, (6)

with Jq being the microscopic heat flow

Jq =
1
2

N

∑
i=1

mi(vi)
2vi −

N

∑
i=1

N

∑
j>1

[
rij :

∂u(rij)

∂rij
− I · u(rij)

]
· vi (7)

where vi is the ith atom’s velocity vector and I is the unitary matrix.
Finally, the respective GK equation for shear viscosity, (η), is

η =
1

VkBT

∫ ∞

0
dt < Jxy

p (t) · Jxy
p (0) >, (8)

where the off-diagonal elements of the microscopic stress tensor denoted by Jxy
p are de-

scribed by

Jxy
p =

N

∑
i=1

mivx
i vy

i −
N

∑
i=1

N

∑
j>1

rx
ij

∂u(rij)

∂ry
ij

, (9)

with u(rij) indicating the LJ potential of Equation (1); the distance between i and j particles

is ri,j, and vj
i is the ith particle velocity for j = x, y, z directions. We have to note that

thermal conductivity (Equation (6)) and shear viscosity (Equation (8)) are derived only for
equilibrium conditions or, at least, for systems close to equilibrium [34].

2.1.3. Slip Length

Fluid confinement investigation requires proper designing of the modeling system, as
density appears to be non-homogeneous at the wall’s vicinity [35] due to wall characteristics
(e.g., degree of wettability and mass of each particle) [36], topology of the surface, and
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thermal, atomic, or geometrical roughness [37]. As already mentioned, in the macroscale
hypothesis of no-slip breakdown [28,38], the slip length (Ls) has to be taken into account,
from the following equation [32]:

Ls = uw

/
duw,z

dz

∣∣∣∣
w

, (10)

with uw being fluid velocity at the wall. In a nanochannel of height h, the dimensionless
slip length L∗s , is given by the slip length-to-channel height ratio Ls/h. Its values can be
calculated by projecting the fluid’s velocity profile until the point where it vanishes inside
the wall, as shown in Figure 1.

Figure 1. Molecular dynamics model, with all parameters involved in flows between two infinite
plates, as shown in Tables 1 and 2. The mechanisms of diffusion, D, viscosity, η, thermal conductivity,
λ, and the slip length, Ls, are abstractly presented, along with a characteristic velocity and density
profile at the nanoscale.

2.2. Simulation Model and Dataset Creation

A Poiseuille-based simulation model is considered for dataset creation [39]. More
specifically, a monatomic LJ liquid flows between two infinite, solid plates, in various cases
of flat or grooved walls (Figure 1). Next, we refer to fluid quantities with index f and w for
walls. The distance between the two plates in the z-direction is h, groove height and length
are depicted as hg and hl , respectively, while periodic boundary conditions are set in x- and
y-directions. A cutoff radius equal to rc = 2.5σ has been considered for the LJ potential
(Equation (1)), while ε and σ resemble those of argon (Ar), i.e, σf = σw = 0.3405 nm,
ε f /kB = 119.8 K (kB: Boltzmann constant). The particle mass has been set equal to
mAr = 39.95 a.u..

To account for various surface wettability properties, the ratio εw f /ε f f corresponds to
“hydrophobic” walls when εw f /ε f f is close to zero and “hydrophilic” walls when εw f /ε f f
approaches unity (see Ref. [40] for details). Fluid particles flow due to an external force Fext
applied to every fluid particle, small enough to remain close to the linear regime [41,42].
The application of Nosé–Hoover thermostats at the walls [43,44] keeps the system at the
NVT ensemble, with constant temperature. To achieve enhanced thermalization of the wall
particles, two distinct thermostats have been used, one for the upper wall and another for
the lower wall. The processes of self-diffusion, viscosity, and thermal conductivity, as well
as the slip length, are briefly summarized in Figure 1. These properties are affected by
confinement, which leads to fluid particle ordering near the walls (as shown in the density
profile in Figure 1).

All parameters of the MD simulation, along with the derived transport properties and
the slip length, are given in Tables 1 and 2.
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Table 1. Transport property dataset value range.

Parameters Diffusion Coefficient Shear Viscosity Thermal Conductivity

Channel height (h) 2.64–100.44 2.64–100.44 2.64–100.44

External force (Fext) 0.0004–0.0743 0.0004–0.0743 0.0004–0.0743

Energy ratios (εw f /ε f f ) 0.1–5.0 0.1–5.0 0.1–5.0

Transport property (Dc, ηc, λc) 1.227–10.3575 0.7479–3.1946 1.73–3.1163

Number of observations 54 54 54

Table 2. Slip length dataset value range.

Parameters Min Max

Channel height (h) 1.049869 210.0

Groove length to channel height (hl/h) 0.0119 1.0

Groove height to channel height (hd/h) 0.0 2.05

Wall-to-fluid energy interaction ratio (εw f /ε f f ) 0.1 2.236

Wall-to-fluid particle size ratio (σw f /σf f ) 1.0 3.0

Wall-to-fluid particle mass ratio (mw/m f ) 0.663 20.0

External force (Fext) 0.0 4.9

Wall spring constant (K∗) 57.15 10,000.0

Reduced temperature (T∗) 0.8333 2.59

Reduced density (ρ∗) 0.0468 1.303

Slip length-to-channel height ratio (Ls/h) 0.0 7.677928

Number of observations 343

2.3. Symbolic Regression

Symbolic regression is a supervised ML algorithm that constructs a mathematical
function based on a given dataset. It is differentiated by other regression instances (e.g.,
linear, multivariate, polynomial, etc.) as both structure and constitutive parts of the
expression are being selected on the fly. This feature diminishes the need to include
some kind of prior knowledge into the procedure and allows a completely data-driven
evolution. In contrast to the traditional black-box ML models (e.g., neural networks), SR
presents a clearer linkage between the system’s variables and, at the same time, reveals
hidden dynamics.

The common SR implementation is based on GP principles, an Evolutionary Algo-
rithm (EA) subset that approaches the optimal solution systematically in a procedure that
resembles Darwin’s theory of evolution. First, a pre-defined number of random expressions
is created in a large set (population), where each equation (individual) can be visualized as
a tree (see Figure 2). Secondly, the accuracy of each individual is estimated by a measure of
fitness, such as the Mean Squared Error (MSE, Equation (11)). Then, “strong” equations
that achieve small errors are tabulated and reproduced in a subsequent population by
employing the GP operations of crossover and mutation (see Figure 2). Step after step,
more robust expressions are extracted, and finally, several expressions are exported by
balancing accuracy and complexity characteristics (Pareto frontier). The complexity term
that usually accounts for the number of nodes of the tree structure can facilitate a general
understanding of the given network. More details on the method can be found in [14,45].

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 , (11)
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The application of SR in current physical science problems is gaining ground [14], open-
ing a new route to re-evaluate traditional empirical and approximate equations. Examples
include the prediction of fluid properties [11,46–48], fatigue life [49,50], modeling plastic
deformation [51], and data-driven proof of physical and chemical laws [52], among others.

Figure 2. The processes of (a) mutation and (b) crossover in genetic programming, shown in a tree
structure form. In mutation, new equation nodes or branches can substitute less accurate ones, while
in crossover, branches can be swapped between different trees.

3. Results

Four distinct datasets that provide the self-diffusion coefficient (D), thermal conduc-
tivity (λ), shear viscosity η, and slip length (Ls) are considered, created by MD simulations
and literature review (Tables 1 and 2). An SR framework based on PySR [53,54] and our
own Python code follows to obtain a pool of candidate equations. Since finding an ap-
propriate expression is a multi-objective optimization problem, more than one optimal
solution is produced.

For the selection of final expressions, several factors have been taken into consideration.
At first, since the establishment of a direct linkage between the MD structure variables in
current theoretical approaches is scarce, we focused on repeating forms at the generated
expressions. Moreover, as the formation of an equation via GP principles is a stochastic
procedure, an intermittent re-appearance of several configurations could be an indication
of capturing part of the system’s dynamics. Secondly, their ability to physically describe the
system and their inherent complexity (Compl.) was taken into account. The final criterion
was their prediction accuracy, as revealed by measures such as the R-squared (R2), mean
absolute error (MAE), (MSE), and root MSE (RMSE) values.

After a significant number of parallel SR calculations, the dominant equations have
been selected for the self-diffusion coefficient (D∗c ), thermal conductivity (λ∗c ), shear vis-
cosity (η∗c ), and slip length (L∗s ), as follows:

D∗c =
√

h + 2 log(h)− 2 log(εw f /ε f f )−
√

Fext h , (12)

λ∗c = log
(

Fext h + u1

√
u2h + eεw f /ε f f + u3

)
, (13)

η∗c =
[
eεw f /ε f f (−u1 Fext+1)eu2

] 1
h , (14)

L∗s =
w1(hl/h) + w2(mw/m f )

2e−w3(εw f /ε f f )
4
+ w4

√
(hd/h)

h2 , (15)
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where u1 = 1.6, u2 = 0.39, u3 = 2.47, v1 = 0.732, v2 = 0.882, w1 = 0.13, w2 = 1.3,
w3 = w4 = 4.

Although the application of the SR algorithm in small datasets [55] may lead to over-
fitting, the above equations achieve relatively high accuracy scores. The identity plots
for the generated expressions and a zoomed figure of the dense regions can be found in
Figure 3. In addition, their complexity values and overall accuracy across several random
states, setting a partitioning factor of 70% train and 30% test, are shown in Table 3.

Figure 3. Identity plots for the generated expressions for (a) D∗c , (b) λ∗c , (c) η∗c , and (d) L∗s . The 45◦

line is a guide to the eye, denoting perfect prediction when data points lie on it.

Table 3. Generated expressions specifications.

Equation R2 MSE RMSE MAE Compl.
Train Test Train Test Train Test Train Test

D∗c (Equation (12)) 0.94 0.91 0.18 0.17 0.42 0.41 0.28 0.27 15

λ∗c (Equation (13)) 0.92 0.90 0.01 0.01 0.10 0.10 0.07 0.07 14

η∗c (Equation (14)) 0.95 0.93 0.02 0.02 0.14 0.13 0.10 0.10 12

L∗s (Equation (15)) 0.86 0.83 0.11 0.11 0.33 0.33 0.20 0.21 19

It should be noted that D∗c , λ∗c , and η∗c final expressions (Equations (12)–(14)) in-
corporate every input parameter of the dataset. In contrast, the slip length formula L∗s
(Equation (15)) spots only the important parameters and ends up with the wall roughness
parameters hl/h and hd/h, wall-to-fluid interaction and mass ratio εw f /ε f f and mw/m f ,
respectively, and the channel height h. The slip length equation reports a complexity value
of Compl = 19. One could opt for different equations than those presented with more or
less advanced complexity; however, a trade-off between complexity and accuracy has to be
retained [14].
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From a statistical point of view, transport property expressions achieve fine accuracy.
This is further supported by minor residual errors observed in the respective identity
plots (Figure 3). On the contrary, slip length accuracy measures are smaller. A point
worth mentioning is the fact that training and testing accuracy values are balanced, and
this is evidence of the absence of over-fitting. In other words, the SR algorithm trained
on the available data may be incorporated for predictions outside (extrapolation) and
between (interpolation) the available data points, making this framework both transparent
and generalizable.

4. Discussion

The inherent computational complexity of MD simulations is mainly focused on cal-
culating the interactions between the system’s particles. These interactions are typically
calculated for millions of particles, for every time step (in the order of f s) considered. On
the other hand, the proposed ML framework can provide an alternative to conventional
research methods by approaching a possible solution at only a fraction of the initial compu-
tational demand. However, first we have to ensure that the proposed equations are closely
connected to the physics of the investigating system. The generated expressions are purely
data-driven and able to provide a direct estimation of the targeted quantity (i.e., the three
transport properties D∗c , λ∗c , and η∗c and the slip length L∗s ) as functions of the atomic-scale
parameters of the confined system.

Equation (12) for D∗c presents a strong dependence on channel height, h. This trend
agrees with simulation results [31], where it has been shown that the self-diffusion coef-
ficient decreases in nanochannels of small width and approaches its bulk value in wider
channels, where the wall effect is minimum. It is also observed that a square root relation
between D∗c , εw f /ε f f , and Fext exists; however, it is difficult to decompose their effect on the
self-diffusion coefficient. It seems that D∗c is affected by εw f /ε f f in small channel heights.

On the other hand, the physical explanation is clearer for thermal conductivity, as λ∗c
in Equation (13) seems to be a logarithmic function, where h, Fext, and εw f /ε f f positively
affect its value. As far as shear viscosity is concerned, Equation (14) presents a complex
exponential behavior, where η∗c is affected mainly by εw f /ε f f and h. Here, as h → 0,
shear viscosity increases, for a given εw f /ε f f . Moreover, an increase in εw f /ε f f leads to
an increase in η∗c . The external force in most of our simulation cases lies in the range
0.01 ≤ Fext ≤ 0.5 (some extreme values have been used only for testing), which means
that the term u1 Fext + 1 > 0 only slightly decreases η∗c , especially in narrower channels
(small h).

In order to obtain a clear view of each input parameter effect on transport properties
in confined channels, we provide a quantified evaluation of the SR expressions’ responses
in different scenarios in Figure 4. Here we have omitted the effect of the external force, as it
has been found that it does not affect the outcome significantly, since its effect on flow is
subtracted from the final calculations in GK approaches (see Ref. [31] for more details), and
argue for the effect of εw f /ε f f and h.

The proposed SR-derived equation for the self-diffusion coefficient in hydrophobic
and hydrophilic nanochannels (Figure 4a,b, respectively) presents a clear increasing be-
havior as h increases. In narrower channels, the effect of εw f /ε f f becomes significant.
Hydrophobic nanochannel walls (εw f /ε f f → 0) lead to higher self-diffusion values com-
pared to hydrophilic ones (εw f /ε f f > 1). This illustrates the fact that, in hydrophilic cases,
where particles are attracted to the surface, fluid particles find it difficult to diffuse. On
the contrary, in a hydrophobic case, where atoms are repelled from the wall surface, fluid
diffusion is facilitated. It is also shown that, for a nanochannel of constant height, e.g.,
h = 2.64σ, where the wall effect is strong due to the small height, D∗c decreases as the walls
become more hydrophilic (Figure 4c).

Another important remark is that shear viscosity from the SR-derived Equation (14)
for both hydrophobic and hydrophilic channels, shown in Figure 4g,h, respectively, clearly
obtains its bulk value for h > 20σ. This is in fine agreement with our previous numerical
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investigation in [15]. Larger η∗c values are obtained for hydrophilic walls, and this is also
shown in Figure 4i, for the case of h = 2.64σ. Furthermore, thermal conductivity SR
Equation (13) reveals a λ∗c increase vs. εw f /ε f f and h, in Figure 4d,e. Higher λ∗c values
refer to more hydrophilic walls. It is worth noting that thermal conductivity inside narrow
channels, i.e., for h = 2.64σ, increases as the walls become more hydrophilic (Figure 4f).

Figure 4. Examining the behavior of the proposed SR equations for D∗c vs. h in (a) hydrophobic and
(b) hydrophilic channels, and (c) D∗c vs. εw f /ε f f for h = 2.64σ, for λ∗c vs. h in (d) hydrophobic and
(e) hydrophilic channels and (f) λ∗c vs. εw f /ε f f for h = 2.64σ, and for η∗c vs. h in (g) hydrophobic and
(h) hydrophilic channels and (i) η∗c vs. εw f /ε f f for h = 2.64σ.

In case of slip length prediction from the proposed Equation (15), we observe that
L∗s is inversely proportional to the squared channel height, h2. This is physically correct,
since in channels of large heights, the no-slip condition applies [19]. Moreover, geometrical
parameters of the walls (hl/h, hd/h) and particle masses (mw/m f ) seem to have a positive
effect on the outcome. We attribute this to the fact that rough nanochannels have been
widely incorporated to achieve larger slip lengths at the nanoscale [37,39,56]. Conversely,
the energy ratio εw f /ε f f has a negative exponential effect on L∗s . This is also an expected be-
havior, since as εw f /ε f f increases, the walls become more hydrophilic, imposing difficulties
in fluid movement, and slip length decreases.

Slip length behavior is graphically presented in Figure 5. Each one of the independent
variables has been held constant at the mean value (hl/h = 0.7, hd/h = 0.07, mw/m f = 3.0,
h = 16.96) and the effect of one variable is depicted in the respective sub-figure. Firstly,
we observe that groove length has a minor influence on the outcome (Figure 5a), since
slip length values remain constant when increasing the hl/h ratio. On the other hand,
slip length is highly affected by the depth of the groove (Figure 5b). Apparently, the
SR procedure has identified that groove depth overwhelms the groove length impact,
especially when wall/fluid interactions constitute a super hydrophobic environment. This
can also be seen by the proposed equation weights on each of the corresponding variables
in Equation (15), where the groove depth weight (w4) is sufficiently larger than the weight
of groove length (w1).

Similarly, the slip length increases as the wall/fluid particle mass ratio mw/m f in-
creases (Figure 5c). Larger wall particle masses compared to fluid particles would pose an
atomic roughness wall, which, along with strong hydrophobic interactions, increases the
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slip length. As far as the slip length and channel width, h, are concerned (Figure 5d), the
former assumption of the inverse proportionality is evident and, ultimately, leads to the
restoration of the no-slip assumption as bulk behavior is approached.

A common characteristic in every subfigure in Figure 5 is that the wall-to-fluid energy
interaction ratio (εw f /ε f f ) has a major impact at the nanoscale, as far as the slip length is
concerned. For hydrophobic cases where fluid atoms become subject to higher repulsion by
the wall atoms, a large slip length value can be expected due to the reduction in the friction
between fluid and wall as a result of the wall–fluid interaction area minimization [57].
Conclusively, the proposed Equation (15), derived from the data-driven SR method, seems
to capture the physical interpretation of the slip mechanism in confined flows.

Figure 5. Slip length equation dynamics for various εw f /ε f f vs. (a) hl/h, (b) hd/h, (c) mw/m f , and
(d) h.

5. Conclusions

Recently, data-based methodologies have progressively entered and enhanced con-
ventional approaches by concurrently establishing computational efficiency and economy.
Toward this end, an ML architecture has been trained on data derived from NEMD simu-
lations and found broad applicability in the construction of micro- and nano-devices, i.e.,
the self-diffusion coefficient, thermal conductivity, shear viscosity, and the slip length. The
outcome is a set of closed form equations that perform fine in several cases investigated
and are able to decode hidden mechanics, even with no prior understanding of the system.

The SR-based self-diffusion coefficient equation has identified the tendency of fluid
particles to stick onto hydrophilic channel walls and achieves lower values as the wall-
to-fluid interaction ratio increases. In the same way, thermal conductivity and viscosity
equations are increased inside hydrophilic nanochannels, especially in narrow channels.
On the other hand, the suggested slip length equation applies only in channels of small
height, h, and agrees with the macroscale hypothesis of the no-slip condition for h > 20σ.

We believe that symbolic regression techniques have matured and new computational
approaches will emerge that are able to bind these data-driven methods to classical sim-
ulations at all scales. Special emphasis should be placed on the physical explanation of
system dynamics, which, in this paper, has been found to agree with the established do-
main knowledge. The area of fluids under confinement investigation and fluid-to-surface
interaction dynamics present fundamentally different behavior than the bulk, and novel,
interpretable machine learning techniques could aid traditional approaches in addressing
current computational obstacles.
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